首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During glucose deprivation (GD)-induced cellular stress, the molecular chaperone glucose-regulated protein 75 (Grp75)/Mortalin/PBP74/mtHSP70 (hereafter termed “Grp75”) plays an important role in the suppression of apoptosis by inhibiting the Bax conformational change that delays the release of cytochrome c. The molecular pathways by which it carries out these functions are still unclear. We hypothesize that the anti-apoptotic effect by the overexpression of Grp75 was through the signal of AKT activated by classic phosphoinositide 3-kinase (PI3K) and also involved PI3K-independent pathways. Using the PC12 cell GD model, we demonstrated a novel mechanism of Grp75 activating AKT, which may be PI3K independent and associated with Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK signaling. The PI3K inhibitor LY294002 did not influence the activation of AKT by the Grp75 overexpression under GD; however, the MEK inhibitor U0126 dramatically inhibited AKT phosphorylation in the same assay. In addition to the PI3K/AKT signal pathway, Grp75 overexpression also inhibited the Bax conformational change through the Raf/MEK/ERK signal pathway. In conclusion, Grp75 overexpression in activating AKT can be PI3K independent and associated with Raf/MEK/ERK signaling under GD. At the same time, PI3K may also crosstalk with Raf-1, in which the prosurvival signal of PI3K maintains the expression of Raf-1. The activated AKT and extracellular signal-regulated protein kinases 1 and 2 by Grp75 inhibited the Bax conformational change and subsequent apoptosis.  相似文献   

2.
3.
ObjectsTraumatic spinal cord injury (TSCI) causes neurological dysfunction below the injured segment of the spinal cord, which significantly impacts the quality of life in affected patients. The phosphoinositide 3kinase/serine‐threonine kinase (PI3K/AKT) signaling pathway offers a potential therapeutic target for the inhibition of secondary TSCI. This review summarizes updates concerning the role of the PI3K/AKT pathway in TSCI.Materials and MethodsBy searching articles related to the TSCI field and the PI3K/AKT signaling pathway, we summarized the mechanisms of secondary TSCI and the PI3K/AKT signaling pathway; we also discuss current and potential future treatment methods for TSCI based on the PI3K/AKT signaling pathway.ResultsEarly apoptosis and autophagy after TSCI protect the body against injury; a prolonged inflammatory response leads to the accumulation of pro‐inflammatory factors and excessive apoptosis, as well as excessive autophagy in the surrounding normal nerve cells, thus aggravating TSCI in the subacute stage of secondary injury. Initial glial scar formation in the subacute phase is a protective mechanism for TSCI, which limits the spread of damage and inflammation. However, mature scar tissue in the chronic phase hinders axon regeneration and prevents the recovery of nerve function. Activation of PI3K/AKT signaling pathway can inhibit the inflammatory response and apoptosis in the subacute phase after secondary TSCI; inhibiting this pathway in the chronic phase can reduce the formation of glial scar.ConclusionThe PI3K/AKT signaling pathway has an important role in the recovery of spinal cord function after secondary injury. Inducing the activation of PI3K/AKT signaling pathway in the subacute phase of secondary injury and inhibiting this pathway in the chronic phase may be one of the potential strategies for the treatment of TSCI.

During secondary injury after spinal cord injury (SCI), recovery is impaired by inflammation, cell death and glial scar formation. Therefore, these pathological processes may be potential treatment targets for SCI. The phosphoinositide 3‐kinase/serine‐threonine kinase (PI3K/AKT) signalling pathway has a key role in the secondary injury after SCI. PI3K/AKT signalling pathway can inhibit the inflammation and cell death after SCI, and can also promote the formation of glial scar.  相似文献   

4.
Sphingosine kinase 1 (SphK1) is a lipid kinase implicated in mitogenic signaling pathways in vascular smooth muscle cells. We demonstrate that human coronary artery smooth muscle (HCASM) cells require SphK1 for growth and that SphK1 mRNA and protein levels are elevated in PDGF stimulated HCASM cells. To determine the mechanism of PDGF-induced SphK1 expression, we used pharmacological inhibitors of the PI3K/AKT/mTOR signaling pathway. Wortmannin, SH-5, and rapamycin significantly blocked PDGF-stimulated induction of SphK1 mRNA and protein expression, indicating a regulatory role of the PI3K/AKT/mTOR pathway in SphK1 expression. To determine which isoform of AKT regulates SphK1 mRNA and protein levels, siRNAs specific for AKT1, AKT2, and AKT3 were used. We show that AKT2 siRNA significantly blocked PDGF-stimulated increases in SphK1 mRNA and protein expression levels as well as SphK1 enzymatic activity levels. In contrast, AKT1 or AKT3 siRNA did not have an effect. Together, these results demonstrate that the PI3K/AKT/mTOR signaling pathway is involved in regulation of SphK1, with AKT2 playing a key role in PDGF-induced SphK1 expression in HCASM cells.  相似文献   

5.
Sphingosine kinase 1 (SphK1) is a lipid kinase implicated in mitogenic signaling pathways in vascular smooth muscle cells. We demonstrate that human coronary artery smooth muscle (HCASM) cells require SphK1 for growth and that SphK1 mRNA and protein levels are elevated in PDGF stimulated HCASM cells. To determine the mechanism of PDGF-induced SphK1 expression, we used pharmacological inhibitors of the PI3K/AKT/mTOR signaling pathway. Wortmannin, SH-5, and rapamycin significantly blocked PDGF-stimulated induction of SphK1 mRNA and protein expression, indicating a regulatory role of the PI3K/AKT/mTOR pathway in SphK1 expression. To determine which isoform of AKT regulates SphK1 mRNA and protein levels, siRNAs specific for AKT1, AKT2, and AKT3 were used. We show that AKT2 siRNA significantly blocked PDGF-stimulated increases in SphK1 mRNA and protein expression levels as well as SphK1 enzymatic activity levels. In contrast, AKT1 or AKT3 siRNA did not have an effect. Together, these results demonstrate that the PI3K/AKT/mTOR signaling pathway is involved in regulation of SphK1, with AKT2 playing a key role in PDGF-induced SphK1 expression in HCASM cells.  相似文献   

6.
Coxsackievirus B3 (CVB3) is a common human pathogen for acute myocarditis, pancreatitis, non-septic meningitis, and encephalitis; it induces a direct cytopathic effect (CPE) and apoptosis on infected cells. The Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT/PKB)/mammalian target of Rapamycin (mTOR) signaling pathway regulates several cellular processes and it is one of the most important pathways in human networks. However, the effect and mechanism of PI3K/AKT/mTOR signaling pathway in CVB3 infected cells are poorly understood. In this study, we demonstrate that inhibition of PI3K/AKT/mTOR signaling pathway increased CVB3-induced CPE and apoptosis in HeLa cells. The activity of downstream targets of PI3K and mTOR is attenuated after CVB3 infection and inhibitors of PI3K and mTOR made their activity to decrease more significantly. We further show that LY294002 and Rapamycin, the inhibitor of PI3K and mTOR respectively, promote CVB3-induced CPE and apoptosis. Taken together, these data illustrate a new and imperative role for PI3K/AKT/mTOR signaling in CVB3 infection in HeLa cells and suggest an useful approach for the therapy of CVB3 infection.  相似文献   

7.
Oral squamous cell carcinoma (OSCC) is a disfiguring malignancy and significantly impacts the quality of patient’s life. Kallikrein-related peptidase 4 (KLK4), which is closely related to cancers, is highly expressed in OSCC. To explore the biological function of KLK4 in OSCC, a KLK4-specific shRNA was used to silence its endogenous expression, and then the migration and invasion of OSCC cells were explored. Results of our study showed that silencing KLK4 inhibited the migration and invasion of OSCC cells. The protein levels of epithelial mesenchymal transition-associated markers and proteases were also altered by KLK4 silencing. Further study showed that the phosphatidylinositol 3-kinase (PI3 K)/protein kinase B (AKT) signaling pathway was involved in the function of KLK4. Treatment with a PI3 K/AKT activator reversed the migration-inhibitory effect of KLK4 shRNA. Our study suggests that KLK4 may contribute to the metastasis of OSCC through the PI3 K/AKT signaling pathway.  相似文献   

8.
Hepatocyte growth factor (HGF) is a potent mitogen for a variety of cells including hepatocytes. While rat oval cells are supposed to be one of hepatic stem cells, biological effects of HGF on oval cells and their relevant signal transduction pathways remain to be determined. We sought to investigate them on OC/CDE22 rat oval cells, which are established from the liver of rats fed a choline-deficient/DL-ethionine-supplemented diet. The oval cells were cultured on fibronectin-coated dishes and stimulated with recombinant HGF, transforming growth factor-alpha (TGF-alpha), and thrombopoietin (TPO) under the serum-free medium condition. HGF treatment enhanced [3H]thymidine incorporation into oval cells in a dose-dependent manner. On the contrary, treatment with TGF-alpha or TPO had no significant effects on [3H]thymidine incorporation into the oval cells. c-Met protein was phosphorylated at the tyrosine residues after the HGF treatment. AKT, extracellular signal-regulated kinase 1/2 (ERK1/2), and p70(s6k) were simultaneously activated after the HGF stimulation, peaking at 30min after the treatment. The activation of AKT, p70(s6k), and ERK1/2 induced by HGF was abolished by pre-treatment with LY294002, a phosphoinositide 3-OH kinase (PI3K) inhibitor, and U0126, a mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, respectively. When the cells were pre-treated with LY294002 prior to the HGF stimulation, the proliferative action of HGF was completely abrogated, implying that the PI3K/AKT signaling pathway is responsible for the biological effect of HGF. These in vitro data indicate that HGF exerts a proliferative action on hepatic oval cells via activation of the PI3K/AKT signaling pathway.  相似文献   

9.
The breast cancer susceptibility gene BRCA1 encodes a nuclear phosphoprotein that acts as a tumor suppressor. Phosphorylation of BRCA1 has been implicated in altering its function, however, the pathway(s) that leads to the phosphorylation of BRCA1 has not been described. Here, a signaling pathway by which heregulin induces cell cycle-independent phosphorylation of BRCA1 was delineated. We showed that heregulin stimulation induced the phosphorylation of BRCA1 and concomitant activation of the serine/threonine kinase AKT in T47D human breast cancer cells. Heregulin-induced phosphorylation of BRCA1 was abrogated by phosphatidylinositol 3-kinase (PI3K) inhibitors and by a dominant-negative AKT. In the absence of heregulin, the ectopic expression of the constitutively active p110 subunit of PI3K was sufficient to induce BRCA1 phosphorylation. Furthermore, the purified glutathione S-transferase/AKT kinase phosphorylated BRCA1 in vitro. We have also shown that the phosphorylation of BRCA1 by AKT occurs on the residue Thr-509, which is located in the nuclear localization signal. These results reveal a novel signaling pathway that links extracellular signals to the phosphorylation of BRCA1 in breast cancer cells.  相似文献   

10.
Lung cancer is the leading cause of cancer-related mortality worldwide due to its early asymptomatic and late metastasis. While cancer stem cells (CSCs) may play a vital role in oncogenesis and development of lung cancer, mechanisms underlying CSCs self‐renewal remain less clear. In the present study, we constructed a clinically relevant CSCs enrichment recognition model and evaluated the potential functions of phosphatidylinositol 3-kinase (PI3K)/AKT pathway (PI3K/AKT) and mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) pathways in lung cancer via bioinformatic analysis, providing the basis for in depth mechanistic inquisition. Experimentally, we confirmed that PI3K/AKT pathway predominantly promotes proliferation through anti-apoptosis in lung adenocarcinoma cells, while MAPK/ERK pathway has an overwhelming superiority in regulating the proliferation in lung CSCs. Further, utilizing stemness score model, LLC-Symmetric Division (LLC-SD) cells and mouse orthotopic lung transplantation model, we elucidated an intricate cross-talk between the oncogenic pathway and the stem cell reprograming pathway that impact stem cell characteristics as well as cancer biology features of lung CSCs both in vitro and in vivo. In summary, our findings uncovered a new insight that PI3K/AKT and MAPK/ERK pathways as oncogenic signaling pathway and/or stem cell signaling pathway act distinctively and synergistically to regulate lung CSCs self-renewal.  相似文献   

11.
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has led to more than 150 million infections and about 3.1 million deaths up to date. Currently, drugs screened are urgently aiming to block the infection of SARS-CoV-2. Here, we explored the interaction networks of kinase and COVID-19 crosstalk, and identified phosphoinositide 3-kinase (PI3K)/AKT pathway as the most important kinase signal pathway involving COVID-19. Further, we found a PI3K/AKT signal pathway inhibitor capivasertib restricted the entry of SARS-CoV-2 into cells under non-cytotoxic concentrations. Lastly, the signal axis PI3K/AKT/FYVE finger-containing phosphoinositide kinase (PIKfyve)/PtdIns(3,5)P2 was revealed to play a key role during the cellular entry of viruses including SARS-CoV-2, possibly providing potential antiviral targets. Altogether, our study suggests that the PI3K/AKT kinase inhibitor drugs may be a promising anti-SARS-CoV-2 strategy for clinical application, especially for managing cancer patients with COVID-19 in the pandemic era.  相似文献   

12.
13.
The regulation of signal transmission and biological processes, such as cell proliferation, apoptosis, metabolism, migration, and angiogenesis are greatly influenced by the PI3K/AKT signaling pathway. Highly conserved endogenous non-protein-coding RNAs known as microRNAs (miRNAs) have the ability to regulate gene expression by inhibiting mRNA translation or mRNA degradation. MiRNAs serve key role in PI3K/AKT pathway as upstream or downstream target, and aberrant activation of this pathway contributes to the development of cancers. A growing body of research shows that miRNAs can control the PI3K/AKT pathway to control the biological processes within cells. The expression of genes linked to cancers can be controlled by the miRNA/PI3K/AKT axis, which in turn controls the development of cancer. There is also a strong correlation between the expression of miRNAs linked to the PI3K/AKT pathway and numerous clinical traits. Moreover, PI3K/AKT pathway-associated miRNAs are potential biomarkers for cancer diagnosis, therapy, and prognostic evaluation. The role and clinical applications of the PI3K/AKT pathway and miRNA/PI3K/AKT axis in the emergence of cancers are reviewed in this article.  相似文献   

14.
目的探讨PI3K/AKT信号转导通路在大肠埃希菌(Escherichia coli,E.coli)诱导的人巨噬细胞系U937细胞凋亡中的作用。方法利用Western blot分析检测E.coli感染不同时间后磷酸化及非磷酸化AKT的表达;预先用不同浓度的LY294002(PI3K途径抑制剂)处理U937细胞60min,观察E.coli感染30min后U937细胞的凋亡情况。结果随着感染时间的延长,磷酸化AKT的表达逐渐下降。加入PI3K的抑制剂LY294002后,U937细胞的凋亡率逐渐升高。结论PI3K/AKT信号转导通路参与了E. coli诱导的U937细胞凋亡过程。LY294002通过特异性地抑制PI3K/AKT活性增加E.coli诱导的U937细胞凋亡率。  相似文献   

15.
Chlamydiae replicate intracellularly in a vacuole called an inclusion. Chlamydial-infected host cells are protected from mitochondrion-dependent apoptosis, partly due to degradation of BH3-only proteins. The host-cell adapter protein 14-3-3beta can interact with host-cell apoptotic signaling pathways in a phosphorylation-dependent manner. In Chlamydia trachomatis-infected cells, 14-3-3beta co-localizes to the inclusion via direct interaction with a C. trachomatis-encoded inclusion membrane protein. We therefore explored the possibility that the phosphatidylinositol-3 kinase (PI3K) pathway may contribute to resistance of infected cells to apoptosis. We found that inhibition of PI3K renders C. trachomatis-infected cells sensitive to staurosporine-induced apoptosis, which is accompanied by mitochondrial cytochrome c release. 14-3-3beta does not associate with the Chlamydia pneumoniae inclusion, and inhibition of PI3K does not affect protection against apoptosis of C. pneumoniae-infected cells. In C. trachomatis-infected cells, the PI3K pathway activates AKT/protein kinase B, which leads to maintenance of the pro-apoptotic protein BAD in a phosphorylated state. Phosphorylated BAD is sequestered via 14-3-3beta to the inclusion, but it is released when PI3K is inhibited. Depletion of AKT through short-interfering RNA reverses the resistance to apoptosis of C. trachomatis-infected cells. BAD phosphorylation is not maintained and it is not recruited to the inclusion of Chlamydia muridarum, which protects poorly against apoptosis. Thus, sequestration of BAD away from mitochondria provides C. trachomatis with a mechanism to protect the host cell from apoptosis via the interaction of a C. trachomatis-encoded inclusion protein with a host-cell phosphoserine-binding protein.  相似文献   

16.
Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-κB, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of IκBα and the nuclear translocation/activation of NF-κB. Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-κB. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-κB inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-κB and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.  相似文献   

17.
Gastric cancer (GC) is a common heterogeneous disease. The critical roles of microRNA-340 (miR-340) in the development and progression of GC were emphasized in accumulating studies. This study aims to examine the regulatory mechanism of miR-340 in GC cellular processes. Initially, microarray technology was used to identify differentially expressed genes and regulatory miRs in GC. After that, the potential role of miR-340 in GC was determined via ectopic expression, depletion, and reporter assay experiments. Expression of secreted phosphoprotein 1 (SPP1), miR-340, phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, and epithelial–mesenchymal transition (EMT)-related genes was measured. Moreover, to further explore the function of miR-340 in vivo and in vitro, proliferation, apoptosis, migration, invasion, and tumorigenic capacity were evaluated. SPP1 was a target gene of miR-340 which could then mediate the PI3K/AKT signaling pathway by targeting SPP1 in GC. Furthermore, miR-340 levels were reduced and SPP1 was enriched in GC tissues and cells, with the PI3K/AKT signaling pathway being activated. Inhibitory effects of upregulated miR-340 on SPP1 and the PI3K/AKT signaling pathway were confirmed in vivo and in vitro. Overexpression of miR-340 or the silencing of SPP1 inhibited GC cell proliferation, invasion, migration, and EMT process, but promoted apoptosis of GC cells. Typically, targeting of SPP1 by miR-340 may contribute to the inhibition of proliferation, migration, invasion, and EMT of GC cells via suppression of PI3K/AKT signaling pathway.  相似文献   

18.
Cardiac hypertrophy is an adaptive response to various physiological and pathological stimuli. Phosphoinositide-3 kinase (PI3K) is a highly conserved lipid kinase involved in physiological cardiac hypertrophy (PHH). PI3K interacting protein1 (Pik3ip1) shares homology with the p85 regulatory subunit of PI3K and is known to interact with the p110 catalytic subunit of PI3K, leading to attenuation of PI3K activity in liver and immune cells. However, the role of Pik3ip1 in the heart remains unknown. In the present study, the effects of Pik3ip1 on cardiac hypertrophy were examined. We found that the expression level of Pik3ip1 was markedly higher in cardiomyocytes than in fibroblasts. The interaction of Pik3ip1 with the p110a subunit of PI3K in the heart was identified by immunoprecipitation using neonatal rat cardiomyocytes (NRCM). Approximately 35% knockdown of Pik3ip1 was sufficient to induce myocardial hypertrophy. Pik3ip1 deficiency was shown to lead to activation of PI3K/protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) signaling pathway, increasing protein synthesis and cell size. However, adenovirus-mediated overexpression of Pik3ip1 attenuated PI3K-mediated cardiac hypertrophy. Pik3ip1 was upregulated by PHH due to swimming training, but not by pathological cardiac hypertrophy (PAH) due to pressure-overload, suggesting that Pik3ip1 plays a compensatory negative role for PHH. Collectively, our results elucidate the mechanisms for the roles of Pik3ip1 in PI3K/AKT signaling pathway.  相似文献   

19.
T cells devoid of tumor necrosis factor receptor associated factor-3 (Traf3) exhibit decreased proliferation, sensitivity to apoptosis, and an improper response to antigen challenge. We therefore hypothesized that TRAF3 is critical to the growth of malignant T cells. By suppressing TRAF3 protein in different cancerous T cells, we found that anaplastic large cell lymphoma (ALCL) cells require TRAF3 for proliferation. Since reducing TRAF3 results in aberrant activation of the noncanonical nuclear factor-κB (NF-κB) pathway, we prevented noncanonical NF-κB signaling by suppressing RelB together with TRAF3. This revealed that TRAF3 regulates proliferation independent of the noncanonical NF-κB pathway. However, suppression of NF-κB-inducing kinase (NIK) along with TRAF3 showed that high levels of NIK have a partial role in blocking cell cycle progression. Further investigation into the mechanism by which TRAF3 regulates cell division demonstrated that TRAF3 is essential for continued PI3K/AKT and JAK/STAT signaling. In addition, we found that while NIK is dispensable for controlling JAK/STAT activity, NIK is critical to regulating the PI3K/AKT pathway. Analysis of the phosphatase and tensin homolog (PTEN) showed that NIK modulates PI3K/AKT signaling by altering the localization of PTEN. Together our findings implicate TRAF3 as a positive regulator of the PI3K/AKT and JAK/STAT pathways and reveal a novel function for NIK in controlling PI3K/AKT activity. These results provide further insight into the role of TRAF3 and NIK in T cell malignancies and indicate that TRAF3 differentially governs the growth of B and T cell cancers.  相似文献   

20.
The epidermal growth factor receptor (EGFR) is linked to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Raf/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling pathways. During brain ischemia/reperfusion, EGFR could be transactivated, which stimulates these intracellular signaling cascades that either protect cells or potentiate cell injury. In the present study, we investigated the activation of EGFR, PI3K/AKT, and Raf/MAPK/ERK1/2 during ischemia or reperfusion of the brain using the middle cerebral artery occlusion model. We found that EGFR was phosphorylated and transactivated during both ischemia and reperfusion periods. During ischemia, the activity of PI3K/AKT pathway was significantly increased, as judged from the strong phosphorylation of AKT; this activation was suppressed by the inhibitors of EGFR and Zn-dependent metalloproteinase. Ischemia, however, did not induce ERK1/2 phosphorylation, which was dependent on reperfusion. Coimmunoprecipitation of Son of sevenless 1 (SOS1) with EGFR showed increased association between the receptor and SOS1 in ischemia, indicating the inhibitory node downstream of SOS1. The inhibitory phosphorylation site of Raf-1 at Ser259, but not its stimulatory phosphorylation site at Ser338, was phosphorylated during ischemia. Furthermore, ischemia prompted the interaction between Raf-1 and AKT, while both the inhibitors of PI3K and AKT not only abolished AKT phosphorylation but also restored ERK1/2 phosphorylation. All these findings suggest that Raf/MAPK/ERK1/2 signal pathway is inhibited by AKT via direct phosphorylation and inhibition at Raf-1 node during ischemia. During reperfusion, we observed a significant increase of ERK1/2 phosphorylation but no change in AKT phosphorylation. Inhibitors of reactive oxygen species and phosphatase and tensin homolog restored AKT phosphorylation but abolished ERK1/2 phosphorylation, suggesting that the reactive oxygen species-dependent increase in phosphatase and tensin homolog activity in reperfusion period relieves ERK1/2 from inhibition of AKT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号