首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Summary In many organisms, the germinal dense bodies (GDBs) are known to be organelles unique to the cells of germ-line. In the present study, GDBs in primordial germ cells (PGCs) of the teleost, Oryzias latipes, were examined by electron microscopy. An obvious change was noticed in the morphology of GDBs. In PGCs situated in the endoderm, GDBs consisted of a loosely woven strand-like structure, whereas, GDBs in PGCs in the gonadal anlage, which were amorphous bodies of various sizes and shapes, were composed of electron-dense fine fibrils. The changes in the morphology of GDBs proceeded gradually according to the progress of the stages in migration of the PGCs. GDBs of intermediate morphology were found. The change in the morphology of the GDBs began at the stage of movement of the PGCs from endoderm to mesoderm. It is suggested that the differentiation of PGCs proceeds during their migratory stages under the influence of surrounding somatic cells.  相似文献   

2.
dead end (dnd) was identified in zebrafish as a gene encoding an RNA-binding protein essential for primordial germ cell (PGC) development and gametogenesis in vertebrates. The adult dnd RNA expression has been restricted to the ovary in Xenopus or to the testis in mouse. Its protein product is nuclear in chicken germ cells but both cytosolic and nuclear in mouse cell cultures. Here we report the cloning and expression pattern of Odnd, the medakafish (Oryzias latipes) dnd gene. Sequence comparison, gene structure, linkage analysis and expression demonstrate that Odnd encodes the medaka Dnd orthologue. A systematic comparison of Dnd proteins from five fishes and tetrapod representatives led to the identification of five previously unidentified conserved regions besides the RNA recognition motif. The Odnd RNA is maternally supplied and preferentially segregated with PGCs. Its adult expression occurs in both sexes and is restricted to germ cells. In the testis, Odnd is abundant in spermatogonia and meiotic cells but absent in sperm. In the ovary, Odnd RNA persists throughout oogenesis. Furthermore, we developed a dual color fluorescent in situ hybridization procedure allowing for precise comparisons of expression and distribution patterns between two genes in medaka embryos and adult tissues. Importantly, this procedure co-localized Odnd and Ovasa in testicular germ cells and PGCs. Surprisingly, by cell transfection and embryo RNA injection we show that ODnd is cytoplasmic in cell cultures, cleavage embryos and PGCs. Therefore, medaka dnd encodes a cytoplasmic protein and identifies embryonic and adult germ cells of both sexes.  相似文献   

3.
4.
Summary The germinal dense body (GDB) in the teleost, Oryzias latipes, an organelle unique to the cells of germ line, is regarded as a counterpart of nuage material in amphibians and mammals. In the study described herein, GDBs in male germ line cells were examined by electron microscopy. GDBs existed continuously in the cytoplasm of primordial germ cells (PGCs), prespermatogonia, type-A spermatogonia and early type-B spermatogonia. But they became rudimentary in late type-B spermatogonia and early spermatocytes, and no longer occurred in spermatids. Differences in the morphology of GDBs of PGCs and male germ cells were also noted. In PGCs of indifferent gonads, about 50% of GDBs were amorphous bodies of fine electron-dense fibrils, whereas in spermatogonia amorphous bodies decreased in number and GDBs of strand-like structure were more frequent. The change in the morphology of GDBs began when the sex differentiation of gonads became evident, and proceeded gradually in prespermatogonia. No obvious differences in morphology of GDBs were noted between prespermatogonia in the fry at later stages of development and spermatogonia in adult fish.  相似文献   

5.
Primordial germ cell (PGC) development in Xenopus embryos relies on localised maternal determinants. We report on the identification and functional characterisation of such one novel activity, a germ plasm associated mRNA encoding for the Xenopus version of a kinesin termed KIF13B. Modulations of xKIF13B function result in germ cell mismigration and in reduced numbers of such cells. PGCs explanted from Xenopus embryos form bleb-like protrusions enriched in PIP3. Knockdown of xKIF13B results in inhibition of blebbing and PIP3 accumulation. Interference with PIP3 synthesis leads to PGC mismigration in vivo and in vitro. We propose that xKIF13B function is linked to polarized accumulation of PIP3 and directional migration of the PGCs in Xenopus embryos.  相似文献   

6.
Summary The primordial germ cells (PGCs) of Oryzias latipes in migration to the gonadal anlage have been investigated by light and electron microscopy. The ultrastructure of the PGCs, which occur in the subendodermal space on the syncytial periblast, differ conspicuously from that of the surrounding endodermal cells. After the PGCs move to the cavity between lateral plate and ectoderm, they are taken into the somatomesodermal layer and transferred to the dorsal mesentery where they form gonadal anlage with mesodermal cells. During their translocation to the dorsal mesentery through the somatic mesoderm, apparently without formation of pseudopods, the PGCs are completely surrounded by mesodermal cells. Since these conditions seem unfavorable to the active translocation of the PGCs to the dorsal mesentery, it is more likely that the PGCs are transferred passively by the morphogenic activity of the lateral-plate mesoderm.Counts of the number of the PGCs revealed that they are mitotically dormant during the migratory period. After the completion of the migration, they regain their proliferative activity. The PGCs in the female proliferate more actively than those in the male, which provides the first morphological indication of sex differentiation in this species of fish.  相似文献   

7.

Background

Avian primordial germ cells (PGCs) have significant potential to be used as a cell-based system for the study and preservation of avian germplasm, and the genetic modification of the avian genome. It was previously reported that PGCs from chicken embryos can be propagated in culture and contribute to the germ cell lineage of host birds.

Principal Findings

We confirm these results by demonstrating that PGCs from a different layer breed of chickens can be propagated for extended periods in vitro. We demonstrate that intracellular signalling through PI3K and MEK is necessary for PGC growth. We carried out an initial characterisation of these cells. We find that cultured PGCs contain large lipid vacuoles, are glycogen rich, and express the stem cell marker, SSEA-1. These cells also express the germ cell-specific proteins CVH and CDH. Unexpectedly, using RT-PCR we show that cultured PGCs express the pluripotency genes c-Myc, cKlf4, cPouV, cSox2, and cNanog. Finally, we demonstrate that the cultured PGCs will migrate to and colonise the forming gonad of host embryos. Male PGCs will colonise the female gonad and enter meiosis, but are lost from the gonad during sexual development. In male hosts, cultured PGCs form functional gametes as demonstrated by the generation of viable offspring.

Conclusions

The establishment of in vitro cultures of germline competent avian PGCs offers a unique system for the study of early germ cell differentiation and also a comparative system for mammalian germ cell development. Primary PGC lines will form the basis of an alternative technique for the preservation of avian germplasm and will be a valuable tool for transgenic technology, with both research and industrial applications.  相似文献   

8.
During mouse gastrulation, primordial germ cells (PGCs) become clustered at the base of the allantois and move caudally into the hindgut endoderm before entering the genital ridges. The precise roles of endoderm tissues in PGC migration, however, remain unclear. By using Sox17 mutants with a specific endoderm deficiency, we provide direct evidence for the crucial role of hindgut expansion in directing proper PGC migration. In Sox17-null embryos, PGCs normally colonize in the allantois and then a small front-row population of PGCs moves properly into the most posterior gut endoderm. Defective hindgut expansion, however, causes the failure of further lateral PGC movement, resulting in the immobilization of PGCs in the hindgut entrance at the later stages. In contrast, the majority of the remaining PGCs moves into the visceral endoderm layer, but relocate outside of the embryonic gut domain. This leads to a scattering of PGCs in the extraembryonic yolk sac endoderm. This aberrant migration of Sox17-null PGCs can be rescued by the supply of wildtype hindgut cells in chimeric embryos. Therefore, these data indicate that hindgut morphogenic movement is crucial for directing PGC movement toward the embryonic gut side, but not for their relocation from the mesoderm into the endoderm.  相似文献   

9.
During migration toward gonadal ridges, primordial germ cells (PGCs; the earliest identifiable germ cells in the embryo) are very few in number, move along different tissues, and are not identifiable by morphological criteria alone. Here we report the use of the magnetic cell sorter MiniMACS as a tool for the isolation of such rare cells from 10.5- to 13.5-days post coitum mouse embryos. Cells stained sequentially by TG-1 (a monoclonal IgM antibody known to bind to the surface of PGCs) and superparamagnetic microbeads coated with secondary anti-mouse IgM antibody were separated on a magnetic column. Unlabeled cells (somatic cells) pass through the column, while labeled cells (germ cells) are retained. The retained cells can be eventually easily eluted and immediately used for biochemical studies or grown in suitable in vitro culture systems.  相似文献   

10.
Migratory pathways of PGCs to the gonad vary depending on the vertebrate species, yet the underlying regulatory mechanisms guiding PGCs are believed to be largely common. In teleost medaka embryo, PGC migration follows two major steps before colonizing in gonadal areas: (1) bilateral lineup in the trunk and (2) posterior drift of PGCs. kazura (kaz) and yanagi (yan) mutants of medaka isolated in mutagenesis screening were defective in the first and second steps, respectively. kazj2-15D was identified as a missense mutation in chemokine receptor gene cxcr4b expressed in PGCs. Embryonic injection of cxcr4b mRNA with vasa 3′ UTR rescued the PGC phenotype of kaz mutant, indicating a cell-autonomous function of cxcr4b in PGCs. yanj6-29C was identified as a nonsense mutation in the cxcr7/rdc1 gene encoding another chemokine receptor. cxcr7 transgene with genomic flanking sequences rescued the yan mutant phenotype efficiently at the G0 generation. cxcr7 was expressed in somites rather than PGCs. cxcr7-expressing somitic domain expanded posteriorly with its margin immediately anterior of posteriorly drifting PGCs, as if PGCs were thrusted toward the gonadal area. kaz and yan mutants are also defective in lateral line positioning, suggesting combined employment of these receptor systems in various cell migratory processes.  相似文献   

11.
In mammals, germ cell differentiation is initiated in the Primordial Germ Cells (PGCs) during fetal development. Prenatal exposure to environmental toxicants such as endocrine disruptors may alter PGC differentiation, development of the male germline and induce transgenerational epigenetic disorders. The anti-androgenic compound vinclozolin represents a paradigmatic example of molecule causing transgenerational effects on germ cells. We performed prenatal exposure to vinclozolin in mice and analyzed the phenotypic and molecular changes in three successive generations. A reduction in the number of embryonic PGCs and increased rate of apoptotic cells along with decrease of fertility rate in adult males were observed in F1 to F3 generations. Blimp1 is a crucial regulator of PGC differentiation. We show that prenatal exposure to vinclozolin deregulates specific microRNAs in PGCs, such as miR-23b and miR-21, inducing disequilibrium in the Lin28/let-7/Blimp1 pathway in three successive generations of males. As determined by global maps of cytosine methylation, we found no evidence for prominent changes in DNA methylation in PGCs or mature sperm. Our data suggest that embryonic exposure to environmental endocrine disruptors induces transgenerational epigenetic deregulation of expression of microRNAs affecting key regulatory pathways of germ cells differentiation.  相似文献   

12.
Primordial germ cells (PGCs) from stage 27 (5.5-day-old) Korean native ogol chicken embryonic germinal ridges were cultured in vitro for 5 days. As in in vivo culture, these cultured PGCs were expected to have already passed beyond the migration stage. Approximately 200 of these PGCs were transferred into 2.5-day-old white leghorn embryonic blood stream, and then the recipient embryos were incubated until hatching. The rate of hatching was 58.8% in the manipulated eggs. Six out of 60 recipients were identified as germline chimeric chickens by their feather colour. The frequency of germline transmission of donor PGCs was 1.3–3.1% regardless of sex. The stage 27 PGCs will be very useful for collecting large numbers of PGCs, handling of exogenous DNA transfection during culture, and for the production of desired transgenic chickens.  相似文献   

13.
14.
15.
We have isolated and cultured human primordial germ cells (PGCs) from early embryos. The PGCs expressed embryonic germ (EG) cell-specific surface markers, including Oct4 and Nanos. We derived a cell population from these PGCs that we termed embryoid body-derived (EBD) cells. EBD cells can be extensively expanded in vitro for more than 50 passages and express lineage markers from all three primary germ layers. The myogenic potential of the EBD cells was examined both in vitro and in vivo.In vitro, the EBD cells can be induced to form multinucleated myotubes, which express late skeletal muscle-specific markers, including MHC and dystrophin, when exposed to human galectin-1. In vivo, the EBD cells gave rise to all the myogenic lineages, including the skeletal muscle stem cells known as satellite cells. Strikingly, these cells were able to partially restore degenerated muscles in the SCID/mdx mouse, an animal model of the Duchenne’s muscular dystrophy. These results indicate the EBD cells may be a promising source of myogenic stem cells for cell-based therapies for muscle degenerative disorders.  相似文献   

16.
17.
18.
It is believed that cytoplasmic localization in the egg is necessary for development of primordial germ cells (PGCs) inXenopus embryos. In this study, we sought to determine if translation of maternal mRNA during oocyte maturation is involved in the development of PGCs. Donor oocytes were collected from both stimulated (those who receive gonadotropin) and unstimulated females, artificially matured and fertilized using a host transfer technique. Using chloramphenicol (50 μM and 500 μM RNA), RNA translation was inhibited during oocyte maturation. Our results showed that in unstimulated embryos treated with 50 μM chloramphenicol, there was a significant reduction in the number of PGCs reaching genital ridges. In stimulated embryos, however, the number of PGCs was unchanged unless a higher concentration (500 (μM) of chloramphenicol was used. From these results it is suggested that maternal mRNA translation during oocyte maturation plays a key role in development of PGCs.  相似文献   

19.
The display of carbohydrate structures was measured in promyelocytic HL60 cells and in histiocytic U937 cells induced to differentiate to phagocytic cellsin vitro during three to seven days of cultivation in the presence of dimethylsulfoxide (DMSO). It was assessed by micro-or spectrofluorometric quantification of the binding of fluorescent lectins. Changes in the cell size and the association and uptake of IgG-or complementopsonized yeast cells (Saccharomyces cerevisiae) were used as signs of phagocyte differentiation.The binding of wheat germ agglutinin (WGA), concanavalin A (Con A),Ricinus communis agglutinin-I (RCA-I) andUlex europaeus agglutinin-I (UEA-I) varied due to the presence of DMSO during cultivation, and without DMSO also on the number of days in culture and the type of cell.Abbreviations DMSO dimethylsulfoxide - PMA phorbol 12-myristate 13-acetate - KRG Krebs-Ringer phosphate buffer with glucose - WGA wheat germ agglutinin - Con A concanavalin A - RCA-I Ricinus communis agglutinin-I - UEA-I Ulex europaeus agglutinin-I  相似文献   

20.
Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were cultured on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号