首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
The trans-activator Tat proteins coded by human immunodeficiency virus type 1 (HIV-1) and HIV-2 appear to be similar in structure and function. However, the Tat protein of HIV-2 (Tat2) activates the HIV-1 long terminal repeat (LTR) less efficiently than Tat1 (M. Emerman, M. Guyader, L. Montagnier, D. Baltimore, and M. A. Muesing, EMBO J. 6:3755-3760, 1987). To determine the functional domain of Tat2 which contributes to this incomplete reciprocity, we have carried out domain substitution between Tat1 and Tat2 by exchanging the basic domains involved in Tat interaction with its target trans-activation-response (TAR) RNA structure. Our results indicate that Tat1 proteins containing substitutions of either 8 or 14 amino acids of the basic domain of Tat2 exhibited reduced trans activation of the HIV-1 LTR by about 1/20 or one-fourth the level induced by wt Tat1. In contrast, Tat2 containing a substitution of the 9-amino-acid basic domain of Tat1 trans activated HIV-1 LTR like native Tat1. A substitution of the highly conserved core domain of Tat2 with that of Tat1 did not have any significant effect on trans activation of the HIV-1 LTR. These results indicate that the basic domain of Tat2 contributes to its inefficient trans activation of the HIV-1 LTR. Mutation of an acidic residue (Glu) located between the core domain and the Arg-rich basic domain of Tat2 at position 77 to a Gly residue increased the activity of Tat2 substantially. These results further suggest that the presence of an acidic residue (Glu) adjacent to Arg-rich sequences may at least partially contribute to the reduced activity of the Tat2 basic domain.  相似文献   

3.
The Src-homology 3 (SH3) domain is one of the most frequent protein recognition modules (PRMs), being represented in signal transduction pathways and in several pathologies such as cancer and AIDS. Grb2 (growth factor receptor-bound protein 2) is an adaptor protein that contains two SH3 domains and is involved in receptor tyrosine kinase (RTK) signal transduction pathways. The HIV-1 transactivator factor Tat is required for viral replication and it has been shown to bind directly or indirectly to several host proteins, deregulating their functions. In this study, we show interaction between the cellular factor Grb2 and the HIV-1 trans-activating protein Tat. The binding is mediated by the proline-rich sequence of Tat and the SH3 domain of Grb2. As the adaptor protein Grb2 participates in a wide variety of signaling pathways, we characterized at least one of the possible downstream effects of the Tat/Grb2 interaction on the well-known IGF-1R/Raf/MAPK cascade. We show that the binding of Tat to Grb2 impairs activation of the Raf/MAPK pathway, while potentiating the PKA/Raf inhibitory pathway. The Tat/Grb2 interaction affects also viral function by inhibiting the Tat-mediated transactivation of HIV-1 LTR and viral replication in infected primary microglia.  相似文献   

4.
5.
6.
A Alonso  D Derse    B M Peterlin 《Journal of virology》1992,66(7):4617-4621
Levels of trans activation of the human immunodeficiency virus type 1 long terminal repeat (HIV-1 LTR) by the virally encoded transactivator Tat show marked species-specific differences. For example, levels of transactivation observed in Chinese hamster ovary (CHO) rodent cells are 10-fold lower than those in human cells or in CHO cells that contain the human chromosome 12. Thus, the human chromosome 12 codes for a protein or proteins that are required for optimal Tat activity. Here, the function of these cellular proteins was analyzed by using a number of modified HIV-1 LTRs and Tats. Neither DNA-binding proteins that bind to the HIV-1 LTR nor proteins that interact with the activation domain of Tat could be implicated in this defect. However, since species-specific differences were no longer observed with hybrid proteins that contain the activation domain of Tat fused to heterologous RNA-binding proteins, optimal interactions between Tat and the trans-acting responsive RNA (TAR) must depend on this factor(s).  相似文献   

7.
The Tat protein of the human immunodeficiency virus type 1 (HIV-1) is required for efficient viral gene expression. By means of mutational analyses, several domains of the Tat protein that are required for complete activation of HIV-1 gene expression have been defined. These include an amino-terminal activating domain, a cysteine-rich dimerization domain, and a basic domain important in the binding of Tat to the trans-activation response element (TAR) and in Tat nuclear localization. Recently, we described a mutation, known as delta tat, which resulted in a protein with a truncated basic domain. This protein had a "trans-dominant" phenotype in that it inhibited wild-type Tat activation of the HIV-1 LTR. To further characterize the requirements for generating a Tat trans-dominant phenotype, we constructed a variety of Tat proteins with truncations or substitutions in the basic domain. A number of these proteins showed a trans-dominant phenotype. These Tat mutants also inhibited activation of the HIV-1 LTR by a protein composed of Tat fused to the prokaryotic R17 (phage MS2) RNA-binding protein in which the R17 recognition element was inserted in the HIV-1 LTR in place of TAR. Thus, an intact TAR element was not required for this inhibition. We also studied the cellular localization of Tat and a trans-dominant Tat mutant by means of immunofluorescence staining with the use of antibodies reactive to different domains of the Tat protein. The results indicated that Tat becomes localized predominantly in the nucleus both in the presence and absence of the trans-dominant Tat construct, suggesting that the trans-dominant mutant does not inhibit Tat nuclear localization. These studies further define the requirements for the creation of trans-dominant Tat mutants, and suggest that the mechanism of trans-dominant Tat inhibition may be either the formation of an inactive complex between wild-type and mutant Tat or sequestration of cellular factors involved in regulating HIV-1 gene expression.  相似文献   

8.
9.
10.
11.
Efficient replication of human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) requires the virus transactivator proteins known as Tat. In order to understand the molecular mechanisms involved in Tat transactivation, it is essential to identify the cellular target(s) of the Tat activation domain. Using an in vitro kinase assay, we previously identified a cellular protein kinase activity, Tat-associated kinase (TAK), that specifically binds to the activation domains of Tat proteins. Here it is demonstrated that TAK fulfills the genetic criteria established for a Tat cofactor. TAK binds in vitro to the activation domains of the Tat proteins of HIV-1 and HIV-2 and the distantly related lentivirus equine infectious anemia virus but not to mutant Tat proteins that contain nonfunctional activation domains. In addition, it is shown that TAK is sensitive to dichloro-1-beta-D-ribofuranosylbenzimidazole, a nucleoside analog that inhibits a limited number of kinases and is known to inhibit Tat transactivation in vivo and in vitro. We have further identified an in vitro substrate of TAK, the carboxyl-terminal domain of the large subunit of RNA polymerase II. Phosphorylation of the carboxyl-terminal domain has been proposed to trigger the transition from initiation to active elongation and also to influence later stages during elongation. Taken together, these results imply that TAK is a very promising candidate for a cellular factor that mediates Tat transactivation.  相似文献   

12.
13.
14.
New therapeutic agents able to block HIV-1 replication are eagerly sought after to increase the possibilities of treatment of resistant viral strains. In this report, we describe a rational strategy to identify small peptide sequences owning the dual property of penetrating within lymphocytes and of binding to a protein target. Such sequences were identified for two important HIV-1 regulatory proteins, Tat and Rev. Their association to a stabilizing domain consisting of human small ubiquitin-related modifier-1 (SUMO-1) allowed the generation of small proteins named SUMO-1 heptapeptide protein transduction domain for binding Tat (SHPT) and SUMO-1 heptapeptide protein transduction domain for binding Rev (SHPR), which are stable and efficiently penetrate within primary lymphocytes. Analysis of the antiviral activity of these proteins showed that one SHPR is active in both primary lymphocytes and macrophages, whereas one SHPT is active only in the latter cells. These proteins may represent prototypes of new therapeutic agents targeting the crucial functions exerted by both viral regulatory factors.  相似文献   

15.
The role of Sp1 in regulating the trans-activating activity of the human immunodeficiency virus type 1 (HIV-1) Tat protein has not yet been clearly defined. In fact, studies on the physical and functional interaction between Sp1 and Tat have yielded contradictory results. Here we investigated whether a physical interaction between Sp1 and Tat indeed occurs, exploiting both biochemical and genetic techniques that allow detection of direct protein-protein interactions. Studies performed with the yeast two-hybrid system indicate that Sp1 does not directly interact with the HIV-1 Tat protein. Control experiments demonstrated that both proteins are functionally expressed in the yeast cells. In vitro binding assays further confirmed that Sp1 does not physically bind Tat. These data suggest that in vivo Tat and Sp1 most likely take part of a multicomponent complex and thus encourage the search of the molecule(s) which mediate Tat-Sp1 interaction.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号