首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two variants for the detection of single nucleotide polymorphisms in codon 315 of the katG gene of Mycobacterium tuberculosis (MTB) (mutations in this gene are associated with resistance to isoniazid, which is an antituberculosis drug of the first line) have been developed. Two sets of primers, either of which included an additional competitive blocking primer with a 3′-terminal phosphate group (in order to prevent nonspecific amplification), permitted the identification of the most frequent AGC → ACC and AGC → AGA point mutations in codon 315 of the katG gene. Conduction of PCR with a set of two primers, one of which contained five LNA monomers, permitted the detection of any of the six known mutations in codon 315 of the katG gene and, thereby, for the discrimination between isoniazid-sensitive and isoniazid-resistant MTB. The purity and structure of the 17 bp long primers containing LNA-modified nucleotides were characterized by time-of-flight MALDI mass spectrometry, and the 17 bp duplex formed by two LNA-containing complementary oligonucleotides was analyzed by thermal denaturation. The molecular genetic test systems created for differentiating between the wild-type MTB isolates and isoniazid-resistant MTB (an antituberculosis drug of the first line) can be used in clinical laboratories equipped with standard PCR devices; such systems permit the shortening of the time required for the detection of isoniazid resistance of MTB: from 1–3 months by the standard bacteriological methods to 1–3 days by PCR.  相似文献   

2.
Point mutations associated with isoniazid resistance in Mycobacterium tuberculosis (MTB) have been analyzed in codon 315 of the katG gene by conventional polymerase chain reaction (PCR) using primers containing locked nucleic acid (LNA) modified nucleotides. Purity and structure of primers containing 5 LNA monomers of 17 nucleotides in length were characterized by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) and a 17-mer duplex formed by two complementary oligonucleotides was characterized by the method of thermal denaturation. The duplex containing five LNA monomers per each strand was characterized by a higher melting temperature than it was expected using extrapolation of theoretical calculation for nucleotide modification of one strand of the duplex. Detection of any of six possible mutations in katG codon 315 (i.e. discrimination between sensitive and resistant MTB) requires just one PCR employing a set of two primers with one LNA-modified primer; this is an important advantage of oligonucleotides containing LNA over unmodified nucleotides: employment of multiplex PCR would require up to 12 primers. Problems of control of oligonucleotide modification by LNA monomers are discussed.  相似文献   

3.
Forty three isoniazid (INH)-resistant Mycobacterium tuberculosis isolates were characterized on the basis of the most common INH associated mutations, katG315 and mabA −15C→T, and phenotypic properties (i.e. MIC of INH, resistance associated pattern, and catalase activity). Typing for resistance mutations was performed by Multiplex Allele-Specific PCR and sequencing reaction. Mutations at either codon were detected in 67.5% of isolates: katG315 in 37.2, mabA −15C→T in 27.9 and both of them in 2.4%, respectively. katG sequencing showed a G insertion at codon 325 detected in 2 strains and leading to amino acid change T326D which has not been previously reported. Distribution of each mutation, among the investigated strains, showed that katG S315T was associated with multiple-drug profile, high-level INH resistance and loss or decreased catalase activity; whereas the mabA −15C→T was more prevalent in mono-INH resistant isolates, but it was not only associated with a low-level INH resistance. It seems that determination of catalase activity aids in the detection of isolates for which MICs are high and could, in conjunction with molecular methods, provide rapid detection of most clinical INH-resistant strains.  相似文献   

4.
Two types of techniques for detection of single nucleotide polymorphism in 315 codon of katG gene of MTB are developed. Isoniazid resistance of MTB is associated with point mutations in the mentioned codon. Two primer sets with additional competitive blocking primer containing 3'-terminal phosphate group (for elimination of unspecific amplification) allow detecting the most frequent point mutations AGC --> ACC and AGC --> AGA in 315 codon of katG gene. PCR with primer set of two primers one of which contains five LNA-monomers allows to determine an occurrence of any type from six known mutations in 315 codon of katG gene, i.e. to differentiate wild type and isoniazid-resistant MTB. Purity and structure of 17 bp long primers with LNA-modified nucleotides were characterized by time-of-flight MALDI-mass spectrometry. Duplex of 17 bp length formed by two complementary oligonucleotides with LNA-monomers was studied using melting.  相似文献   

5.
Zhang SL  Qi H  Qiu DL  Li DX  Zhang J  Du CM  Wang GB  Yang ZR  Sun Q 《Biochemical genetics》2007,45(3-4):281-290
DNA sequencing analysis was used to investigate genetic alterations in the rpoB, katG, and inhA regulatory region and embB in 66 Mycobacterium tuberculosis isolates recovered from Central China. Of the 36 multidrug-resistant isolates, 33 (92%) had mutations in the amplified region of rpoB. The most frequent mutation (58%, 19/36) was S531L (TCG→TTG). At least one mutation was found in the katG and inhA regulatory region in 83% (30/36) of the multidrug-resistant isolates, and mutations at katG codon 315 were identified in 78% (28/36). Alterations at embB306 may not confer resistance to EMB, and embB306 mutants were more frequently accompanied by rpoB mutations (100%, 16/16) than by katG 315 mutations (75%, 12/16). Our results show that geographic variation in the molecular genetic mechanism is responsible for drug resistance in multidrug-resistant M. tuberculosis. This observation will facilitate the development of a rapid molecular drug resistance screening approach for drug-resistant M. tuberculosis.  相似文献   

6.
An important aim for improving TB treatment is to shorten the period of antibiotic therapy without increasing relapse rates or encouraging the development of antibiotic-resistant strains. In any M. tuberculosis population there is a proportion of bacteria that are drug-tolerant; this might be because of pre-existing populations of slow growing/non replicating bacteria that are protected from antibiotic action due to the expression of a phenotype that limits drug activity. We addressed this question by observing populations of either slow growing (constant 69.3h mean generation time) or fast growing bacilli (constant 23.1h mean generation time) in their response to the effects of isoniazid exposure, using controlled and defined growth in chemostats. Phenotypic differences were detected between the populations at the two growth rates including expression of efflux mechanisms and the involvement of antisense RNA/small RNA in the regulation of a drug-tolerant phenotype, which has not been explored previously for M. tuberculosis. Genotypic analyses showed that slow growing bacilli develop resistance to isoniazid through mutations specifically in katG codon Ser315 which are present in approximately 50–90% of all isoniazid-resistant clinical isolates. The fast growing bacilli persisted as a mixed population with katG mutations distributed throughout the gene. Mutations in katG codon Ser315 appear to have a fitness cost in vitro and particularly in fast growing cultures. Our results suggest a requirement for functional katG-encoded catalase-peroxide in the slow growers but not the fast-growing bacteria, which may explain why katG codon Ser315 mutations are favoured in the slow growing cultures.  相似文献   

7.
More than 100 mutations have been reported till date in the rhodopsin gene in patients with retinitis pigmentosa. The present study was undertaken to detect the reported rhodopsin gene point mutations in Indian retinitis pigmentosa patients. We looked for presence or absence of codon 345 and 347 mutations in exon 5 of the gene using the technique of allele-specific polymerase chain reaction by designing primers for each mutation. We have examined 100 patients from 76 families irrespective of genetic categories. Surprisingly, in our sample the very widely reported highly frequent mutations of codon 347 (P → S/A/R/Q/L/T) were absent while the codon 345 mutation V → M was seen in three cases in one family (autosomal dominant form) and in one sporadic case (total two families). This is the first report on codon 345 and 347 mutation in Indian retinitis pigmentosa subjects.  相似文献   

8.
The molecular basis of β-thalassemia was investigated at the DNA level in 28 Belgians from 14 unrelated families. All the patients were heterozygous for β-thalassaemia. Seven different mutations were identified using a combination of dot-blot hybridization with allele-specific oligonucleotide probes and direct automated fluorescence-based DNA sequencing. Among these mutations, four are commonly found in the Mediterraneans – codon 8 (–AA), IVS-I-1 (G→A), IVS-I-6 (T→C) and codon 39 (C→T) – and two have occasionally been reported – initiation codon (T→C) and codon 35 (C→A). The last mutation, a –CC deletion at codons 38/39, appears to be a novel mutation and can routinely be investigated by AvaII restriction on amplified DNA. We report our findings, discuss the diversity of the mutations found in Belgium and show the usefulness of direct DNA sequencing in a population in which the molecular defects of β-thalassaemia have yet to be characterized and in which screening is hampered by the wide range of potential mutations. Received: 8 December 1995 / Revised: 7 February 1996  相似文献   

9.
Four independent heterozygous lactate dehydrogenase (LDH) mutations with approximately 60% of wild-type enzyme activity in whole blood have been recovered. The mutant line Ldh1 a2Neu proved to be homozygous lethal, whereas for the three lines Ldh1 a7Neu, Ldh1 a11Neu, and Ldh1 a12Neu homozygous mutants with about 20% residual activity occurred in the progeny of heterozygous inter se matings. However, the number of homozygous mutants was less than expected, suggesting an increased lethality of these animals. Various physicochemical and kinetic properties of LDH are altered. Exons of the Ldh1 gene were PCR amplified and sequenced to determine the molecular lesion in the mutant alleles. Ldh1 a2Neu carried an A/T → G/C transition in codon 112 (in exon 3), resulting in an Asn → Asp substitution; Asn112 is part of the helix αD, which is involved in the coenzyme-binding domain. Ldh1 a7Neu contained an A/T → C/G transversion within the codon for residue 194 in exon 4, causing an Asp → Ala substitution, which may affect the arrangement of the substrate-binding site. Three base substituions were discovered for the mutation Ldh1 a11Neu in exon 7: the transition C/G → T/A, a silent mutation, and two transversions C/G → A/T and C/G → G/C, both missense mutations, which led to the amino acid replacements Ala319 → Glu and Thr321 → Ser, respectively, located in the αH helix structure of the COOH tail of LDHA. We suggest that the mutation is the result of a gene conversion event between Ldh1 a wild-type gene and the pseudogene Ldh1-ps. The alteration Ile → Thr of codon 241 in exon 6 caused by the base pair change T/A → C/G was identified in the mutation Ldh1 a12Neu; IIe241 is included in the helix α2G, a structure that is indirectly involved in coenzyme binding. Each of the sequence alterations has a potential impact on the structure of the LDHA protein, which is consistent with the decreased LDH activity and biochemical and physiological alterations. Received: 3 July 1997 / Accepted: 30 September 1997  相似文献   

10.
The S gene region of the hepatitis B virus (HBV) is responsible for the expression of surface antigens and includes the ‘a’-determinant region. Thus, mutation(s) in this region would afford HBV variants a distinct survival advantage, permitting the mutant virus to escape from the immune system. The aim of this study was to search for mutations of the S gene region in different patient groups infected with genotype D variants of HBV, and to analyse the biological significance of these mutations. Moreover, we investigated S gene mutation inductance among family members. Forty HBV-DNA-positive patients were determined among 132 hepatitis B surface antigen (HbsAg) carriers by the first stage of seminested PCR. Genotypes and subtypes were established by sequencing of the amplified S gene regions. Variants were compared with original sequences of these serotypes, and mutations were identified. All variants were designated as genotype D and subtype ayw3. Ten kinds of point mutations were identified within the S region. The highest rates of mutation were found in chronic hepatitis patients and their family members. The amino acid mutations 125 (M → T) and 127 (T → P) were found on the first loop of ‘a’-determinant. The other consequence was mutation inductance in a family member. We found some mutations in the S gene region known to be stable and observed that some of these mutations affected S gene expression.  相似文献   

11.
12.
The mechanisms leading to non-lethality of nonsense mutations in essential genes are poorly understood. Here, we focus on the factors influencing viability of yeast cells bearing premature termination codons (PTCs) in the essential gene SUP45 encoding translation termination factor eRF1. Using a dual reporter system we compared readthrough efficiency of the natural termination codon of SUP45 gene, spontaneous sup45-n (nonsense) mutations, nonsense mutations obtained by site-directed mutagenesis (76Q → TAA, 242R → TGA, 317L → TAG). The nonsense mutations in SUP45 gene were shown to be situated in moderate contexts for readthrough efficiency. We showed that readthrough efficiency of some of the mutations present in the sup45 mutants is not correlated with full-length Sup45 protein amount. This resulted from modification of both sup45 mRNA stability which varies 3-fold among sup45-n mutants and degradation rate of mutant Sup45 proteins. Our results demonstrate that some substitutions in the place of PTCs decrease Sup45 stability. The viability of sup45 nonsense mutants is therefore supported by diverse mechanisms that control the final amount of functional Sup45 in cells.  相似文献   

13.
We have identified a minor hemoglobin component (∼5%) in the blood of a healthy Costa Rican female, but not in her mother and two brothers (father not studied), that has an His→Arg replacement at position β77 (Hb Costa Rica). No other amino acid replacements were observed and no β- or γ-chain-like peptides were present. Hb Costa Rica has a normal stability. Sequence analyses of numerous polymerase chain reaction (PCR)-amplified segments of DNA that contain exon 2 of the β gene failed to identify a CAC→CGC (His→Arg) mutation. The same was the case when cDNA was sequenced, indicating that a β-Costa Rica-mRNA could not be detected with this procedure. Gene mapping of genomic DNA with BglII, BamHI, and HindIII gave normal fragments only and with the same intensity as observed for the fragments of a normal control. The quantities of the β chain variants Hb J-Iran and Hb Fukuyama with related mutations at β77 vary between 30% and 45% in heterozygotes, whereas that of Hb F-Kennestone with the same His→Arg mutation but in the Gγ-globin gene, is a high 40%–45% (as percentage of total Gγ) in a heterozygous newborn. These different observations exclude a heterozygosity of the A→G mutation at codon β77, as well as a deletion comparable to that of Hbs Lepore or Kenya, or a β-globin gene duplication, and point to a nontraditional inheritance of Hb Costa Rica. Allele-specific amplification of cDNA with appropriate primers identified the presence of a low level of mutated mRNA in the reticulocytes of the patient, which was confirmed by dotblot analysis of the same material with 32P-labeled probes. Comparable amplification products were not observed in genomic DNA. The A→G mutation apparently occurred in a somatic cell at a relatively early stage in the development of the hematopoietic cell system, and Hb Costa Rica accumulated through rapid cell divisions in patchy areas in the bone marrow (somatic mosaicism). An unequal distribution of Hb Costa Rica over the red cells supports this possibility. Received: 25 August 1995 / Revised: 13 December 1995  相似文献   

14.
Molecular typing and resistotyping coupled with gyrA single nucleotide polymorphism (SNP) of 60 Salmonella Enteritidis (SE) isolates originated from poultry, food, and humans in Serbia is described. Molecular fingerprinting was performed by randomly amplified polymorphic DNA (RAPD) using four primers, and the diversity index (D) was 0.688. In combination with resistotyping and gyrA SNP, D increased to 0.828. A total of 23 genetic groups were obtained. When four RAPD primers were combined, epidemic isolates from a fast-food restaurant outbreak were clustered in a distinctive genetic group. Among 60 SE strains, three had multiple resistances to three or more antibiotics. Nine strains were resistant to nalidixic acid (NAL; a non-fluorinated quinolone). The mutations in quinolone resistance-determining region (QRDR) found in NAL-resistant strains were attributed to Asp87 → Asn in six strains, Asp87 → Gly in one strain, and Ser83 → Phe in one strain. One NAL-resistant strain had no mutations in QRDR, suggesting another mechanism of resistance.  相似文献   

15.
Neurofibromatosis 2 (NF2) is an autosomal inherited disorder that predisposes carriers to nervous system tumors. To examine genotype-phenotype correlations in NF2, we performed mutation analyses and gadolinium-enhanced magnetic resonance imaging of the head and full spine in 59 unrelated NF2 patients. In patients with vestibular schwannomas (VSs) or identified NF2 mutations, the mild phenotype was defined as <2 other intracranial tumors and ≤ 4 spinal tumors, and the severe phenotype as either ≥ 2 other intracranial tumors or > 4 spinal tumors. Nineteen mutations were found in 20 (34%) of the patients and were distributed in 12 of the 17 exons of the NF2 gene, including intron-exon boundaries. Seven mutations were frameshift, six were nonsense, four were splice site, two were missense, and one was a 3-bp in frame deletion. The nonsense mutations included one codon 57 and two codon 262 C→T transitions in CpG dinucleotides. The frameshift and nonsense NF2 mutations occurred primarily in patients with severe phenotypes. The two missense mutations occurred in patients with mild phenotypes, and three of the four splice site mutations occurred in families with both mild and severe phenotypes. Truncating NF2 mutations are usually associated with severe phenotypes, but the association of some mutations with mild and severe phenotypes indicates that NF2 expression is influenced by stochastic, epigenetic, or environmental factors. Received: 4 July 1996  相似文献   

16.
In cultivated tetraploid peanut (2n = 4x = 40, AABB), the conversion of oleic acid to linoleic acid is mainly catalyzed by the Δ12 fatty acid desaturase (FAD). Two homoeologous genes (FAD2A and FAD2B) encoding for the desaturase are located on the A and B genomes, respectively. Abolishing or reducing the desaturase activity by gene mutation can significantly increase the oleic acid/linoleic acid ratio. F435-derived high-oleate peanut cultivars contain two key mutations within the Δ12 fatty acid desaturase gene which include a 1-bp substitution of G:C→A:T in the A genome and a 1-bp insertion of A:T in the B genome. Both of these mutations contribute to abolishing or reducing the desaturase activity, leading to accumulation of oleate versus linoleate. Currently, detection of FAD2 alleles can be achieved by a cleaved amplified polymorphic sequence marker for the A genome and a real-time polymerase chain reaction (PCR) marker for the B genome; however, detection of these key mutations has to use different assay platforms. Therefore, a simple PCR assay for detection of FAD2 alleles on both genomes was developed by designing allele-specific primers and altering PCR annealing temperatures. This assay was successfully used for detecting FAD2 alleles in peanut. Gas chromatography (GC) was used to determine fatty acid composition of PCR-assayed genotypes. The results from the PCR assay and GC analysis were consistent. This PCR assay is quick, reliable, economical, and easy to use. Implementation of this PCR assay will greatly enhance the efficiency of germplasm characterization and marker-assisted selection of high oleate in peanut.  相似文献   

17.

Background

Multidrug resistance is a critical factor in tuberculosis control. To gain better understanding of multidrug resistant tuberculosis in Brazil, a retrospective study was performed to compare genotypic diversity and drug resistance associated mutations in Mycobacterium tuberculosis isolates from a national reference center.

Methods and Findings

Ninety-nine multidrug resistant isolates from 12 Brazilian states were studied. Drug-resistance patterns were determined and the rpoB and katG genes were screened for mutations. Genotypic diversity was investigated by IS6110-RFLP and Luminex 47 spoligotyping. Mutations in rpoB and katG were seen in 91% and 93% of the isolates, respectively. Codon 315 katG mutations occurred in 82.8% of the isolates with a predominance of the Ser315Thr substitution. Twenty-five isolates were clustered in 11 groups with identical IS6110-RFLP patterns while 74 showed unique patterns with no association between mutation frequencies or susceptibility profiles. The most prevalent spoligotyping lineages were LAM (47%), T (17%) and Haarlen (12%). The Haarlen lineage showed a higher frequency of codon 516 rpoB mutations while codon 531 mutations prevailed in the other isolates.

Conclusions

Our data suggest that there were no major multidrug resistant M. tuberculosis strains transmitted among patients referred to the reference center, indicating an independent acquisition of resistance. In addition, drug resistance associated mutation profiles were well established among the main spoligotyping lineages found in these Brazilian multidrug resistant isolates, providing useful data for patient management and treatment.  相似文献   

18.
We report studies of two unrelated Japanese patients with 17α-hydroxylase deficiency caused by mutations of the 17α-hydroxylase (CYP17) gene. We amplified all eight exons of the CYP17 gene, including the exon-intron boundaries, by the polymerase chain reaction and determined their nucleotide sequences. Patient 1 had novel, compound heterozygous mutations of the CYP17 gene. One mutant allele had a guanine to thymine transversion at position +5 in the splice donor site of intron 2. This splice-site mutation caused exon 2 skipping, as shown by in vitro minigene expression analysis of an allelic construct, resulting in a frameshift and introducing a premature stop codon (TAG) 60 bp downstream from the exon 1-3 boundary. The other allele had a missense mutation of His (CAC) to Leu (CTC) at codon 373 in exon 6. These two mutations abolished the 17α-hydroxylase and 17,20-lyase activities. Restriction fragment length polymorphism (RFLP) analysis with a mismatch oligonucleotide showed that the patient’s mother and brother carried the splice-site mutation, but not the missense mutation. Patient 2 was homozygous for a novel 1-bp deletion (cytosine) at codon 131 in exon 2. This 1-bp deletion produces a frameshift in translation and introduces a premature stop codon (TAG) proximal to the highly conserved heme iron-binding cysteine at codon 442 in microsomal cytochrome P450 steroid 17α-hydroxylase (P450c17). RFLP analysis showed that the mother was heterozygous for the mutation. Received: 15 November 1997 / Accepted: 15 March 1998  相似文献   

19.
This report concerns two new mutations in the sterol 27-hydroxylase gene in two patients with cerebrotendinous xanthomatosis (CTX). In a Surinam-Creole patient (patient A), a G deletion on position cDNA 546/547 in exon 3 led to a frameshift and the introduction of a premature termination codon. In a Dutch patient (patient B), a C→T transition at position 496 in exon 3 also led to a premature termination codon. Patient A was homozygous for the mutation, whereas patient B was compound heterozygous, a C→T transition also being found in exon 6 at position 1204. The two new mutations were confirmed by restriction analysis with the restriction enzymes FokI and MaeI, respectively. Received: 24 July 1996 / Revised: 9 August 1996  相似文献   

20.
To select the molecular genetic markers related to egg performance of Wanjiang white goose, prolactin receptor gene (PRLR) was adopted to be a candidate gene in our study. Five pairs of primers (P1–P5) were designed to detect the SNPs of PRLR gene by PCR-SSCP method. The results revealed that polymorphisms were discovered in the PCR products amplified with P4 primers in PRLR exon 10, three genotypes were found: AA, AB and AC. The sequence of AB genotype is the same as original sequence (DQ660982) in NCBI. There are five mutations in AA genotype: C → A at 840 bp, C → T at 862 bp, T → C at 875 bp, T → A at 963 bp, A → T at 989 bp, resulting in amino acid mutations: His → Asn, Thr → Ile, Asn → Lys, Thr → Ser, and synonymous mutation at 875 bp. Sequencing revealed five mutations in AC genotype: G → T at 816 bp, A → T at 861 bp, C → T at 862 bp, T → C at 875 bp, A → G at 948 bp, causing amino acid mutations of Val → Phe, Thr → Phe, synonymous mutations at 875 and 963 bp. Besides, there are an N-glycosylation site (NQSR), three casein kinase II phosphorylation sites including SIIE, SKTE, and SLMD in AA genotype; three casein kinase II phosphorylation sites including SIIE, SKTE, and TLMD in AB genotype; three casein kinase II phosphorylation sites including SIFE, SKTE, and TLMD in AC genotype. The annual egg yielding of AB genotype geese are significantly more than those of AA and AC genotype geese on the average (P < 0.05). It is suggested for the first time that PRLR is a promising candidate gene that can affect egg performance in Wanjiang white goose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号