首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport kinetics of gamma-aminobutyric acid (GABA), taurine, and beta-alanine in addition to the mutual inhibition patterns of these compounds were investigated in cultures of neurons and astrocytes derived from mouse cerebral cortex. A high-affinity uptake system for each amino acid was demonstrated both in neurons (Km GABA = 24.9 +/- 1.7 microM; Km Tau = 20.0 +/- 3.3 microM; Km beta-Ala = 73.0 +/- 3.6 microM) and astrocytes (Km GABA = 31.4 +/- 2.9 microM, Km Tau = 24.7 +/- 1.3 microM; Km beta-Ala = 70.8 +/- 3.6 microM). The maximal uptake rates (Vmax) determined were such that, in neurons, Vmax GABA greater than Vmax beta-Ala = Vmax Tau, whereas in astrocytes, Vmax beta-Ala greater than Vmax Tau = Vmax GABA. Taurine was found to inhibit beta-alanine uptake into neurons and astrocytes in a competitive manner, with Ki values of 217 microM in neurons and 24 microM in astrocytes. beta-Alanine was shown to inhibit taurine uptake in neurons and astrocytes, also in a competitive manner, with Ki values of 72 microM in neurons and 71 microM in astrocytes. However, beta-alanine was found to be a weak noncompetitive inhibitor of neuronal and astrocytic GABA uptake, whereas in reverse experiments, GABA displayed weak noncompetitive inhibition of neuronal and astrocytic uptake of beta-alanine. Likewise, taurine was a weak noncompetitive inhibitor of GABA uptake in neurons and similarly, GABA was a weak noncompetitive inhibitor of taurine uptake into neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effects of bromoacetylaminomenthylnorepinephrine (BAAN) on the sodium-dependent, high-affinity norepinephrine (NE) uptake system in rat brain synaptosomes and CNS neuronal cultures were investigated. BAAN inhibited [3H]NE uptake into synaptosomes in a dose- and time-dependent manner (IC50, 6.5 microM). Pretreatment of cortical synaptosomes or neuronal cells with BAAN alone, followed by washing to remove free drug, reduced the Vmax but did not alter the Km value for [3H]NE uptake. The BAAN-induced reduction in Vmax was attenuated by concurrent pretreatment with desipramine and blocked by the reaction of BAAN with dithiothreitol or cysteine. In contrast, BAAN was 19-fold less potent at inhibiting [3H]dopamine uptake in striatal synaptosomes, and no change in the Vmax or Km value for [3H]dopamine uptake was observed after a pretreatment with BAAN followed by washing. Furthermore, the irreversible beta-antagonist, bromoacetylalprenololmentane, was equipotent to BAAN for inhibiting [3H]NE uptake into cortical synaptosomes, but did not alter the Vmax or Km for [3H]NE after pretreatment. In neuronal cultures, BAAN inhibited sodium-dependent uptake of [3H]NE (IC50, 5.6 microM) with no effect on sodium-independent uptake. After pretreatment of cultures with 30 microM BAAN followed by washing, there was a 74% decrease in the Vmax for [3H]NE uptake. Following a 24-h lag period, uptake recovered to the control level within 48 h; however, recovery was completely blocked by cycloheximide. The data indicate that BAAN irreversibly binds to the [3H]NE uptake system in both CNS synaptosomes and neuronal cultures and may be a useful probe for studying the turnover of the [3H]NE uptake system.  相似文献   

3.
We present a simple method for estimating kinetic parameters from progress curve analysis of biologically catalyzed reactions that reduce to forms analogous to the Michaelis-Menten equation. Specifically, the Lambert W function is used to obtain explicit, closed-form solutions to differential rate expressions that describe the dynamics of substrate depletion. The explicit nature of the new solutions greatly simplifies nonlinear estimation of the kinetic parameters since numerical techniques such as the Runge-Kutta and Newton-Raphson methods used to solve the differential and integral forms of the kinetic equations, respectively, are replaced with a simple algebraic expression. The applicability of this approach for estimating Vmax and Km in the Michaelis-Menten equation was verified using a combination of simulated and experimental progress curve data. For simulated data, final estimates of Vmax and Km were close to the actual values of 1 microM/h and 1 microM, respectively, while the standard errors for these parameter estimates were proportional to the error level in the simulated data sets. The method was also applied to hydrogen depletion experiments by mixed cultures of bacteria in activated sludge resulting in Vmax and Km estimates of 6.531 microM/h and 2.136 microM, respectively. The algebraic nature of this solution, coupled with its relatively high accuracy, makes it an attractive candidate for kinetic parameter estimation from progress curve data.  相似文献   

4.
When uptake of the Parkinson's syndrome inducing neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and its major brain metabolite MPP+ (1-methyl-4-phenylpyridinium ion) by human platelets were compared in platelet rich plasma, a much higher rate was observed for the metabolite. The uptake process was saturable (Km = 6.8 microM; Vmax = 0.064 nmole/min/mg protein) and could be blocked by inhibitors of serotonin uptake. The accumulation of MPP+ by the platelets was accompanied by a decrease in intracellular ATP and an inhibition of mitochondrial state 3 respiration. These findings are consistent with earlier reports of the effect of MPP+ on isolated mitochondria as a potential cytotoxic mechanism, but also demonstrate that the dopamine uptake system is not the only means by which this metabolite can be efficiently transported into cells.  相似文献   

5.
E Pate  G J Wilson  M Bhimani    R Cooke 《Biophysical journal》1994,66(5):1554-1562
We have investigated the effects of the orthophosphate (P(i)) analog orthovanadate (Vi) on maximum shortening velocity (Vmax) in activated, chemically skinned, vertebrate skeletal muscle fibers. Using new "temperature-jump" protocols, reproducible data can be obtained from activated fibers at high temperatures, and we have examined the effect of increased [Vi] on Vmax for temperatures in the range 5-30 degrees C. We find that for temperatures < or = 20 degrees C, increasing [Vi] inhibits Vmax; for temperatures > or = 25 degrees C, increasing [Vi] does not inhibit Vmax. Attached cross-bridges bound to Vi are thought to be an analog of the weakly bound actin-myosin.ADP-P(i) state. The data suggest that the weakly bound Vi state can inhibit velocity at low temperature, but not at high temperature, with the transition occurring over a narrow temperature range of < 5 degrees C. This suggests a highly cooperative interaction. The data also define a Q10 for Vmax of 2.1 for chemically skinned rabbit psoas fibers over the temperature range of 5-30 degrees C.  相似文献   

6.
Inositol uptake was studied in the rat CNS neuroblastoma B50 cell line. Eadie-Hofstee analysis of the uptake pattern reveals two defined modes of inositol entry into the cell. The high-affinity uptake component requires the presence of extracellular sodium and is inhibited by phloridzin. Analysis of the uptake velocities of the high-affinity uptake component provided the following apparent kinetic parameters: Km = 13.7 microM and Vmax = 14.7 pmol/mg of protein/min (without correcting for residual diffusion) and Km = 12.9 microM and Vmax = 12.3 pmol/mg of protein/min (with correction). At physiological concentrations, the high-affinity transport process contributes approximately 70% to total uptake; the remainder is due to a low-affinity diffusion-like process. Uptake inhibition studies reveal that the uptake process is sensitive to ouabain, amiloride, and dichlorobenzamil inhibition but relatively insensitive to cytochalasin B or phloretin. When neuroblastoma B50 cells are induced to differentiate morphologically with high extracellular calcium or with dibutyryl cyclic AMP, a significant decrease in inositol uptake is observed. The dibutyryl cyclic AMP-mediated inhibition of uptake affects only the high-affinity uptake component and is noncompetitive in nature. The high extracellular calcium-mediated inhibition is less specific; it involves "disappearance" of the high-affinity process, some inhibition of the low-affinity process, and an increase of inositol efflux. The significance of these observations is discussed in the context of neuroblastoma B50 cell differentiation.  相似文献   

7.
The single-pass, bolus-injection method was used to study the effect of serotonin (5-HT) concentration on the extraction of 5-HT by isolated perfused rabbit lungs. The extraction pattern suggested that an uptake model, which includes multiple parallel uptake processes, provided a better representation of the data than the simple Michaelis-Menten equation, which has commonly been used to fit the saturable uptake data in previous studies. In particular, the rabbit lung data could be fit with two such parallel pathways. Since the 5-HT uptake could virtually be completely blocked by imipramine, both pathways can be considered to be carrier-mediated processes. The high-affinity pathway was saturable within the range of concentrations studied, with a Km and Vmax of approximately 0.84 microM and 0.21 nmol.s-1.g wet lung wt-1. The Km for the low-affinity pathway was larger than concentrations for which accurate uptake measurements are practical in the perfused organ. Thus, for the low-affinity pathway, only Vmax/Km was identifiable. Vmax/Km values for the high- and low-affinity pathways were approximately 2.87 and 0.35 ml/s, respectively. The results suggest that it will be worthwhile to investigate the behavior of these uptake parameters in response to changes in lung physiology and endothelial function in future studies.  相似文献   

8.
Dilazep, a vasodilator previously recognized as an inhibitor of adenosine permeation, very rapidly blocked the uptake of adenosine by cultured L5178Y cells, and accordingly was used as a quencher in a simple quenched-flow system for measuring cellular uptake of nucleosides during very short intervals. Time courses of cellular uptake of adenosine, assayed during intervals between 0.05 and 0.5s with the quenched-flow system, were linear and defined initial rates of adenosine uptake. The latter are rates of inward transport of adenosine. Kinetic constants for that process in cultured S49 cells determined with the quenched-flow procedure were similar to those determined with an assay dependent on manual timing. In studies of adenosine uptake kinetics in human erythrocytes at 22 degrees C and 37 degrees C in which the quenched-flow procedure was used, time courses of adenosine uptake were linear at both temperatures and defined initial uptake rates; kinetic constants (means +/- S.E.M.) at 22 degrees C (n = 8) were Km 25 +/- 14 microM and Vmax. 15 +/- 5 pmol/s per microliter of cell water and at 37 degrees C (n = 3) were Km 98 +/- 17 microM and Vmax. 80 +/- 9 pmol/s per microliter of cell water.  相似文献   

9.
Deoxyglucose uptake by FVB/N mouse astrocytes was studied before and after infecton by tsl retrovirus which causes a neurodegenerative disease in mice similar to HIV-1 encephalopathy in man. The Michaelis-Menten kinetic parameters, Km and Vmax, of 2-deoxy-D-glucose uptake by brain and cerebellar astrocytes were measured following culture at 34°C where tsl retrovirus replicates optimally, and at 37°C. Compared to astrocytes cultured at 37°C, astrocytes cultured at 34°C had increased Km and decreased deoxyglucose uptake despite increased or unchanged Vmax. Following ts1 retrovirus infection, brain astrocyte deoxyglucose uptake doubled [132%] associated with decreased Km but unchanged Vmax, whereas cerebellar astrocyte deoxyglucose uptake doubled [102%] associated with increased Vmax but unchanged Km. These observations of altered deoxyglucose uptake kinetic parameters following retrovirus infection indicate different neurochemical mechanisms for the regional variation in deoxyglucose uptake observed following retrovirus infection of the CNS in vivo.  相似文献   

10.
The cardiac ganglion of the horseshoe crab, Limulus polyphemus, was incubated in Chao's solution containing 0.01 microM [3H]choline at room temperature (25 +/- 2 degrees C) and the ganglion readily accumulated the radiolabel. The ganglion uptake of [3H]choline was linear over 60 min. Kinetic analysis revealed dual choline uptake systems within the cardiac ganglion, a high affinity uptake system (Km = 2.2 microM, Vmax = 0.16 pmoles/mg/min) and a low affinity system (Km = 92.3 microM, Vmax = 3.08 pmoles/mg/min). The high affinity uptake system was sodium-dependent and inhibited by micromolar concentrations of hemicholinium-3. A 15 min pre-exposure of the ganglion to Chao's solution containing 90 mM potassium stimulated a significant increase in choline uptake. There was no detectable synthesis of [3H]acetylcholine from the [3H]choline taken up by the cardiac ganglion. The major portion of the extractable label appeared in a fraction which co-electrophoresed with phosphorylcholine. These results suggest that the sodium-dependent high affinity [3H]choline uptake system of the cardiac ganglion subserves a specific requirement for choline which is unrelated to a cholinergic function.  相似文献   

11.
The kinetics of sodium gradient dependent phosphate uptake by the renal brush border membrane vesicles of the rat have ben studied under various conditions of temperature and pH. From 7 to 30 degrees C the Lineweaver-Burk plots are linear, and the apparent Km progressively increases from 54 to 91 microM. Above 30 degrees C, the apparent Km continues to increase to reach 135 microM at 40 degrees C, but a break is observed in the Lineweaver-Burk plots at the substrate concentration of 300 microM. The existence of this break, confirmed by the Eadie-Hofstee plot supports the hypothesis of a dual mechanism of phosphate transport, one for low concentrations of substrate with a Km of 100 microM and the other for high concentrations with a Km of approximately 240 microM. When the two components of the Eadie-Hofstee plot are analyzed according to a nonlinear regression program, these two values of Km become 70 microM and 1.18 mM, respectively. The Vmax continuously increases with temperature. However, the Arrhenius plot (In Vmax vs. 1/TK) shows an abrupt discontinuity at 23 degrees C. pH experiments were performed at 35 degrees C. In the absence of a proton gradient, increasing the pH from 6.5 to 7.5 and 8.5 decreases the apparent Km from 341 to 167 and 94 microM, respectively. When only the divalent form of phosphate is considered as the substrate, the apparent Km does not vary anymore with the pH and remains around the mean value of 105 microM. The uniformity of the apparent Km for the total phosphate uptake, when only the divalent phosphate is considered as being the substrate, suggests that this divalent form is the only one which is transported. Whatever the substrate considered, total phosphate or divalent phosphate, the highest Vmax is obtained at pH 7.5 which probably approximates the optimum pH inside the vesicles for the phosphate uptake.  相似文献   

12.
We have developed a novel method for measuring steady-state force-[Ca2+]i relations in isolated, membrane-intact rat trabeculae that are microinjected with Fura-2 salt. Twitches are markedly slowed after inhibition of phasic Ca2+ release and uptake from the sarcoplasmic reticulum by addition of cyclopiazonic acid and ryanodine. During relaxation of slowed twitches, force and [Ca2+]i trace a common trajectory in plots of force versus [Ca2+]i, despite very different histories of contraction. The common trajectory thereby provides a high resolution determination of the steady-state relation between force and [Ca2+]i. Using this method, we show that 1 microM isoproterenol, a beta-adrenergic agonist, causes a rightward shift (Hill function K1/2 increased from 0.39 +/- 0.07 microM to 0.82 +/- 0.23 microM, p < 0.02, n = 6) and a decreased slope (nH decreased from 5.4 +/- 1.1 to 4.0 +/- 1.4, p < 0.02) of the steady-state force-[Ca2+]i curve, with no change in maximal force (Fmax = 99.2 +/- 2.2% of control). In contrast, 2 microM EMD 53998, a racemic thiadiazinone derivative, causes a leftward shift (K1/2 decreased from 0.42 +/- 0.02 microM to 0.30 +/- 0.06 microM, p < 0.02, n = 4) with no change in slope of the steady-state force-[Ca2+]i curve, accompanied by a modest increase in maximal force (Fmax = 107.1 +/- 4.6% of control, p < 0.02). To gain mechanistic insight into these modulatory events, we developed a simple model of cooperative thin filament activation that predicts steady-state force-[Ca2+]i relationships. Model analysis suggests that isoproterenol decreases cooperativity arising from nearest-neighbor interactions between regulatory units on the thin filament, without change in the equilibrium constant for Ca2+ binding. In contrast, the effects of EMD 53998 are consistent with an increase in the affinity of strong-binding cross-bridges, without change in either the affinity of troponin C for Ca2+ or cooperative interactions.  相似文献   

13.
Adenosine transport has been further characterized in rat renal brush-border membranes (BBM). The uptake shows two components, one sodium-independent and one sodium-dependent. Both components reflect, at least partly, translocation via a carrier mechanism, since the presence of adenosine inside the vesicles stimulates adenosine uptake in the presence as well as in the absence of sodium outside the vesicles. The sodium-dependent component is saturable (Km adenosine = 2.9 microM, Vmax = 142 pmol/min per mg protein) and is abolished at low temperatures. The sodium-independent uptake has apparently two components: one saturable (Km = 4-10 microM, Vmax = 174 pmol/min per mg protein) and one non-saturable (Vmax = 3.4 pmol/min per mg protein, Km greater than 2000 microM). Inosine, guanosine, 2-chloroadenosine and 2'-deoxyadenosine inhibit the sodium-dependent and -independent transport, as shown by trans-stimulation experiments, probably because of translocation via the respective transporter. Uridine and dipyridamole inhibited only the sodium-dependent uptake. Other analogs of adenosine showed no inhibition. The kinetic parameters of the inhibitors of the sodium-dependent component were further investigated. Inosine was the most potent inhibitor with a Ki (1.9 microM) less than the Km of adenosine. This suggests a physiological role for the BBM ecto-adenosine deaminase (enzyme which extracellularly converts adenosine to inosine), balancing the amount of nucleoside taken up as adenosine or inosine by the renal proximal tubule cell.  相似文献   

14.
Single actin filaments were analyzed in solutions ranging from dilute (0.2 microgram/ml), where filaments interact only with solvent, to concentrations (4.0 mg/ml) at which F-actin forms a nematic phase. A persistence length of approximately 1.8 microns and an average length of approximately 22 microns (Kaufmann et al., 1992) identify actin as a model for studying the dynamics of semiflexible polymers. In dilute solutions the filaments exhibit thermal bending undulations in addition to diffusive motion. At higher semidilute concentrations (1.4 mg/ml) three-dimensional reconstructions of confocal images of fluorescently labeled filaments in a matrix of unlabeled F-actin reveal steric interactions between filaments, which account for the viscoelastic behavior of these solutions. The restricted undulations of these labeled chains reveal the virtual tube formed around a filament by the surrounding actin. The average tube diameter <a> scales with monomer concentration c as <a> varies; is directly proportional to c-(0.5 +/- 0.15). The diffusion of filaments in semidilute solutions (c = (0.1-2.0) mg/ml) is dominated by diffusion along the filament contour (reptation), and constraint release by remodeling of the surrounding filaments is rare. The self-diffusion coefficient D parallel along the tube decreases linearly with the chain length for semidilute solutions. For concentrations > 2.5 mg/ml a transition occurs from an isotropic entangled phase to a coexistence between isotropic and nematic domains. Analysis of the molecular motions of filaments suggests that the filaments in the aligned domains are in thermal equilibrium and that the diffusion coefficient parallel to the director D parallel is nearly independent of filament length. We also report the novel direct observation of u-shaped defects, called hairpins, in the nematic domains.  相似文献   

15.
L-Proline enhanced the growth of Staphylococcus aureus in high-osmotic-strength medium, i.e., it acted as an osmoprotectant. Study of the kinetics of L-[14C]proline uptake by S. aureus NCTC 8325 revealed high-affinity (Km = 1.7 microM; maximum rate of transport [Vmax] = 1.1 nmol/min/mg [dry weight]) and low-affinity (Km = 132 microM; Vmax = 22 nmol/min/mg [dry weight]) transport systems. Both systems were present in a proline prototrophic variant grown in the absence of proline, although the Vmax of the high-affinity system was three to five times higher than that of the high-affinity system in strain 8325. Both systems were dependent on Na+ for activity, and the high-affinity system was stimulated by lower concentrations of Na+ more than the low-affinity system. The proline transport activity of the low-affinity system was stimulated by increased osmotic strength. The high-affinity system was highly specific for L-proline, whereas the low-affinity system showed a broader substrate specificity. Glycine betaine did not compete with proline for uptake through either system. Inhibitor studies confirmed that proline uptake occurred via Na(+)-dependent systems and suggested the involvement of the proton motive force in creating an Na+ gradient. Hyperosmotic stress (upshock) of growing cultures led to a rapid and large uptake of L-[14C]proline that was not dependent on new protein synthesis. It is suggested that the low-affinity system is involved in adjusting to increased environmental osmolarity and that the high-affinity system may be involved in scavenging low concentrations of proline.  相似文献   

16.
The mechanism of pantothenate transport across the plasma membrane was investigated with initial velocity studies of [14C]pantothenate uptake and efflux in rat liver parenchymal cells maintained in primary culture. At 116 mM sodium, double-reciprocal plots of the initial velocity of uptake versus [pantothenate] were linear from 0.3 to 36.5 microM pantothenate and gave an apparent Km,pant of 11 +/- 2 microM. The rate of pantothenate uptake at 0 [sodium] was about 14% of the rate at 116 mM sodium, and the reciprocal of the apparent Km,pant was a linear function of [sodium]. Vmax obtained by extrapolation to infinite [pantothenate] was independent of [sodium]. Ouabain, gramicidin D, cyanide, azide, and 2,4-dinitrophenol inhibited uptake, but preloading cells with pantothenate did not. Pantothenate derivatives or carboxylic acids were only weak inhibitors of uptake. Efflux was measured in cells preloaded with [14C]pantothenate. The apparent Km for efflux was 85 +/- 29 microM, and the rate of efflux was unaffected by addition of pantothenate, sodium, ouabain, gramicidin D, or 2,4-dinitrophenol to the external medium. These features are consistent with a mechanism for pantothenate transport in which sodium and pantothenate are cotransported in a 1:1 ratio on a carrier highly specific for pantothenate; sodium decreases the apparent Km for pantothenate, and a sodium-carrier complex forms only on the intracellular side of the membrane.  相似文献   

17.
1-Methyl-4-Phenylpyridinium Uptake by Human and Rat Striatal Synaptosomes   总被引:1,自引:0,他引:1  
1-Methyl-4-phenylpyridinium (MPP+) was taken up into human and rat striatal synaptosomes by a saturable system, similar to that for dopamine, with Km values of 0.24 and 0.17 microM, respectively, and similar Vmax values. Uptake of MPP+ and dopamine into both rat and human synaptosomes was inhibited by cocaine and amfonelic acid, with the latter being five to 10 times more potent than the former. MPP+ uptake was potently inhibited by dopamine in preparations from both species. In general, the characteristics of human and rat synaptosomal MPP+ uptake were very similar It seems unlikely that species differences in toxicity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine or reaction to dopamine uptake blockers stem from this system.  相似文献   

18.
A method for the isolation of gamma-aminobutyric acidergic (GABAergic) and glutamatergic terminals from crustacean muscle was developed, using differential centrifugation and sucrose density gradient centrifugation. Individual fractions were assessed using a variety of markers. One fraction was isolated which showed 40-fold purification of glutamate decarboxylase with a yield of 12%. This fraction was enriched in GABA, glutamate, glutamate dehydrogenase, and 5'-nucleotidase, but not in NADPH cytochrome c reductase. This fraction possessed an uptake system for GABA and glutamate with apparent kinetic constants of Km = 50 microM, Vmax = 250 pmol/min/mg of protein and Km = 183 microM, Vmax = 219 pmol/min/mg of protein, respectively. Electron microscopy showed nerve terminal profiles and a heterogeneous population of membrane vesicles. This fraction contained 3.4 nmol ATP/mg of protein which was stable for 30 min at 12 degrees C, and was also able to synthesise ATP from exogenous adenosine. The terminals released labelled GABA and glutamate in a Ca2+-dependent fashion on depolarisation. No release of ATP was detected. It is concluded that viable nerve terminals have been isolated which could be used as model systems for the study of GABAergic and glutamatergic neurochemistry.  相似文献   

19.
Biotin uptake: influx, efflux and countertransport in Escherichia coli K12   总被引:1,自引:0,他引:1  
Biotin uptake by Escherichia coli K12 has been reinvestigated. The vitamin uptake is an active process depending on energy and inhibited by uncouplers. The kinetic parameters (Km = 0.27 microM, Vmax = 6.8 pmol/min per mg dry cells) are close to those previously determined for a biotin-dependent strain E. coli C162 (Piffeteau, A., Zamboni, M. and Gaudry, M. (1982) Biochim. Biophys. Acta 688, 29-36). By use of biotin p-nitrophenyl ester, an affinity label of the biotin transport system, it was shown, under conditions of steady state, that the efflux of biotin is not energy dependent and is mainly mediated by a diffusion mechanism. Reexamination of the regulation of the biotin transport by biotin, revealed that only 50% of the biotin uptake system is under control by the vitamin.  相似文献   

20.
Manganese transport in Brevibacterium ammoniagenes ATCC 6872.   总被引:1,自引:0,他引:1       下载免费PDF全文
Uptake of manganese by Brevibacterium ammoniagenes ATCC 6872 was energy dependent and obeyed saturation kinetics (Km = 0.65 microM; Vmax = 0.12 mumol/min per g [dry weight]). Uptake showed optima at 27 degrees C and pH 9.5. 54Mn2+ accumulated by the cells was released by treatment with toluene or by exchange for unlabeled manganese ions, via an energy-dependent process. Co2+, Fe2+, Cd2+, and Zn2+ inhibited manganese uptake. Inhibition by Cd2+ and Zn2+ was competitive (Ki = 0.15 microM Cd2+ and 1.2 microM Zn2+). Experiments with 65Zn2+ provided no evidence for Zn2+ uptake via the Mn2+ transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号