首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Galectins are implicated in a large variety of biological functions, many of which depend on their carbohydrate-binding ability. Fifteen members of the family have been identified in vertebrates based on binding to galactose (Gal) that is mediated by one or two, evolutionarily conserved, carbohydrate-recognition domains (CRDs). Variations in glycan structures expressed on glycoconjugates at the cell surface may, therefore, affect galectin binding and functions. To identify roles for different glycans in the binding of the three types of mammalian galectins to cells, we performed fluorescence cytometry at 4 degrees C with recombinant rat galectin-1, human galectin-3, and three forms of human galectin-8, to Chinese hamster ovary (CHO) cells and 12 different CHO glycosylation mutants. All galectin species bound to parent CHO cells and binding was inhibited >90% by 0.2 M lactose. Galectin-8 isoforms with either a long or a short inter-CRD linker bound similarly to CHO cells. However, a truncated form of galectin-8 containing only the N-terminal CRD bound only weakly to CHO cells and the C-terminal galectin-8 CRD exhibited extremely low binding. Binding of the galectins to the different CHO glycosylation mutants revealed that complex N-glycans are the major ligands for each galectin except the N-terminal CRD of galectins-8, and also identified some fine differences in glycan recognition. Interestingly, increased binding of galectin-1 at 4 degrees C correlated with increased propidium iodide (PI) uptake, whereas galectin-3 or -8 binding did not induce permeability to PI. The CHO glycosylation mutants with various repertoires of cell surface glycans are a useful tool for investigating galectin-cell interactions as they present complex and simple glycans in a natural mixture of multivalent protein and lipid glycoconjugates anchored in a cell membrane.  相似文献   

2.
The involvement of galectins as pleiotropic regulators of cell adhesion and growth in disease progression explains the interest to define their ligand-binding properties. Toward this end, it is desirable to approach in vivo conditions to attain medical relevance. In order to simulate physiological conditions with cell surface glycans as recognition sites and galectins as mediators of intercellular contacts we developed an assay using galectin-loaded Raji cells. The extent of surface binding of fluorescent neoglycoconjugates depended on the lectin presence and the type of lectin, the nature of the probes' carbohydrate headgroup and the density of unsubstituted beta-galactosides on the cell surface. Using the most frequently studied galectins-1 and -3, application of this assay led to rather equal binding levels for linear and branched oligomers of N-acetyllactosamine. A clear preference of galectin-3 for alpha1-3-linked galactosylated lactosamine was noted. In parallel, a panel of 24 neoglycoconjugates was tested as inhibitors of galectin binding from solution to N-glycans of surface-immobilized asialofetuin. These two assays differ in presentation of the galectin and ligand, facilitating identification of assay-dependent properties. Under the condition of the cell assay, selectivity among oligosaccharides for the lectins was higher, and extraordinary affinity of galectin-1 to 3'-O-sulfated probes in a solid-phase assay was lost in the cell assay. Having introduced and validated a cell assay, the comprehensive profiling of ligand binding to cell-surface-presented galectins is made possible.  相似文献   

3.
Adhesion/growth-regulatory galectins (gals) exert their functionality by the cis/trans-cross-linking of distinct glycans after initial one-point binding. In order to define the specificity of ensuing association events leading to cross-linking, we recently established a cell-based assay using fluorescent glycoconjugates as flow cytometry probes and tested it on two human gals (gal-1 and -3). Here we present a systematic study of tandem-repeat-type gal-4, -8 and -9 loaded on Raji cells resulting in the following key insights: (i) all three gals bound to oligolactosamines; (ii) binding to ligands with Galβ1-3GlcNAc or Galβ1-3GalNAc as basic motifs was commonly better than that to canonical Galβ1-4GlcNAc; (iii) all three gals bound to 3'-O-sulfated and 3'-sialylated disaccharides mentioned above better than that to parental neutral forms and (iv) histo-blood group ABH antigens were the highest affinity ligands in both the cell and the solid-phase assay. Fine specificity differences were revealed as follows: (i) gal-8 and -9, but not gal-4, bound to disaccharide Galβ1-3GlcNAc; (ii) increase in binding due to negatively charged substituents was marked only in the case of gal-4 and (iii) gal-4 and -8 bound preferably to histo-blood group A glycans, whereas gal-9 targeted B-type glycans. Experiments with single carbohydrate recognition domains (CRDs) of gal-4 showed that the C-CRD preferably bound to ABH glycans, whereas the N-CRD associated with oligolactosamines. In summary, the comparative analysis disclosed the characteristic profiles of glycan reactivity for the accessible CRD of cell-bound gals. These results indicate the distinct sets of functionality for these three members of the same subgroup of human gals.  相似文献   

4.
Human galectins have distinct and overlapping biological roles in immunological homeostasis. However, the underlying differences among galectins in glycan binding specificity regulating these functions are unclear. Galectin-8 (Gal-8), a tandem repeat galectin, has two distinct carbohydrate recognition domains (CRDs) that may cross-link cell surface counter receptors. Here we report that each Gal-8 CRD has differential glycan binding specificity and that cell signaling activity resides in the C-terminal CRD. Full-length Gal-8 and recombinant individual domains (Gal-8N and Gal-8C) bound to human HL60 cells, but only full-length Gal-8 signaled phosphatidylserine (PS) exposure in cells, which occurred independently of apoptosis. Although desialylation of cells did not alter Gal-8 binding, it enhanced cellular sensitivity to Gal-8-induced PS exposure. By contrast, HL60 cell desialylation increased binding by Gal-8C but reduced Gal-8N binding. Enzymatic reduction in surface poly-N-acetyllactosamine (polyLacNAc) glycans in HL60 cells reduced cell surface binding by Gal-8C but did not alter Gal-8N binding. Cross-linking and light scattering studies showed that Gal-8 is dimeric, and studies on individual subunits indicate that dimerization occurs through the Gal-8N domain. Mutations of individual domains within full-length Gal-8 showed that signaling activity toward HL60 cells resides in the C-terminal domain. In glycan microarray analyses, each CRD of Gal-8 showed different binding, with Gal-8N recognizing sulfated and sialylated glycans and Gal-8C recognizing blood group antigens and polyLacNAc glycans. These results demonstrate that Gal-8 dimerization promotes functional bivalency of each CRD, which allows Gal-8 to signal PS exposure in leukocytes entirely through C-terminal domain recognition of polyLacNAc glycans.  相似文献   

5.
Galectins are a family of beta-galactose binding lectins associated with functions such as immunological and malignant events. To study the binding affinity of galectins for natural and artificial saccharides and glycoconjugates we have developed an assay using fluorescence polarization. A collection of fluorescein-conjugated saccharides was synthesized and used as probes with galectins-1 and -3 and the two carbohydrate recognition domains of galectin-4. Direct binding of a fixed probe amount with different amounts of each galectin defined specificity and selectivity and permitted selection of the optimal probe for inhibition studies. Then fixed amounts of galectin and selected probe were used to screen the inhibitory potency of a library of nonfluorescent compounds. As the assay is in solution and does not require separation of free and bound probe, it is simple and rapid and can easily be applied to different unlabeled galectins. As all interaction components are known, K(d) values for galectin-inhibitor interaction can be directly calculated without approximation other than the assumption of a simple one-site competition.  相似文献   

6.
Galectins are widely distributed sugar-binding proteins whose basic specificity for beta-galactosides is conserved by evolutionarily preserved carbohydrate-recognition domains (CRDs). Although they have long been believed to be involved in diverse biological phenomena critical for multicellular organisms, in only few a cases has it been proved that their in vivo functions are actually based on specific recognition of the complex carbohydrates expressed on cell surfaces. To obtain clues to understand the physiological roles of diverse members of the galectin family, detailed analysis of their sugar-binding specificity is necessary from a comparative viewpoint. For this purpose, we recently reinforced a conventional system for frontal affinity chromatography (FAC) [J. Chromatogr., B, Biomed. Sci. Appl. 771 (2002) 67-87]. By using this system, we quantitatively analyzed the interactions at 20 degrees C between 13 galectins including 16 CRDs originating from mammals, chick, nematode, sponge, and mushroom, with 41 pyridylaminated (PA) oligosaccharides. As a result, it was confirmed that galectins require three OH groups of N-acetyllactosamine, as had previously been denoted, i.e., 4-OH and 6-OH of Gal, and 3-OH of GlcNAc. As a matter of fact, no galectin could bind to glycolipid-type glycans (e.g., GM2, GA2, Gb3), complex-type N-glycans, of which both 6-OH groups are sialylated, nor Le-related antigens (e.g., Le(x), Le(a)). On the other hand, considerable diversity was observed for individual galectins in binding specificity in terms of (1) branching of N-glycans, (2) repeating of N-acetyllactosamine units, or (3) substitutions at 2-OH or 3-OH groups of nonreducing terminal Gal. Although most galectins showed moderately enhanced affinity for branched N-glycans or repeated N-acetyllactosamines, some of them had extremely enhanced affinity for either of these multivalent glycans. Some galectins also showed particular preference for alpha1-2Fuc-, alpha1-3Gal-, alpha1-3GalNAc-, or alpha2-3NeuAc-modified glycans. To summarize, galectins have evolved their sugar-binding specificity by enhancing affinity to either "branched", "repeated", or "substituted" glycans, while conserving their ability to recognize basic disaccharide units, Galbeta1-3/4GlcNAc. On these bases, they are considered to exert specialized functions in diverse biological phenomena, which may include formation of local cell-surface microdomains (raft) by sorting glycoconjugate members for each cell type.  相似文献   

7.
The network of adhesion/growth-regulatory galectins in chicken (chicken galectin, CG) has only one tandemrepeat-type protein, CG8. Using a cell-based assay and probing galectin reactivity with a panel of fluorescent neoglycoconjugates (glycoprobes), its glycan-binding profile was determined. For internal validation, human galectin-8 (HG8) was tested. In comparison to HG8, CG8 showed a rather similar specificity: both galectins displayed high affinity to blood group ABH antigens as well as to 3′-sialylated and 3′-sulfated lactosamine chains. The most remarkable difference was found to be an ability of HG8 (but not CG8) to bind the disaccharide Galβ1-3GlcNAc (Lec) as well as branched and linear oligolactosamines. The glycan-binding profile was shown to be influenced by glycocalix of the cell, where the galectin is anchored. Particularly, glycosidase treatment of galectin-loaded cells led to the change of the profile. Thus, we suppose the involvement of cis-glycans in the interaction of cell-anchored galectins with external glycoconjugates.  相似文献   

8.
Bian CF  Zhang Y  Sun H  Li DF  Wang DC 《PloS one》2011,6(9):e25007
The Thomsen-Friedenreich (TF or T) antigen, Galβ1-3GalNAcα1-O-Ser/Thr, is the core 1 structure of O-linked mucin type glycans appearing in tumor-associated glycosylation. The TF antigen occurs in about 90% of human cancer cells and is a potential ligand for the human endogenous galectins. It has been reported that human galectin-1 (Gal-1) and galectin-3 (Gal-3) can perform their cancer-related functions via specifically recognizing TF antigen. However, the detailed binding properties have not been clarified and structurally characterized. In this work, first we identified the distinct TF-binding abilities of Gal-1 and Gal-3. The affinity to TF antigen for Gal-3 is two orders of magnitude higher than that for Gal-1. The structures of Gal-3 carbohydrate recognition domain (CRD) complexed with TF antigen and derivatives, TFN and GM1, were then determined. These structures show a unique Glu-water-Arg-water motif-based mode as previously observed in the mushroom galectin AAL. The observation demonstrates that this recognition mode is commonly adopted by TF-binding galectins, either as endogenous or exogenous ones. The detailed structural comparisons between Gal-1 and Gal-3 CRD and mutagenesis experiments reveal that a pentad residue motif ((51)AHGDA(55)) at the loop (g1-L4) connecting β-strands 4 and 5 of Gal-1 produces a serious steric hindrance for TF binding. This motif is the main structural basis for Gal-1 with the low affinity to TF antigen. These findings provide the intrinsic structural elements for regulating the TF-binding activity of Gal-1 in some special conditions and also show certain target and approach for mediating some tumor-related bioactivities of human galectins.  相似文献   

9.
Human galectins have functionally divergent roles, although most of the members of the galectin family bind weakly to the simple disaccharide lactose (Galbeta1-4Glc). To assess the specificity of galectin-glycan interactions in more detail, we explored the binding of several important galectins (Gal-1, Gal-2, and Gal-3) using a dose-response approach toward a glycan microarray containing hundreds of structurally diverse glycans, and we compared these results to binding determinants on cells. All three galectins exhibited differences in glycan binding characteristics. On both the microarray and on cells, Gal-2 and Gal-3 exhibited higher binding than Gal-1 to fucose-containing A and B blood group antigens. Gal-2 exhibited significantly reduced binding to all sialylated glycans, whereas Gal-1 bound alpha2-3- but not alpha2-6-sialylated glycans, and Gal-3 bound to some glycans terminating in either alpha2-3- or alpha2-6-sialic acid. The effects of sialylation on Gal-1, Gal-2, and Gal-3 binding to cells also reflected differences in cellular sensitivity to Gal-1-, Gal-2-, and Gal-3-induced phosphatidylserine exposure. Each galectin exhibited higher binding for glycans with poly-N-acetyllactosamine (poly(LacNAc)) sequences (Galbeta1-4GlcNAc)(n) when compared with N-acetyllactosamine (LacNAc) glycans (Galbeta1-4GlcNAc). However, only Gal-3 bound internal LacNAc within poly(LacNAc). These results demonstrate that each of these galectins mechanistically differ in their binding to glycans on the microarrays and that these differences are reflected in the determinants required for cell binding and signaling. The specific glycan recognition by each galectin underscores the basis for differences in their biological activities.  相似文献   

10.
Galectins are β-galactoside-binding lectins that regulate diverse cell behaviors, including adhesion, migration, proliferation, and apoptosis. Galectins can be expressed both intracellularly and extracellularly, and extracellular galectins mediate their effects by associating with cell-surface oligosaccharides. Despite intensive current interest in galectins, strikingly few studies have focused on a key enzyme that acts to inhibit galectin signaling, namely β-galactoside α2,6-sialyltransferase (ST6Gal-I). ST6Gal-I adds an α2,6-linked sialic acid to the terminal galactose of N-linked glycans, and this modification blocks galectin binding to β-galactosides. This minireview summarizes the evidence suggesting that ST6Gal-I activity serves as an "off switch" for galectin function.  相似文献   

11.
A specific apoptotic glycosylation pattern may play an assistant or even a causative role in phagocytosis of apoptotic bodies. To elucidate the role of macrophages in lectin-mediated phagocytosis, an experimental system was used, where monocyte-derived THP-1 cells engulf the apoptotic bodies from the melanoma cell line MELJUSO. A flow cytometry assay was performed to reveal lectin expression and quantify the phagocytosis of apoptotic bodies. Taking into account that siglecs, a mannose receptor and galectins expressed on macrophages could be involved in engulfment of apoptotic bodies we studied their potential expression on THP-1 cells by means of polyacrylamide glycoconjugates. A strong binding of the cells to siglec ligands (3'SiaLac, 6'SiaLac, [Neu5Acalpha2-8]2) and galectin ligands (LacNAc, GalNAcbeta1 - 4GlcNAc, Galbeta1 - 3GalNAcbeta and asialoGM1) was observed. To reveal the corresponding targets on apoptotic bodies, the carbohydrate pattern of MELJUSO cells was analyzed. The apoptotic membrane was characterized by a high level of glycans terminated by galactose or sialic acid. To study lectin-mediated phagocytosis of apoptotic bodies by THP-1 cells, an inhibitory phagocytosis assay was performed. Binding of Galbeta1 - 3GalNAc- or LacNAc-specific reagents (lectins and antibodies) to apoptotic bodies abolished their engulfment by the THP-1 cells whereas blocking of Neu5Acalpha2 - 6 or Neu5Acalpha2 - 3 sites by the corresponding lectins was not effective. Furthermore, Galbeta1 - 3GalNAcbeta-PAA or asialoGM1-PAA binding to the THP-1 cells decreased phagocytosis, whereas two other potent THP-1-binding probes, LacNAc-PAA and GalNAcbeta1 - 4GlcNAc-PAA did not inhibit phagocytosis. Thus, Galbeta1 - 3GalNAcbeta-terminated chains represented on the apoptotic bodies but not the other tested galectin ligands appear to be a target for THP-1 cells.  相似文献   

12.
Galectins are a growing family of animal lectins with common consensus sequences that bind beta-Gal and LacNAc residues. There are at present 14 members of the galectin family; however, certain galectins possess different structures as well as biological properties. Galectin-1 is a dimer of two homologous carbohydrate recognition domains (CRDs) and possesses apoptotic and proinvasive activities. Galectin-3 consists of a C-terminal CRD and an N-terminal nonlectin domain implicated in the oligomerization of the protein and is often associated with antiapoptotic activity. Because many cellular oligosaccharide receptors are multivalent, it is important to characterize the interactions of multivalent carbohydrates with galectins-1 and -3. In the present study, binding of bovine heart galectin-1 and recombinant murine galectin-3 to a series of synthetic analogs containing two LacNAc residues separated by a varying number of methylene groups, as well as biantennary analogs possessing two LacNAc residues, were examined using isothermal titration microcalorimetry (ITC) and hemagglutination inhibition measurements. The thermodynamics of binding of the multivalent carbohydrates to the C-terminal CRD domain of galectin-3 was also investigated. ITC results showed that each bivalent analog bound by both LacNAc residues to the two galectins. However, galectin-1 shows a lack of enhanced affinity for the bivalent straight chain and branched chain analogs, whereas galectin-3 shows enhanced affinity for only lacto-N-hexaose, a naturally occurring branched chain carbohydrate. The CRD domain of galectin-3 was shown to possess similar thermodynamic binding properties as the intact molecule. The results of this study have important implications for the design of carbohydrate inhibitors of the two galectins.  相似文献   

13.
Galectin-8 has two different carbohydrate recognition domains (CRDs), the N-terminal Gal-8N and the C-terminal Gal-8C linked by a peptide, and has various effects on cell adhesion and signaling. To understand the mechanism for these effects further, we compared the binding activities of galectin-8 in solution with its binding and activation of cells. We used glycan array analysis to broaden the specificity profile of the two galectin-8 CRDs, as well as intact galectin-8s (short and long linker), confirming the unique preference for sulfated and sialylated glycans of Gal-8N. Using a fluorescence anisotropy assay, we examined the solution affinities for a subset of these glycans, the highest being 50 nM for NeuAcalpha2,3Lac by Gal-8N. Thus, carbohydrate-protein interactions can be of high affinity without requiring multivalency. More importantly, using fluorescence polarization, we also gained information on how the affinity is built by multiple weak interactions between different fragments of the glycan and its carrier molecule and the galectin CRD subsites (A-E). In intact galectin-8 proteins, the two domains act independently of each other in solution, whereas at a surface they act together. Ligands with moderate or weak affinity for the isolated CRDs on the array are bound strongly by intact galectin-8s. Also galectin-8 binding and signaling at cell surfaces can be explained by combined binding of the two CRDs to low or medium affinity ligands, and their highest affinity ligands, such as sialylated galactosides, are not required.  相似文献   

14.
The galectins are a family of beta-galactoside-binding animal lectins with a conserved carbohydrate recognition domain (CRD). They have a high affinity for small beta-galactosides, but binding specificity for complex glycoconjugates varies considerably within the family. The ligand recognition is essential for their proper function, and the structures of several galectins have suggested their mechanism of carbohydrate binding. Galectin-9 has two tandem CRDs with a short linker, and we report the crystal structures of mouse galectin-9 N-terminal CRD (NCRD) in the absence and the presence of four ligand complexes. All structures form the same dimer, which is quite different from the canonical 2-fold symmetric dimer seen for galectin-1 and -2. The beta-galactoside recognition mechanism in the galectin-9 NCRD is highly conserved among other galectins. In the apo form structure, water molecules mimic the ligand hydrogen-bond network. The galectin-9 NCRD can bind both N-acetyllactosamine (Galbeta1-4GlcNAc) and T-antigen (Galbeta1-3GalNAc) with the proper location of Arg-64. Moreover, the structure of the N-acetyllactosamine dimer (Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc) complex shows a unique binding mode of galectin-9. Finally, surface plasmon resonance assay showed that the galectin-9 NCRD forms a homophilic dimer not only in the crystal but also in solution.  相似文献   

15.
Cell surface glycans present docking sites to endogenous lectins. With growing insight into the diversity of lectin families it becomes important to answer the question on the activity profiles of individual family members. Focusing on galectins (-galactoside-binding proteins without Ca2+-requirement sharing the jelly-roll-like folding pattern), this study was performed to assess the potency of proto-type galectins (galectins-1 and -7 and CG-16) and the chimera-type galectin-3 to elicit selected cell responses by carbohydrate-dependent surface binding and compare the results. The galectins, except for galectin-1, were found to enhance detergent (SDS)-induced hemolysis of human erythrocytes to different degrees. Their ability to confer increased membrane osmofragility thus differs. Aggregation of neutrophils, thymocytes and platelets was induced by the proto-type galectin-1 but not -7, by CG-16 and also galectin-3. Cell-type-specific quantitative differences and the importance of the fine-specificity of the galectin were clearly apparent. In order to detect cellular responses based on galectin binding and bridging of cells the formation of haptenic-sugar-resistant (HSR) intercellular contacts (an indicator of post-binding signaling) was monitored. It was elicited by CG-16 and galectin-1 but not galectin-3, revealing another level at which activities of individual galectins can differ. Acting as potent elicitor of neutrophil aggregation, CG-16-dependent post-binding effects were further analyzed. Carbohydrate-dependent binding to the neutrophils' surface led to a sustained increase of cytoplasmic Ca2+ concentration in a dose-dependent manner. The ability of CG-16 to activate H2O2 generation by human peripheral blood neutrophils was primed by the Ca2+-ionophor ionomycin and by cytochalasin B. In a general context, these results emphasize that – besides plant lectins as laboratory tools – animal lectins can trigger cell reaction cascades, implying potential in vivo relevance for the measured activities. Within the family of galectins, the activity profiles depend on the target cell type and the individual galectin. Notably, proto-type galectins do not necessarily share a uniform capacity as elicitor.  相似文献   

16.
Lectin histochemistry has revealed cell-type-selective glycosylation. It is under dynamic and spatially controlled regulation. Since their chemical properties allow carbohydrates to reach unsurpassed structural diversity in oligomers, they are ideal for high density information coding. Consequently, the concept of the sugar code assigns a functional dimension to the glycans of cellular glycoconjugates. Indeed, multifarious cell processes depend on specific recognition of glycans by their receptors (lectins), which translate the sugar-encoded information into effects. Duplication of ancestral genes and the following divergence of sequences account for the evolutionary dynamics in lectin families. Differences in gene number can even appear among closely related species. The adhesion/growth-regulatory galectins are selected as an instructive example to trace the phylogenetic diversification in several animals, most of them popular models in developmental and tumor biology. Chicken galectins are identified as a low-level-complexity set, thus singled out for further detailed analysis. The various operative means for establishing protein diversity among the chicken galectins are delineated, and individual characteristics in expression profiles discerned. To apply this galectin-fingerprinting approach in histopathology has potential for refining differential diagnosis and for obtaining prognostic assessments. On the grounds of in vitro work with tumor cells a strategically orchestrated co-regulation of galectin expression with presentation of cognate glycans is detected. This coordination epitomizes the far-reaching physiological significance of sugar coding.  相似文献   

17.
Galectins constitute a family of evolutionarily conserved animal lectins, which are defined by their affinity for poly-N-acetyllactosamine-enriched glycoconjugates and sequence similarities in the carbohydrate recognition domain. During the past decade, attempts to dissect the functional role for galectins in vivo have been unsuccessful in comparison to the overwhelming information reached at the biochemical and molecular levels. The present review deals with the latest advances in galectin research and is aimed at validating the functional significance of these carbohydrate-binding proteins. Novel implications of galectins in cell adhesion, cell growth regulation, immunomodulation, apoptosis, inflammation, embryogenesis, metastasis and pre-mRNA splicing will be particularly discussed in a trip from the gene to the clinical therapy. Elucidation of the molecular mechanisms involved in galectin functions will certainly open new avenues not only in biomedical research, but also at the level of disease diagnosis and clinical intervention, attempting to delineate new therapeutic strategies in autoimmune diseases, inflammatory processes, allergic reactions and tumor spreading.  相似文献   

18.
Endomembrane glycosylation and cytoplasmic O-GlcNAcylation each play essential roles in nutrient sensing, and characteristic changes in glycan patterns have been described in disease states such as diabetes and cancer. These changes in glycosylation have important functional roles and can drive disease progression. However, little is known about the molecular mechanisms underlying how these signals are integrated and transduced into biological effects. Galectins are proteins that bind glycans and that are secreted by a poorly characterized nonclassical secretory mechanism. Once outside the cell, galectins bind to the terminal galactose residues of cell surface glycans and modulate numerous extracellular functions, such as clathrin-independent endocytosis (CIE). Originating in the cytoplasm, galectins are predicted substrates for O-GlcNAc addition and removal; and as we have shown, galectin 3 is a substrate for O-GlcNAc transferase. In this study, we also show that galectin 3 secretion is sensitive to changes in O-GlcNAc levels. We determined using immunoprecipitation and Western blotting that there is a significant difference in O-GlcNAcylation status between cytoplasmic and secreted galectin 3. We observed dramatic alterations in galectin 3 secretion in response to nutrient conditions, which were dependent on dynamic O-GlcNAcylation. Importantly, we showed that these O-GlcNAc-driven alterations in galectin 3 secretion also facilitated changes in CIE. These results indicate that dynamic O-GlcNAcylation of galectin 3 plays a role in modulating its secretion and can tune its function in transducing nutrient-sensing information coded in cell surface glycosylation into biological effects.  相似文献   

19.
The involvement of human lectins (galectins) in disease progression accounts for the interest to design potent inhibitors. Three fully randomized hexa(glyco)peptide libraries were prepared using the portion mixing method combined with ladder synthesis. On-bead screening with fluorescently labelled galectin-1 and -3 yielded a series of lead structures, whose inhibitory activity on carbohydrate-dependent galectin binding was tested in solution by solid-phase and cell assays. The various data obtained define the library approach as a facile route for the discovery of selective (glyco)peptide-based galectin inhibitors.  相似文献   

20.
The role(s) of the eosinophil Charcot-Leyden crystal (CLC) protein in eosinophil or basophil function or associated inflammatory processes is yet to be established. Although the CLC protein has been reported to exhibit weak lysophospholipase activity, it shows virtually no sequence homology to any known member of this family of enzymes. The X-ray crystal structure of the CLC protein is very similar to the structure of the galectins, members of a beta-galactoside-specific animal lectin family, including a partially conserved galectin carbohydrate recognition domain (CRD). In the absence of any known natural carbohydrate ligand for this protein, the functional role of the CLC protein (galectin-10) has remained speculative. Here we describe structural studies on the carbohydrate binding properties of the CLC protein and report the first structure of a carbohydrate in complex with the protein. Interestingly, the CLC protein demonstrates no affinity for beta-galactosides and binds mannose in a manner very different from those of other related galectins that have been shown to bind lactosamine. The partial conservation of residues involved in carbohydrate binding led to significant changes in the topology and chemical nature of the CRD, and has implications for carbohydrate recognition by the CLC protein in vivo and its functional role in the biology of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号