首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insertion element IS102 resides in plasmid pSC101.   总被引:8,自引:4,他引:4       下载免费PDF全文
In vivo recombination was found to occur between plasmid pHS1, a temperature-sensitive replication mutant of pSC101 carrying tetracycline resistance, and plasmid ColE1 after selection for tetracycline resistance at the restrictive temperature, 42 degrees C. Extensive analysis of the physical structures of three of these recombinant plasmids, using restriction endonucleases and the electron microscope heteroduplex method, revealed that the plasmid pHS1 was integrated into different sites on ColE1. The recombinant plasmids contained a duplication of a unique 1-kilobase (kb) sequence of pHS1 in a direct orientation at the junctions between the two parental plasmid sequences. This was confirmed by comparing the nucleotide sequence of the recombinants and their parental plasmids. Nucleotide sequence analysis further revealed that nine nucleotides at the site of recombination of ColE1 were duplicated at the junction of each of the 1-kb sequences. The formation of recombinants was independent of RecA function. Based on our previous finding that a plasmid containing a deoxyribonucleic acid insertion (IS) element can recombine with a second plasmid to generate a duplication of the IS element, we conclude that the 1-kb sequence is an insertion sequence, which we named IS102. For convenience, we have also denoted the IS102 sequence as eta theta to assign the orientation of the sequence. Eighteen nucleotides at one end (eta end) were found to be repeated in an inverted orientation at the other end (theta end) of IS102. The nucleotide sequence of the eta end of the sequence was found to be identical to the sequence at the ends of the transposon Tn903, which is responsible for transposition of the kanamycin resistance gene.  相似文献   

2.
O Amster  D Salomon    A Zamir 《Nucleic acids research》1982,10(15):4525-4542
Evidence is presented indicating that a novel DNA sequence arrangement generated by in vitro recombination may elicit high frequency transpositions of IS elements. A 109 bp Bam HI fragment of the cDNA for the immunoglobulin kappa light chain from MOPC 321 myeloma was cloned into the Bam HI site of pBR313. The cloned fragment extends from the codon for Gly 57 to the V-J junction. Insertions of IS1 or IS5 were identified in 6 of 50 plasmid DNAs isolated from freshly transformed clones. Additional transposition events were detected after subculturing for several growth cycles. Three independent insertions of IS1 occurred in the promoter region of the TcR operon. All IS5 and the remaining IS1 insertions were located in the TcR region upstream to the cloned DNA sequence. Sequences homologous to the ends of IS1, or corresponding to the consensus sequence at the target site of IS5 are present near the estimated sites of insertion of IS1 or IS5 respectively. Bacteria harboring recombinant plasmids carrying the cloned DNA in either orientation grew at a reduced rate relative to cells harboring pBR313, suggesting that fused gene products made from the two types of plasmid were inhibitory to cell growth. IS insertions, which relieved this inhibitory effect and thereby provided a selective advantage, were found exclusively in plasmids carrying the cloned DNA in only one of the two orientations. The fact that IS elements were not observed in the other type of recombinant plasmid indicates that selective pressure alone is not sufficient to account for the frequent IS insertions observed and that sequences at a distance from the site of IS insertion may be critical in the regulation of transposition frequency.  相似文献   

3.
The integration of IS1 and IS10 was reported in the recombinant plasmid containing the 3070 bp rearrangement hotspot(rhs) common-shared block(CSB) in Escherichia coli K-12. The integration of IS1 was found to be in rhs(CSB) portion, whereas the integration of IS10 was found to be in both rhs(CSB) and vector portions. The bacterial cells containing the recombinant plasmid grew very slowly. But the integration of IS1 or IS10 in rhs(CSB) portion made the host grow rapidly and overgrew the slow-growing population inheriting the recombinant plasmids without IS-sequences. The sites of integration of IS1 and IS10 were different as was judged from restriction endonuclease mapping. These are rare examples of interchromosomal mobilisation of IS1 and IS10 from host chromosome into plasmid.  相似文献   

4.
The numbers of chromosomal copies of the insertion sequence IS1 in strains of Salmonella typhimurium (0 to 8 copies), Shigella sonnei (56 copies), and Shigella flexneri (41 copies) isolated in Mexico City, Mexico, were similar to those reported for these genera isolated in other countries. Of the 11 Shigella strains studied, all carried several small plasmids; however, in only one of these strains did a small plasmid contain IS1, IS1 recombination, cointegrate formation mediated by IS1 or by the IS1-flanked transposon Tn9, and transposition of Tn9 occurred at a higher frequency in S. typhimurium than in either Escherichia coli or S. sonnei strains. The frequencies of IS1 recombination in S. typhimurium strains containing either zero or eight copies of IS1 were similar.  相似文献   

5.
M Fujii  K Sakaguchi 《Gene》1980,12(1-2):95-102
A composite plasmid pLS253 was constructed from pLS103 [carrying the Bacillus subtilis leucine genes on B. subtilis (natto) plasmid pLS28] and pHV14 [a recombinant plasmid composed of pBR322 and the staphylococcal R-plasmid pC194] employing BamHI endonuclease, T4 DNA ligase, and B. subtilis transformation. All the Leu+ Cmr transformants tested harbored not only pLS253 but also two smaller plasmids designated as pLS251 and pLS252. pLS253 DNA, when purified on an agarose gel, retained both Leu+ and Cmr transforming activities; however, in all the Leu+ Cmr transformants, the two smaller plasmids reappeared. pLS251 and pLS252 exhibited Leu+- or Cm4-transforming activity, respectively, and must have been derived from the pLS253 parent by an intramolecular recombination event, since the sum of the pLS251 and pLS252 DNAs represent the entire pLS253 genome. The recombination occurred between specific sites on the B. subtilis (natto) and Staphylococcus aureus plasmids. When the composite plasmid, pLS254, was constructed by BamHI cleavage of pLS251 and pLS252 followed by ligation, Leu+ Cmr transformants segregated two smaller plasmids which were indistinguishable from the original plasmids pLS103 and pHV14, respectively. They must have been derived from pLS254 through a reversal of the original recombination event. No intermolecular recombination between pLS251 and pLS252 DNA was detected. The recombination process was independent of recE function of the host cells, and its mechanism is discussed.  相似文献   

6.
The expression of oLpLN region of the plasmid pNT6 causes the high instability of the plasmid. Mutations in the promoter pL region and lesions in the structural part of the N gene result in the stable inheritance of the plasmid. The plasmids pNT6::IS1 containing the IS1-element inserted into the different loci of oLpLN region restore the high instability of the plasmid inheritance in the strain 4830 coding for oLpLN. The plasmids pIG3 and pIG4 of the series pNT6: :IS1 permit one to obtain the collection of random deletions in the cloned fragments induced by IS1-element.  相似文献   

7.
Heteroduplex experiments between the plasmid R6 and one strand of the deoxyribonucleic acid (DNA) of a lambda phage carrying the insertion sequence IS1 show that IS1 occurs on R6 at the two previously mapped junctions of resistance transfer factor (RTF) DNA with R-determinant DNA. From previous heteroduplex experiments, it then follows that IS1 occurs at the same junctions in R6-5, R100-1, and R1 plasmids. Heteroduplex experiments with the DNA from a lambda phage carrying the insertion sequence IS2 show that one copy of IS2 occurs in R6, R6-5, and R100-1 (but not R1) at a point within the RTF with coordinates 67.5 TO 68.9 kilobase units (kb). In an accompanying paper, Ptashne and Cohen (1975) show that the insertion sequence IS3 occurs on R6 and R6-5. R100-25, a traC mutant, differs from its parent R100-1 only in that it contains an additional copy of IS1 inserted within the tra gene region of 82.1 kb. R100-31, atraX, TC-s mutant of R100-1, is deleted in R100-1 sequences starting at one of the IS3 termini (46.9 kb) and extending with RTF to 61.0 kb. Heteroduplex studies of F plasmids with the DNA of a lambda phage bearing insertion sequence IS2 show that the sequence of F with coordinates 16.3-17.6F is IS2. The occurrence of IS1 at the two junctions of R-determinant DNA and RTF DNA in R plasmids provides a structural basis to explain the mechanism of the previously observed formation of molecules containing one RTF unit and several tandem copies of the R-determinant unit, when R plasmids in Proteus mirabilis are grown in the presence of antibiotics, and the segregation of an R plasmid into an RTF unit and an R-determinant unit. In general, correlation of our results with previous studies shows that insertion sequences play a role in a variety of F- and R-related intra- and intermolecular recombination phenomena.  相似文献   

8.
Several gene clusters that are responsible for toxin synthesis in bloom-forming cyanobacteria have been found to be associated with transposable elements (TEs). In particular, insertion sequence (IS) elements were shown to play a role in the inactivation or recombination of the genes responsible for cyanotoxin synthesis. Plasmids have been considered important vectors of IS element distribution to the host. In this study, we aimed to elucidate the IS elements propagated on the plasmids and the chromosome of the toxic cyanobacterium Planktothrix agardhii NIVA-CYA126/8 by means of high-throughput sequencing. In total, five plasmids (pPA5.5, pPA14, pPA50, pPA79, and pPA115, of 5, 6, 50, 79, and 120 kbp, respectively) were elucidated, and two plasmids (pPA5.5, pPA115) were found to propagate full IS element copies. Large stretches of shared DNA information between plasmids were constituted of TEs. Two plasmids (pPA5.5, pPA14) were used as candidates to engineer shuttle vectors (named pPA5.5SV and pPA14SV, respectively) in vitro by PCR amplification and the subsequent transposition of the Tn5 cat transposon containing the R6Kγ origin of replication of Escherichia coli. While pPA5.5SV was found to be fully segregated, pPA14SV consistently co-occurred with its wild-type plasmid even under the highest selective pressure. Interestingly, the Tn5 cat transposon became transferred by homologous recombination into another plasmid, pPA50. The availability of shuttle vectors is considered to be of relevance in investigating genome plasticity as a consequence of homologous recombination events. Combining the potential of high-throughput sequencing and in vitro production of shuttle vectors makes it simple to produce species-specific shuttle vectors for many cultivable prokaryotes.  相似文献   

9.
By providing the scientific community with uniform and standardized resources of consistent quality, plasmid repositories play an important role in enabling scientific reproducibility. Plasmids containing insertion sequence elements (IS elements) represent a challenge from this perspective, as they can change the plasmid structure and function. In this study, we conducted a systematic analysis of a subset of plasmid stocks distributed by plasmid repositories (The Arabidopsis Biological Resource Center and Addgene) which carry unintended integrations of bacterial mobile genetic elements. The integration of insertion sequences was most often found in, but not limited to, pBR322-derived vectors, and did not affect the function of the specific plasmids. In certain cases, the entire stock was affected, but the majority of the stocks tested contained a mixture of the wild-type and the mutated plasmids, suggesting that the acquisition of IS elements likely occurred after the plasmids were acquired by the repositories. However, comparison of the sequencing results of the original samples revealed that some plasmids already carried insertion mutations at the time of donation. While an extensive BLAST analysis of 47 877 plasmids sequenced from the Addgene repository uncovered IS elements in only 1.12%, suggesting that IS contamination is not widespread, further tests showed that plasmid integration of IS elements can propagate in conventional Escherichia coli hosts over a few tens of generations. Use of IS-free E. coli hosts prevented the emergence of IS insertions as well as that of small indels, suggesting that the use of IS-free hosts by donors and repositories could help limit unexpected and unwanted IS integrations into plasmids.  相似文献   

10.
The nucleotide sequence analysis of insertion element IS1 has shown that IS1 could have as many as six translational reading frames encoding possible proteins. In order to determine which reading frames are actual structural genes responsible for IS1-mediated recombination, we introduced base substitution mutations including nonsense mutations into all of the potential reading frames and examined the ability of these IS1 mutants to mediate cointegration between two plasmids. The results reveal that IS1 has two structural genes (termed insA and insB), which are required for plasmid cointegration mediated by IS1.  相似文献   

11.
Z Eichenbaum  Z Livneh 《Genetics》1998,149(3):1173-1181
A new mutagenesis assay system based on the phage 434 cI gene carried on a low-copy number plasmid was used to investigate the effect of UV light on intermolecular transposition of IS10. Inactivation of the target gene by IS10 insertion was detected by the expression of the tet gene from the phage 434 PR promoter, followed by Southern blot analysis of plasmids isolated from TetR colonies. UV irradiation of cells harboring the target plasmid and a donor plasmid carrying an IS10 element led to an increase of up to 28-fold in IS10 transposition. Each UV-induced transposition of IS10 was accompanied by fusion of the donor and acceptor plasmid into a cointegrate structure, due to coupled homologous recombination at the insertion site, similar to the situation in spontaneous IS10 transposition. UV radiation also induced transposition of IS10 from the chromosome to the target plasmid, leading almost exclusively to the integration of the target plasmid into the chromosome. UV induction of IS10 transposition did not depend on the umuC and uvrA gene product, but it was not observed in lexA3 and DeltarecA strains, indicating that the SOS stress response is involved in regulating UV-induced transposition. IS10 transposition, known to increase the fitness of Escherichia coli, may have been recruited under the SOS response to assist in increasing cell survival under hostile environmental conditions. To our knowledge, this is the first report on the induction of transposition by a DNA-damaging agent and the SOS stress response in bacteria.  相似文献   

12.
Using a combined in vivo and in vitro approach, we demonstrated that the transposition products generated by IS911 from a dimeric donor plasmid are different from those generated from a plasmid monomer. When carried by a monomeric plasmid donor, free IS911 transposon circles are generated by intra-IS recombination in which one IS end undergoes attack by the other. These represent transposition intermediates that undergo integration using the abutted left (IRL) and right (IRR) ends of the element, the active IRR-IRL junction, to generate simple insertions. In contrast, the two IS911 copies carried by a dimeric donor plasmid not only underwent intra-IS recombination to generate transposon circles but additionally participated in inter-IS recombination. This also creates an active IRR-IRL junction by generating a head-to-tail IS tandem dimer ([IS]2) in which one of the original plasmid backbone copies is eliminated in the formation of the junction. Both transposon circles and IS tandem dimers are generated from an intermediate in which two transposon ends are retained by a single strand joint to generate a figure 8 molecule. Inter-IS figure 8 molecules generated in vitro could be resolved into the [IS]2 form following introduction into a host strain by transformation. Resolution did not require IS911 transposase. The [IS]2 structure was stable in the absence of transposase but was highly unstable in its presence both in vivo and in vitro. Previous studies had demonstrated that the IRR-IRL junction promotes efficient intermolecular integration and intramolecular deletions both in vivo and in vitro. Integration of the [IS]2 derivative would result in a product that resembles a co-integrate structure. It is also shown here that the IRR-IRL junction of the [IS]2 form and derivative structures can specifically target one of the other ends in an intramolecular transposition reaction to generate transposon circles in vitro. These results not only demonstrate that IS911 (and presumably other members of the IS3 family) is capable of generating a range of transposition products, it also provides a mechanistic framework which explains the formation and activity of such structures previously observed for several other unrelated IS elements. This behaviour is probably characteristic of a large number of IS elements.  相似文献   

13.
M Szabó  J Kiss  G Kótány  F Olasz 《Plasmid》1999,42(3):192-209
In the present study we report on the excision of IS30 elements and IS30-derived composite transposons. Frequent loss of IS30 was observed during dissolution of dimeric IS30 structures, containing IR-IR junctions, leading to resealed donor molecules. In contrast, unambiguous transpositional excision resulting in resealed remainder products could not be identified in the case of a monomeric element. The bias in the excision of monomeric and dimeric IS30 structures indicates a difference in the molecular mechanism of transposition of IS30 monomers and dimers. Sequence data on the rarely detected plasmids missing full IS or Tn copies rather suggest that all products were derived from illegitimate recombination. The reaction occurred between short homologies and was independent of the transposase activity. Similar IS30 excision events accompanied by multiple plasmid or genome rearrangements were detected in Pseudomonas putida and Rhizobium meliloti, yielding stable replicons that retained the selective marker gene of the transposon. We provide evidence that both transposition and illegitimate recombination can contribute to the stabilization of replicons through the elimination of IS elements, which emphasizes the evolutionary significance of these events.  相似文献   

14.
We have studied the recombination of plasmids bearing bom and cer sites. The bom ( basis of mobilization) site is required for conjugative transfer, while the cer ( Col E1 resolution) site is involved in the resolution of plasmid multimers, which increases plasmid stability. We constructed a pair of parent plasmids in such a way as to allow us select clones containing recombinant plasmids directly. Clone selection was based on the McrA sensitivity of recipient host DNA modified by M. Ecl18kI, which is encoded by one of the parent plasmids. The recombinant plasmid contains segments originating from both parental DNAs, which are bounded by bom and cer sites. Its structure is in accordance with our previously proposed model for recombination mediated by bom and cer sequences. The frequency of recombinant plasmid formation coincided with the frequency of recombination at the bom site. We also show that bom-mediated recombination in trans, unlike in cis, is independent of other genetic determinants on the conjugative plasmids.  相似文献   

15.
The frequencies and types of plasmid molecular rearrangements generated in different recombinant mutants which carried two plasmids of the FII incompatibility group were studied. The wild-type cells generated molecular rearrangements mainly by interplasmidic recombination with a frequency of 2.4 x 10(-6) per cell per cell doubling. Cells in which RecF was the principal recombination pathway generated different types of molecular rearrangements that involved either both plasmids or one of the plasmids and the chromosome. The frequencies of molecular rearrangements for these cells were 50-fold greater than those of wild-type cells. The recA- cells, even when the RecE pathway was derepressed, generated rearrangements only between one of the plasmids and the chromosome, at very low frequencies (10(-9]. In wild-type cells and in RecF cells, interplasmidic recombination generated mainly cointegrates carrying DNA deletions. These cointegrates were stable in recA- or recA- RecE+ cells, but unstable in wild-type or RecF+ cells. In the latter, the cointegrates generated smaller plasmids with different molecular structures at relatively low frequencies.  相似文献   

16.
S Mickel  E Ohtsubo  W Bauer 《Gene》1977,2(3-4):193-210
Small, autonomously replicating plasmids derived by in vivo recombination from R-factor R12 (= R100) have been structurally mapped by heteroduplex formation between the plasmids and an R-factor which is structurally closely related to R6-5. Recombination resulting in generation of the small resistance-free plasmids occurs between the (IS1)b insertion sequence and various other sites on the opposite side of an origin of replication. A larger R12-derived plasmid pSM17, carrying streptomycin (Sm), sulfadiazole (Sa), and chloramphenicol (Cm) resistances, has recombined in a similar manner but at the (IS1)a sequence. A new structural coordinate origin for R100 and for partially homologous R-factors is proposed based upon the location of the (IS1)b sequence.  相似文献   

17.
Y. Tsukamoto  J. I. Kato    H. Ikeda 《Genetics》1996,142(2):383-391
To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rad51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.  相似文献   

18.
The possible participation of restriction endonuclease EcoRI in recombination of compatible nonhomologous plasmids in E. coli cells has been studied. To study the process, plasmids RP4 and R245 have been transferred by conjugation into the recipient cells of E. coli harbouring one of isogenic plasmids, pSA14 and pSA25, different for the genes coding restriction endonuclease EcoRI. The genetic analysis of transconjugant phenotypes, coded by the plasmids, has permitted to register the recombinant plasmids after compatibility of parent plasmids in E. coli cells. Recombination of plasmid RP4 with the plasmid pSA14, carrying EcoRI genes, has been registered in E. coli cells, producing the restriction endonuclease, while plasmid recombination has not been found in the cells harbouring plasmid pSA25, isogenic for all genes, except for EcoRI genes, with plasmid pSA14. Restriction endonuclease EcoRI is concluded to stimulate site specific recombination of nonhomologous compatible plasmids in vivo. EcoRI-mediated recombination of plasmid R245 with plasmid pSA14 is discussed.  相似文献   

19.
We have examined the mechanism of homologous recombination between plasmid molecules coinjected into cultured mammalian cells. Cell lines containing recombinant DNA molecules were obtained by selecting for the reconstruction of a functional Neor gene from two plasmids that bear different amber mutations in the Neor gene. In addition, these plasmids contain restriction-length polymorphisms within and near the Neor gene. These polymorphisms did not confer a selectable phenotype but were used to identify and categorize selected and nonselected recombinant DNA molecules. The striking conclusion from this analysis is that the predominant mechanism for the exchange of information between coinjected plasmid molecules over short distances (i.e., less than 1 kilobase) proceeds via nonreciprocal homologous recombination. The frequency of homologous recombination between coinjected plasmid molecules in cultured mammalian cells is extremely high, approaching unity. We demonstrate that this high frequency requires neither a high input of plasmid molecules per cell nor a localized high concentration of plasmid DNA within the nucleus. Thus, it appears that plasmid molecules, once introduced into the nucleus, have no difficulty seeking each other out and participating in homologous recombination even in the presence of a vast excess of host DNA sequences. Finally, we show that most of the homologous recombination events occur within a 1-h interval after the introduction of plasmid DNA into the cell nucleus.  相似文献   

20.
Yeast (Saccharomyces cerevisiae) transposons (Ty elements) are excised from up to 20% of supercoiled plasmids during transformation of yeast cells. The excision occurs by homologous recombination across the direct terminal repeats (deltas) of the Ty element, leaving behind a single delta in the transforming plasmid. Only the initial transforming plasmid is susceptible to excision, and no high frequency excision is observed in plasmids that have become established in transformed cells or in plasmids that are resident in cells undergoing transformation. High frequency excision from plasmids during yeast transformation is not specific for Ty elements and can be observed with other segments of plasmid DNA bounded by direct repeats. The frequency of Ty excision from supercoiled plasmids is greatly reduced when the host yeast cells contain the rad52 mutation, a defect in double-strand DNA repair. When linear or ligated-linear plasmid DNAs containing a Ty element are used for transformation, few or no excision plasmids are found among the transformant colonies. These results suggest that when a yeast cell is transformed with a supercoiled plasmid, the plasmid DNA is highly susceptible to homologous recombination for a short period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号