首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recycling of ascorbic acid from its oxidized forms helps to maintain the vitamin in human erythrocytes. To determine the relative contributions of recycling from the ascorbate radical and dehydroascorbic acid, we studied erythrocytes exposed to a trans-membrane oxidant stress from ferricyanide. Ferricyanide was used both to induce oxidant stress across the cell membrane and to quantify ascorbate recycling. Erythrocytes reduced ferricyanide with generation of intracellular ascorbate radical, the concentrations of which saturated with increasing intracellular ascorbate and which were sustained over time in cells incubated with glucose. Ferricyanide also generated dehydroascorbic acid that accumulated in the cells and incubation medium to concentrations much higher than those of the radical, especially in the absence of glucose. Ferricyanide-stimulated ascorbate recycling from dehydroascorbic acid depended on intracellular GSH but was well maintained at the expense of intracellular ascorbate when GSH was severely depleted by diethylmaleate. This likely reflects continued radical reduction, which is not dependent on GSH. Erythrocyte hemolysates showed both NAD- and NADPH-dependent ascorbate radical reduction. The latter was partially due to thioredoxin reductase. GSH-dependent dehydroascorbate reduction in hemolysates, which was both direct and enzyme-dependent, was greater than that of the radical reductase activity but of lower apparent affinity. Together, these results suggest an efficient two-tiered system in which high affinity reduction of the ascorbate radical is sufficient to remove low concentrations of the radical that might be encountered by cells not under oxidant stress, with back-up by a high capacity system for reducing dehydroascorbate under conditions of more severe oxidant stress.  相似文献   

2.
The uptake, recycling, and function of ascorbic acid was evaluated in cultured U-937 monocytic cells. Dehydroascorbic acid, the two-electron oxidized form of the vitamin, was taken up on the glucose transporter and reduced to ascorbate to a much greater extent than ascorbate itself was accumulated by the cells. In contrast to dehydroascorbic acid, ascorbate entered the cells on a sodium- and energy-dependent transporter. Intracellular ascorbate enhanced the transfer of electrons across the cell membrane to extracellular ferricyanide. Rates of ascorbate-dependent ferricyanide reduction were saturable, fivefold greater than basal rates, and facilitated by intracellular recycling of ascorbate. Whereas reduction of dehydroascorbic acid concentrations above 400 microM consumed reduced glutathione (GSH), even severe GSH depletion by 1-chloro-2,4-dinitrobenzene was without effect on the ability of the cells to reduce concentrations of dehydroascorbic acid likely to be in the physiologic range (< 200 microM). Dialyzed cytosolic fractions from U-937 cells reduced dehydroascorbic acid to ascorbate in an NADPH-dependent manner that appeared due to thioredoxin reductase. However, thioredoxin reductase did not account for the bulk of dehydroascorbic acid reduction, since its activity was also decreased by treatment of intact cells with 1-chloro-2,4-dinitrobenzene. Thus, U-937 cells loaded with dehydroascorbic acid accumulate ascorbate against a concentration gradient via a mechanism that is not dependent on GSH or NADPH, and this ascorbate can serve as the major source of electrons for transfer across the plasma membrane to extracellular ferricyanide.  相似文献   

3.
Stable nitroxide radicals have been considered as therapeutic antioxidants because they can scavenge more toxic radicals in biologic systems. However, as radicals they also have the potential to increase oxidant stress in cells and tissues. We studied the extent to which this occurs in cultured EA.hy926 endothelial cells exposed to the nitroxide Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl). Tempol was rapidly reduced by the cells, as manifest by an increase in the ability of the cells to reduce extracellular ferricyanide and by disappearance of the Tempol EPR signal. Cells loaded with ascorbic acid, which directly reacts with Tempol, showed increased rates of Tempol-dependent ferricyanide reduction, and a more rapid loss of the Tempol EPR signal than cells not containing ascorbate. In this process, intracellular ascorbate was oxidized, and was depleted at lower Tempol concentrations than was GSH, another important intracellular low molecular weight antioxidant. Further evidence that Tempol concentrations of 100-1000 μM induced an oxidant stress was that it caused an increase in the oxidation of dihydrofluorescein in cells and inhibited ascorbate transport at concentrations as low as 50-100 μM. The presence of intracellular ascorbate both prevented dihydrofluorescein oxidation and spared GSH from oxidation by Tempol. Such sparing was not observed when GSH was depleted by other mechanisms, indicating that it was likely due to protection against oxidant stress. These results show that whereas Tempol may scavenge other more toxic radicals, care must be taken to ensure that it does not itself induce an oxidant stress, especially with regard to depletion of ascorbic acid.  相似文献   

4.
By using lycorine, a specific inhibitor of ascorbate biosynthesis, it was possible to demonstrate that plant cells consume a high quantity of ascorbate (AA). Thein vivo metabolic reactions utilizing ascorbate are the elimination of H2O2 by ascorbate peroxidase and the hydroxylation of proline residues present in the polypeptide chains by means of peptidyl-proline hydroxylase.Ascorbate acts in the cell metabolism as an electron donor, and consequently ascorbate free radical (AFR) is continuously produced. AFR can be reconverted to AA by means of AFR reductase or can undergo spontaneous disproportion, thus generating dehydroascorbic acid (DHA).During cell division and cell expansion ascorbate consumption is more or less the same; however, the AA/DHA ratio is 6–10 during cell division and 1–3 during cell expansion. This ratio depends essentially on the different AFR reductase activity in these cells. In meristematic cells AFR reductase is very high, and consequently a large amount of AFR is reduced to AA and a small amount of AFR undergoes disproportionation; in expanding cells the AFR reductase activity is lower, and therefore AFR is massively disproportionated, thus generating a large quantity of DHA. Since the transition from cell division to cell expansion is marked by a large drop of AFR reductase activity in the ER, it is suggested here that AFR formed in this compartment may be involved in the enlargement of the ER membranes and provacuole acidification.DHA is a toxic compound for the cell metabolism and as such the cell has various strategies to counteract its effects: (i) meristematic cells, having an elevated AFR reductase, prevent large DHA production, limiting the quantity of AFR undergoing disproportionation. (ii) Expanding cells, which contain a lower AFR reductase, are, however, provided with a developed vacuolar system and segregate the toxic DHA in the vacuole. (iii) Chloroplast strategy against DHA toxicity is efficient DHA reduction to AA using GSH as electron donor. This strategy is usually poorly utilized by the surrounding cytoplasm.DHA reduction does play an important role at one point in the life of the plant, that is, during the early stage of seed germination. The dry seed does not store ascorbate, but contains DHA, and several DHA-reducing proteins are detectable. In this condition, DHA reduction is necessary to form a limited AA pool in the seed for the metabolic requirements of the beginning of germination. After 30–40h ascorbateex novo synthesis starts, DHA reduction declines until a single isoform remains, as is typical in the roots, stem, and leaves of seedlings. Finally, DHA recycling also appears to be important under adverse environmental conditions and ascorbate deficiency.  相似文献   

5.
X Li  K E Hill  R F Burk  J M May 《FEBS letters》2001,508(3):489-492
The selenoenzyme thioredoxin reductase (TR) can recycle ascorbic acid, which in turn can recycle alpha-tocopherol. Therefore, we evaluated the role of selenium in ascorbic acid recycling and in protection against oxidant-induced loss of alpha-tocopherol in cultured liver cells. Treatment of HepG2 or H4IIE cultured liver cells for 48 h with sodium selenite (0-116 nmol/l) tripled the activity of the selenoenzyme TR, measured as aurothioglucose-sensitive dehydroascorbic acid (DHA) reduction. However, selenium did not increase the ability of H4IIE cells to take up and reduce 2 mM DHA, despite a 25% increase in ascorbate-dependent ferricyanide reduction (which reflects cellular ascorbate recycling). Nonetheless, selenium supplements both spared ascorbate in overnight cultures of H4IIE cells, and prevented loss of cellular alpha-tocopherol in response to an oxidant stress induced by either ferricyanide or diazobenzene sulfonate. Whereas TR contributes little to ascorbate recycling in H4IIE cells, selenium spares ascorbate in culture and alpha-tocopherol in response to an oxidant stress.  相似文献   

6.
Endothelial cells are exposed to potentially damaging reactive oxygen species generated both within the cells and in the bloodstream and underlying vessel wall. In this work, we studied the ability of ascorbic acid to protect cultured human-derived endothelial cells (EA.hy926) from oxidant stress generated by the redox cycling agent menadione. Menadione caused intracellular oxidation of dihydrofluorescein, which required the presence of D-glucose in the incubation medium, and was inhibited by intracellular ascorbate and desferrioxamine. At concentrations of 100 microM and higher, menadione depleted the cells of both GSH and ascorbate, and ascorbate loading partially prevented the decrease in GSH due to menadione. Menadione increased L-arginine uptake by the cells, but inhibited endothelial nitric oxide synthase, an effect that was prevented by acute loading with ascorbate. Ascorbate blunts menadione-induced oxidant stress in EA.hy926 cells, which may help to preserve nitric oxide synthase activity under conditions of excessive oxidant stress.  相似文献   

7.
The ascorbate and glutathione systems have been studied during the first stages of germination in orthodox seeds of the gymnosperm Pinus pinea L. (pine). The results indicate that remarkable changes in the content and redox balance of these metabolites occur in both the embryo and endosperm; even if with different patterns for the two redox pairs. Dry seeds are devoid of the ascorbate reduced form (ASC) and contain only dehydroascorbic acid (DHA). By contrast, glutathione is present both in the reduced (GSH) and in the oxidized (GSSG) forms. During imbibition the increase in ASC seems to be mainly caused by the reactivation of its biosynthesis. On the other hand, the GSH rise occurring during the first 24 h seems to be largely due to GSSG reduction, even if GSH biosynthesis is still active in the seeds. The enzymes of the ascorbate--glutathione cycle also change during germination, but in different ways. ASC peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) activities progressively rise both in the embryo and in endosperm. These changes are probably required for counteracting production of reactive oxygen species caused by recovery of oxidative metabolism. The two enzymes involved in the ascorbate recycling, ascorbate free radical (AFR) reductase (EC 1.6.5.4) and DHA reductase (EC 1.8.5.1), show different behaviour: the DHA reductase activity decreases, while that of AFR reductase remains unchanged. The relationship between ascorbate and glutathione metabolism and their relevance in the germination of orthodox seeds are also discussed.  相似文献   

8.
Alpha-lipoic acid, which becomes a powerful antioxidant in its reduced form, has been suggested as a dietary supplement to treat diseases associated with excessive oxidant stress. Because the vascular endothelium is dysfunctional in many of these conditions, we studied the uptake, reduction, and antioxidant effects of alpha-lipoic acid in cultured human endothelial cells (EA.hy926). Using a new assay for dihydrolipoic acid, we found that EA.hy926 cells rapidly take up and reduce alpha-lipoic acid to dihydrolipoic acid, most of which is released into the incubation medium. Nonetheless, the cells maintain dihydrolipoic acid following overnight culture, probably by recycling it from alpha-lipoic acid. Acute reduction of alpha-lipoic acid activates the pentose phosphate cycle and consumes nicotinamide adenine dinucleotide phosphate (NADPH). Lysates of EA.hy926 cells reduce alpha-lipoic acid using both NADPH and nicotinamide adenine dinucleotide (NADH) as electron donors, although NADPH-dependent reduction is about twice that due to NADH. NADPH-dependent alpha-lipoic acid reduction is mostly due to thioredoxin reductase. Pre-incubation of cells with alpha-lipoic acid increases their capacity to reduce extracellular ferricyanide, to recycle intracellular dehydroascorbic acid to ascorbate, to decrease reactive oxygen species generated by redox cycling of menadione, and to generate nitric oxide. These results show that alpha-lipoic acid enhances both the antioxidant defenses and the function of endothelial cells.  相似文献   

9.
To test whether ascorbic acid might be involved in the antioxidant defenses of inflammatory cells, we studied ascorbate uptake and recycling by quiescent and lipopolysaccharide-activated RAW264.7 murine macrophages. These cells concentrated ascorbate 100-fold in overnight culture, achieving steady-state concentrations of more than 10 mM at extracellular concentrations of 20-100 muM. This steep gradient was generated by high-affinity sodium-dependent ascorbate transport. The latter likely reflects function of the SVCT2 (SLC23A2), since this protein was detected on immunoblots. Dehydroascorbate, the two-electron oxidized form of ascorbate, was also taken up and reduced to ascorbate by the cells. Dehydroascorbate reduction required rapid recycling of GSH from GSSG by glutathione reductase. Activation of ascorbate-containing macrophages with lipopolysaccharide transiently depleted intracellular ascorbate without affecting GSH. Recovery of intracellular ascorbate required function of the SVCT2 transporter, the activity of which was modestly enhanced by lipopolysaccharide. Lipopolysaccharide treatment nearly doubled intracellular GSH concentrations over 2 h. Despite lipopolysaccharide-induced oxidant stress, this GSH increase was associated with a comparable increase in reduction of dehydroascorbate to ascorbate. These results show that macrophages maintain millimolar concentrations of ascorbate through function of the SVCT2 and that activated cells have an enhanced ability to transport and recycle ascorbate, possibly reflecting its role as an intracellular antioxidant.  相似文献   

10.
Vitamin C, or ascorbic acid, is efficiently recycled from its oxidized forms by human erythrocytes. In this work the dependence of this recycling on reduced glutathione (GSH) was evaluated with regard to activation of the pentose cycle and to changes in pyridine nucleotide concentrations. The two-electron-oxidized form of ascorbic acid, dehydroascorbic acid (DHA) was rapidly taken up by erythrocytes and reduced to ascorbate, which reached intracellular concentrations as high as 2 mM. In the absence of D-glucose, DHA caused dose-dependent decreases in erythrocyte GSH, NADPH, and NADH concentrations. In the presence of 5 mM D-glucose, GSH and NADH concentrations were maintained, but those of NADPH decreased. Reduction of extracellular ferricyanide by erythrocytes, which reflects intracellular ascorbate recycling, was also enhanced by D-glucose, and ferricyanide activated the pentose cycle. Diethylmaleate at concentrations up to 1 mM was found to specifically deplete erythrocyte GSH by 75-90% without causing oxidant stress in the cells. Such GSH-depleted erythrocytes showed parallel decreases in their ability to take up and reduce DHA to ascorbate, and to reduce extracellular ferricyanide. These results show that DHA reduction involves GSH-dependent activation of D-glucose metabolism in the pentose cycle, but that in the absence of D-glucose DHA reduction can also utilize NADH.  相似文献   

11.
Summary We report that ascorbate free radical stimulates onion root growth at 15 °C and 25 °C. The fully reduced form, ascorbate, also stimulates root elongation if culture conditions allow its oxidation. When ascorbate oxidation was inhibited, no stimulation of root growth was found. The effect of the fully oxidized form, dehydroascorbate, was inhibitory. We show also that ascorbate free radical generated by ascorbate oxidation, is reduced back probably by a transplasmalemma reductase. These results are discussed on the basis of an activation of a transplasma membrane redox system likely involved in processes related to cell growth.Abbreviations AFR ascorbate free radical - ASC ascorbate - DHA dehydroascorbate  相似文献   

12.
Ascorbate uptake and antioxidant function in peritoneal macrophages   总被引:3,自引:0,他引:3  
Since activated macrophages generate potentially deleterious reactive oxygen species, we studied whether ascorbic acid might function as an antioxidant in these cells. Thioglycollate-elicited murine peritoneal macrophages contained about 3 mM ascorbate that was halved by culture in ascorbate-free medium. However, the cells took up added ascorbate to concentrations of 6-8 mM by a high-affinity sodium-dependent transport mechanism. This likely reflected the activity of the SVCT2 ascorbate transporter, since its message and protein were present in the cells. Activation of the cells by phagocytosis of latex particles depleted intracellular ascorbate, although not below the basal levels present in the cells in culture. Glutathione (GSH) was unaffected by phagocytosis, suggesting that ascorbate was more sensitive to the oxidant stress of phagocytosis than GSH. Phagocytosis induced a modest increase in reactive oxygen species as well as a progressive loss of alpha-tocopherol, both of which were prevented in cells loaded with ascorbate. These results suggest that activated macrophages can use ascorbate to lessen self-generated oxidant stress and spare alpha-tocopherol, which may protect these long-lived cells from necrosis or apoptosis.  相似文献   

13.
Reduction of the ascorbate free radical (AFR) at the plasma membrane provides an efficient mechanism to preserve the vitamin in a location where it can recycle alpha-tocopherol and thus prevent lipid peroxidation. Erythrocyte ghost membranes have been shown to oxidize NADH in the presence of the AFR. We report that this activity derives from an AFR reductase because it spares ascorbate from oxidation by ascorbate oxidase, and because ghost membranes decrease steady-state concentrations of the AFR in a protein- and NADH-dependent manner. The AFR reductase has a high apparent affinity for both NADH and the AFR (< 2 microM). When measured in open ghosts, the reductase is comprised of an inner membrane activity (both substrate sites on the cytosolic membrane face) and a trans-membrane activity that mediates extracellular AFR reduction using intracellular NADH. However, the trans-membrane activity constitutes only about 12% of the total measured in ghosts. Ghost AFR reductase activity can also be differentiated from NADH-dependent ferricyanide reductase(s) by its sensitivity to the detergent Triton X-100 and insensitivity to enzymatic digestion with cathepsin D. This NADH-dependent AFR reductase could serve to recycle ascorbic acid at a crucial site on the inner face of the plasma membrane.  相似文献   

14.
We investigated the possibility that human erythrocytes can reduce extracellular ascorbate free radical (AFR). When the AFR was generated from ascorbate by ascorbate oxidase, intact cells slowed the loss of extracellular ascorbate, an effect that could not be explained by changes in enzyme activity or by release of ascorbate from the cells. If cells preserve extracellular ascorbate by regenerating it from the AFR, then they should decrease the steady-state concentration of the AFR. This was confirmed directly by electron paramagnetic resonance spectroscopy, in which the steady-state extracellular AFR signal varied inversely with the cell concentration and was a saturable function of the absolute AFR concentration. Treatment of cells N-ethylmaleimide (2 mM) impaired their ability both to preserve extracellular ascorbate, and to decrease the extracellular AFR concentration. These results suggest that erythrocytes spare extracellular ascorbate by enhancing recycling of the AFR, which could help to maintain extracellular concentrations of the vitamin.  相似文献   

15.
Nitric oxide has multiple beneficial effects in the blood vessel wall. However, high concentrations of nitric oxide in the presence of hydroperoxides have been shown to damage cultured cells. In this work, the effect of relatively high concentrations of nitric oxide alone on the function and antioxidant status of a human endothelial cell line (EA.hy926) was tested. Nitric oxide generated from 0.1 to 0.5mM spermine NONOate generated reactive species in the cells detected by triazole formation from diaminofluorescein and by oxidation of dihydrofluorescein. Intracellular ascorbic acid decreased this oxidant stress. Spermine NONOate also decreased intracellular ascorbate concentrations, although reduced glutathione was not affected unless cells had also been caused to reduce dehydroascorbic acid to ascorbate. Nitric oxide predictably inhibited both endothelial nitric oxide synthase and glyceraldehyde 3-phosphate dehydrogenase, and ascorbate partially prevented inhibition of the latter enzyme. These results suggest that relatively high concentrations of nitric oxide can cause oxidant stress in endothelial cells that is ameliorated by ascorbic acid.  相似文献   

16.
Both α-lipoic acid (LA) and ascorbic acid (vitamin C) have been shown to improve endothelial dysfunction, a precursor of atherosclerosis. Since oxidant stress can cause endothelial dysfunction, we tested the interaction and efficacy of these antioxidants in preventing oxidant damage to lipids due to both intra- and extracellular oxidant stresses in EA.hy926 endothelial cells. LA spared intracellular ascorbate in culture and in response to an intracellular oxidant stress induced by the redox cycling agent menadione. Extracellular oxidant stress generated by incubating cells for 2 h in with 0.2 mg/ml LDL and 5 μM Cu2+ caused a time-dependent increase of the lipid peroxidation product malondialdehyde in both cells and LDL, preceded by rapid disappearance of` α-tocopherol in LDL. α-Lipoic acid at concentrations of 40–80 μM blunted these effects. Similarly, intracellular ascorbate concentrations of 1–2 mM also prevented Cu2+-induced lipid peroxidation in LDL and cells. Cu2+-dependent oxidation of LDL in the presence of ascorbate-loaded cells decreased intracellular ascorbate by 20%, but this decrease was not reversed by LA. Both LA and ascorbate protect endothelial cells and LDL from either intra- or extracellular oxidant stress, but that LA does not spare ascorbate in oxidatively stressed cells.  相似文献   

17.
Carr AC  Frei B 《Biological chemistry》2002,383(3-4):627-636
Oxidatively modified low-density lipoprotein (LDL) has been strongly implicated in the pathogenesis of atherosclerosis. Peripheral blood leukocytes, such as neutrophils, can oxidize LDL by processes requiring superoxide and redox-active transition metal ions; however, it is uncertain whether such catalytic metal ions are available in the artery wall. Stimulated leukocytes also produce the reactive oxidant hypochlorous acid (HOCl) via the heme enzyme myeloperoxidase. Since myeloperoxidase-derived HOCl may be a physiologically relevant oxidant in atherogenesis, we investigated the mechanisms of neutrophil-mediated LDL modification and its possible prevention by the antioxidant ascorbate (vitamin C). As a sensitive marker of LDL oxidation, we measured LDL thiol groups. Stimulated human neutrophils (5x10(6) cells/ml) incubated with human LDL (0.25 mg protein/ml) time-dependently oxidized LDL thiols (33% and 79% oxidized after 10 and 30 min, respectively). Supernatants from stimulated neutrophils also oxidized LDL thiols (33% oxidized after 30 min), implicating long-lived oxidants such as N-chloramines. Experiments using specific enzyme inhibitors and oxidant scavengers showed that HOCl, but not hydrogen peroxide nor superoxide, plays a critical role in LDL thiol oxidation by neutrophils. Ascorbate (200 microM) protected against neutrophil-mediated LDL thiol oxidation for up to 15 min of incubation, after which LDL thiols became rapidly oxidized. Although stimulated neutrophils accumulated ascorbate during oxidation of LDL, pre-loading of neutrophils with ascorbate did not attenuate oxidant production by the cells. Thus, activated neutrophils oxidize LDL thiols by HOCl- and N-chloramine-dependent mechanisms and physiological concentrations of vitamin C delay this process, most likely due to scavenging of extracellular oxidants, rather than by attenuating neutrophil oxidant production.  相似文献   

18.
Neurons maintain relatively high intracellular concentrations of vitamin C, or ascorbic acid. In this work we studied the mechanisms by which neuronal cells in culture transport and maintain ascorbate, as well as how this system responds to oxidant stress induced by glutamate. Cultured SH-SY5Y neuroblastoma cells took up ascorbate, achieving steady-state intracellular concentrations of 6 mM and higher at extracellular concentrations of 200 μM and greater. This gradient was generated by relatively high affinity sodium-dependent ascorbate transport (K m of 113 μM). Ascorbate was also recycled from dehydroascorbate, the reduction of which was dependent on GSH, but not on d-glucose. Glutamate in concentrations up to 2 mM caused an acute concentration-dependent efflux of ascorbate from the cells, which was prevented by the anion channel blocker 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid. Intracellular ascorbate did not affect radiolabeled glutamate uptake, showing absence of heteroexchange.  相似文献   

19.
Ascorbic acid is necessary for optimal insulin secretion from pancreatic islets. We evaluated ascorbate recycling and whether it is impaired by increased glucose metabolism in the rat beta-cell line INS-1. INS-1 cells, engineered with the potential for overexpression of glucokinase under the control of a tetracycline-inducible gene expression system, took up and reduced dehydroascorbic acid to ascorbate in a concentration-dependent manner that was optimal in the presence of physiologic D-glucose concentrations. Ascorbate uptake did not affect intracellular GSH concentrations. Whereas depletion of GSH in culture to levels about 25% of normal also did not affect the ability of the cells to reduce dehydroascorbic acid, more severe acute GSH depletion to less than 10% of normal levels did impair dehydroascorbic acid reduction. Culture of inducible cells in 11.8 mM D-glucose and doxycycline for 48 h enhanced glucokinase activity, increased glucose utilization, abolished D-glucose-dependent insulin secretion, and increased generation of reactive oxygen species. The latter may have contributed to subsequent decreases in the ability of the cells both to maintain intracellular ascorbate and to recycle it from dehydroascorbic acid. Cultured beta cells have a high capacity to recycle ascorbate, but this is sensitive to oxidant stress generated by increased glucose metabolism due to culture in high glucose concentrations and increased glucokinase expression. Impaired ascorbate recycling as a result of increased glucose metabolism may have implications for the role of ascorbate in insulin secretion in diabetes mellitus and may partially explain glucose toxicity in beta cells.  相似文献   

20.
Nitroxides were used as models of persistent free radicals to study the antioxidant function of ascorbic acid in the human erythrocyte. It was concluded that: 1) ascorbate and other reductant(s) derived from dehydroascorbic acid (DHA) in the presence of thiols are the only significant reducing agents for nitroxides, 2) glutathione and DHA reduce nitroxides by a process that cannot be inhibited by ascorbic acid oxidase, 3) erythrocytes can be depleted of ascorbic acid by exhaustive washing in the presence of membrane-permeable cationic nitroxides such as N,N-dimethylamino-Tempo, 4) ascorbate-depleted cells do not reduce nitroxides; however, nitroxide reduction is restored when the cells are incubated with DHA, 5) reduction of nitroxides in ascorbate-depleted, DHA-treated cells is significantly faster than in buffered solutions of DHA and glutathione, 6) several equivalents of nitroxide are reduced relative to the intracellular ascorbate pool, 7) sustained nitroxide reduction is observed even when most of the intracellular ascorbate is oxidized, 8) spin trapping of oxyradicals in tert-butyl hydroperoxide-treated cells is accelerated with ascorbate depletion and inhibited with ascorbate loading, 9) ascorbate can be quantified within intact cells by analyzing the initial reduction rates of membrane-permeable cationic nitroxides, and 10) DHA-stimulated reduction of cationic nitroxides is slower and less extensive in erythrocytes deficient in glucose-6-phosphate dehydrogenase than in normal erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号