首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The transfer of antibodies from mother to offspring provides crucial protection against infection to offspring during early life in humans and domestic and laboratory animals. However, few studies have tested the consequences of variation in maternal antibody transfer for offspring fitness in the wild. Further, separating the immunoprotective effects of antibodies from their association with nutritional resources provided by mothers is difficult. Here, we measured plasma levels of total and parasite-specific antibodies in neonatal (less than 10 days old) wild Soay sheep over 25 years to quantify variation in maternal antibody transfer and test its association with offspring survival. Maternal antibody transfer was predicted by maternal age and previous antibody responses, and was consistent within mothers across years. Neonatal total IgG antibody levels were positively related to early growth, suggesting they reflected nutritional transfer. Neonatal parasite-specific IgG levels positively predicted first-year survival, independent of lamb weight, total IgG levels and subsequent lamb parasite-specific antibody levels. This relationship was partly mediated via an indirect negative association with parasite burden. We show that among-female variation in maternal antibody transfer can have long-term effects on offspring growth, parasite burden and fitness in the wild, and is likely to impact naturally occurring host–parasite dynamics.  相似文献   

2.
Zhang F  Chen J  Fang F  Zhou Y  Wu J  Chang H  Zhang R  Wang F  Li X  Wang H  Ma G  Chen Z 《DNA and cell biology》2005,24(11):758-765
Maternal immunization is the major form of protection against many infectious diseases in early life. In this report, transmission of vaccine-specific maternal antibodies and protection of offspring against a lethal influenza virus challenge were studied. Adult female BALB/c mice were immunized intramuscularly with plasmid DNAs encoding influenza virus hemagglutinin (HA), neuraminidase (NA), or mixture of the two plasmids. The levels of specific antibodies in sera of offspring at different ages and the survival rates following the lethal viral challenge were valued. The results showed effective transmission of maternal antibodies and long-lasting protection in offspring. Along with the growth of offspring, the antibody titers in vivo decreased and the ability against virus infection decreased accordingly. The HA-specific maternal antibodies protected the offspring from a lethal influenza infection up to 2 weeks old, and the NA-specific maternal antibodies protected offspring up to 4 weeks old. Furthermore, antibodies transferred by the mother immunized with the mixture of HA and NA DNAs protected the offspring up to 6 weeks old. This suggests that maternal immunization with a mixture of HA and NA DNAs provide the most effective protection against the virus challenge for the offspring of mice.  相似文献   

3.
There is a growing body of evidence that maternal antibodies transferred to offspring have potential implications in the evolutionary ecology of birds. This transfer of maternal antibodies is a potentially flexible mechanism of non‐genetic inheritance by which mothers could favour some offspring over others and/or increase offspring survival, but this is a phenomenon that remains poorly understood. We examined sex‐specific deposition of maternal antibodies and its effects on early (5 d) and fledging (17 d) survival in semiprecocial chicks of the gull‐billed tern Gelochelidon nilotica, a long‐distance migratory bird. Mothers transferred a significantly greater amount of maternal antibodies to sons than to daughters. We found evidence for positive associations between maternal antibody levels at hatching and early offspring survival. This association might be sex‐specific, which can be understood as a mechanism of parental favouritism for the most sensitive sex.  相似文献   

4.
Young vertebrates have limited capacity to synthesize antibodies and are dependent on the protection of maternally transmitted antibodies for humoral disease resistance early in life. However, mothers may enhance fitness by priming their offspring's immune systems to elevate disease resistance. Transgenerational induced defences have been documented in plants and invertebrates, but maternal priming of offspring immunity in vertebrates has been essentially neglected. To test the ability of mothers to stimulate the immune systems of offspring, we manipulated maternal and offspring antigen exposure in a wild population of birds, pied flycatchers (Ficedula hypoleuca). We show that immunization of the mother before egg laying apparently stimulates a transgenerational defence against pathogens by elevating endogenous offspring antibody production. If the disease environments encountered by mothers and offspring are similar, this transgenerational immune priming may allow young to better cope with the local pathogen fauna.  相似文献   

5.
Trans-generational antibody transfer constitutes an important mechanism by which mothers may enhance offspring resistance to pathogens. Thus, differential antibody deposition may potentially allow a female to differentiate offspring performance. Here, we examined whether maternal immunization with sheep red blood cells (SRBC) prior to egg laying affects sex-specific yolk antibody transfer and sex-specific offspring performance in zebra finches (Taeniopygia guttata). We showed that immunized mothers deposit anti-SRBC antibodies into the eggs depending on embryo sex and laying order, and that maternal exposure to SRBC positively affects the body size of female, but not male offspring. This is the first study reporting sex-specific consequences of maternal immunization on offspring performance, and suggests that antibody transfer may constitute an adaptive mechanism of maternal favouritism.  相似文献   

6.
Cannibalism has been widely reported across taxa. However, the heritability and expression of cannibalistic traits have been least explored. The variation in the expression of cannibalism is likely to exist amongst the population affecting the propensity of cannibalism. Thus, to know whether the mother has any role in the transgenerational transmission of this trait in a ladybird beetle, Menochilus sexmaculatus, we studied the interaction between maternal and offspring prey preferences and its effect on, development duration and body weight of offspring over generations. An insignificant effect of maternal dietary history on offspring prey preference was observed across generations except for the non-cannibalistic adults who significantly preferred aphids over eggs. The long-term detrimental effect of cannibalism was found in cannibals with increased developmental duration and decreased body weight of offspring over generations. In conclusion, the results show that maternal diet did not affect the offspring preferences in M. sexmaculatus but cannibalism had a profound generational effect on the cannibalistic propensity, development and body weight of offspring across generations shows that larval dietary history and nutritional composition of prey contribute to the expression of cannibalistic behaviour across generations.  相似文献   

7.
Maternal effects triggered by changes in the environment (e.g., nutrition or crowding) can influence the outcome of offspring–parasite interactions, with fitness consequences for the host and parasite. Outside of the classic example of antibody transfer in vertebrates, proximate mechanisms have been little studied, and thus, the adaptive significance of maternal effects on infection is not well resolved. We sought to determine why food‐stressed mothers give birth to offspring that show a low rate of infection when the crustacean Daphnia magna is exposed to an orally infective bacterial pathogen. These more‐resistant offspring are also larger at birth and feed at a lower rate. Thus, reduced disease resistance could result from slow‐feeding offspring ingesting fewer bacterial spores or because their larger size allows for greater immune investment. To distinguish between these theories, we performed an experiment in which we measured body size, feeding rate, and susceptibility, and were able to show that body size is the primary mechanism causing altered susceptibility: Larger Daphnia were less likely to become infected. Contrary to our predictions, there was also a trend that fast‐feeding Daphnia were less likely to become infected. Thus, our results explain how a maternal environmental effect can alter offspring disease resistance (though body size), and highlight the potential complexity of relationship between feeding rate and susceptibility in a host that encounters a parasite whilst feeding.  相似文献   

8.
Parental investment theory postulates that adults can accurately perceive cues from their surroundings, anticipate the needs of future offspring based on those cues, and selectively allocate nongenetic resources to their progeny. Such context‐dependent parental contributions can result in phenotypically variable offspring. Consistent with these predictions, we show that bacterially exposed Manduca sexta mothers oviposited significantly more variable embryos (as measured by mass, volume, hatching time, and hatching success) relative to naïve and control mothers. By using an in vivo “clearance of infection” assay, we also show that challenged larvae born to heat‐killed‐ or live‐Serratia‐injected mothers, supported lower microbial loads and cleared the infection faster than progeny of control mothers. Our data support the notion that mothers can anticipate the future pathogenic risks and immunological needs of their unborn offspring, providing progeny with enhanced immune protection likely through transgenerational immune priming. Although the inclusion of live Serratia into oocytes does not appear to be the mechanism by which mothers confer protection to their young, other mechanisms, including epigenetic modifications in the progeny due to maternal pathogenic stress, may be at play. The adaptive nature of maternal effects in the face of pathogenic stress provides insights into parental investment, resource allocation, and life‐history theories and highlights the significant role that pathogen‐induced maternal effects play as generators and modulators of evolutionary change.  相似文献   

9.
Previous studies have shown that maternal antibodies to Toxoplasma measured during pregnancy are associated with an increased risk of schizophrenia and other psychoses in adult offspring. Recently, it has been recognized that different genotypes of Toxoplasma have distinct neuropathogenic potential. The objective of this study was to investigate whether parasite genotype is a contributing factor to disease risk. We have developed an enzyme-linked immunosorbent assay (ELISA) that uses polymorphic polypeptides specific to the three clonal parasite lineages and derived from three dense granule antigens, GRA5, GRA6 and GRA7. We used this assay to measure type-specific antibodies in the sera from 219 pregnant women whose children developed schizophrenia and affective psychotic illnesses in adult life, and 618 matched unaffected control mothers from three cohorts of the Collaborative Perinatal Project. We found that the offspring of mothers with a serological pattern consistent with Toxoplasma type І infection were at significantly increased risk for the development of psychoses as compared with the matched unaffected control mothers (odds ratio = 1.94; 95% confidence interval = 1.08–3.46; p = 0.03). The risk was particularly elevated for affective psychoses (OR = 5.24; 95% CI = 1.67–16.5; p = 0.005). In contrast, we did not find an association between maternal antibodies to other genotypes and risk of psychoses in the offspring. These findings suggest an influence of the parasite genotype on increased risk of psychosis and provide further support for a substantive role of Toxoplasma in the etiology of psychosis.  相似文献   

10.
Vertebrates have an immature immune system soon after birth, and parasites can therefore be particularly virulent to young hosts. Transfer of immune factors via the egg can give rise to early maternal effects with important consequences for offspring fitness, as maternally derived immunity confers anti-parasite protection. Mothers are expected to allocate immunity differentially to the eggs according to the reproductive value of their offspring as influenced by the quality of their father. In this study, we analysed transmission to the yolk of antibodies specific to an antigen (Newcastle disease virus vaccine, NDV) by vaccinated female barn swallows (Hirundo rustica) mated to males whose secondary sexual characteristics had been manipulated. Concentration of anti-NDV antibodies in the yolk positively covaried with that in maternal plasma. Anti-NDV antibodies were more concentrated in the first but not the fourth eggs laid by females mated with tail-elongated males compared with those mated with tail-shortened and control males. This experiment shows that allocation of maternal immune factors to the eggs is affected by quality of the male, as signalled by its secondary sexual characteristic. Thus, early maternal effects are influenced by sexual attractiveness of male mates and are mediated by immunity.  相似文献   

11.

Background

Maternal antibodies are believed to play an integral role in protecting immunologically immature wild-passerines from environmental antigens. This study comprehensively examines the early development of the adaptive immune system in an altricial-developing wild passerine species, the house sparrow (Passer domestics), by characterizing the half-life of maternal antibodies in nestling plasma, the onset of de novo synthesis of endogenous antibodies by nestlings, and the timing of immunological independence, where nestlings rely entirely on their own antibodies for immunologic protection.

Methodology/Principal Findings

In an aviary study we vaccinated females against a novel antigen that these birds would not otherwise encounter in their natural environment, and measured both antigen-specific and total antibody concentration in the plasma of females, yolks, and nestlings. We traced the transfer of maternal antibodies from females to nestlings through the yolk and measured catabolisation of maternal antigen-specific antibodies in nestlings during early development. By utilizing measurements of non-specific and specific antibody levels in nestling plasma we were able to calculate the half-life of maternal antibodies in nestling plasma and the time point at which nestling were capable of synthesizing antibodies themselves. Based on the short half-life of maternal antibodies, the rapid production of endogenous antibodies by nestlings and the relatively low transfer of maternal antibodies to nestlings, our findings suggest that altricial-developing sparrows achieve immunologic independence much earlier than precocial birds.

Conclusions/Significance

To our knowledge, this is the first in depth analyses performed on the adaptive immune system of a wild-passerine species. Our results suggest that maternal antibodies may not confer the immunologic protection or immune priming previously proposed in other passerine studies. Further research needs to be conducted on other altricial passerines to determine if the results of our study are a species-specific phenomenon or if they apply to all altricial-developing birds.  相似文献   

12.
Parental care benefits offspring through maternal effects influencing their development, growth and survival. However, although parental care in general is likely the result of adaptive evolution, it does not follow that specific differences in the maternal effects that arise from care are also adaptive. Here, we used an interspecific cross‐fostering design in the burying beetle species Nicrophorus orbicollis and N. vespilloides, both of which have elaborate parental care involving direct feeding of regurgitated food to offspring, to test whether maternal effects are optimized within a species and therefore adaptive. Using a full‐factorial design, we first demonstrated that N. orbicollis care for offspring longer regardless of recipient species. We then examined offspring development and mass in offspring reared by hetero‐ or conspecific parents. As expected, there were species‐specific direct effects independent of the maternal effects, as N. orbicollis larvae were larger and took longer to develop than N. vespilloides regardless of caregiver. We also found significant differences in maternal effects: N. vespilloides maternal care caused more rapid development of offspring of either species. Contrary to expectations if maternal effects were species‐specific, there were no significant interactions between caretaker and recipient species for either development time or mass, suggesting that these maternal effects are general rather than optimized within species. We suggest that rather than coadaptation between parents and offspring performance, the species differences in maternal effects may be correlated with direct effects, and that their evolution is driven by selection on those direct effects.  相似文献   

13.
In Obese strain (OS) chickens the role of maternal antibodies, passively transferred through the egg to the developing chick, was evaluated as a causative factor in the early development of spontaneous autoimmune thyroiditis (SAT). In the egg, passive antibody titers were highest in the yolk and lower in the allantoic fluid and sera of developing embryos. This passage of antibodies was documented by use of radiolabeled antibodies. In dams with high antibody titers, antibodies could be found in the sera of chicks at the time of hatch. Thyroglobulin was absent in the yolk of OS eggs during embryonal life, as compared with its detection in normal eggs. Immune complexes (thyroglobulin-autoantibody) detected in the thyroids of OS, but not CS, chicks at the time of hatch, or earlier, appear to reflect the presence of the maternally transferred antibodies. A pair of crosses between OS chickens, with thyroiditis, and the C strain (CS), without thyroiditis, was made to evaluate the role of transferred antibodies in the pathogenesis of autoimmune disease. When an OS chicken was the dam, maternal antibodies could be passively transferred; when a CS chicken was the dam, no maternal antibodies were present to be transferred. Nevertheless, both hybrids developed full-blown thyroiditis, demonstrating that binding of transferred maternal antibody to thyroglobulin is not a prerequisite for the induction of SAT. However, presence of maternal antibodies precipitated the onset of disease. Immune complexes formed in the embryonic thyroid are likely to participate in early autoimmune disease, although the development of full-blown thyroiditis may await the competency of the chick's immune system to provide the characteristic cellular infiltrate.  相似文献   

14.
1. In many animals immunity is not fully developed until adulthood but the young still need protection against various sets of pathogens. Thus, bird nestlings are highly dependent on antibodies received from their mother (in the eggs) during their rapid early growth period. The relationship between maternal immunity and the development of neonates' own immunity has been poorly studied. 2. It has been suggested that immune function plays an important part in mediating resource competition between different life-history traits, e.g. growth and reproduction. Maternal investment of antibodies has potentially permanent effects on offspring phenotype. Thus, the trade-offs between the immune function and other important life-history traits in the offspring will also affect the fitness of the mother. 3. Our supplemental feeding experiment in the magpie Pica pica indicates that the immunoglobulin levels of offspring at hatching are dependent on a mother's nutritional condition. In addition, the amount of maternal immunoglobulins transferred to offspring increases along the laying order within a nest. 4. We also found that at the age of 8-10 days the immunoglobulin production of the offspring has already begun. Furthermore, the maternal immunoglobulin levels of the offspring at hatching were positively related to their immunoglobulin levels on day 10. 5. Maternal immunoglobulins did not significantly affect offspring growth, but there was a negative relationship between self-produced immunoglobulins and growth over the first 10 days, indicating a trade-off between these traits. Nestlings' weight, however, had a positive relationship with immunoglobulin production suggesting that the observed trade-off between growth and immunoglobulin production is due to catch-up growth of nestlings with a low hatching weight. We found that within nests nestlings with higher maternal antibody levels had higher survival rate until day 20, but between nests there was an opposite relationship. 6. Evidently, there is a trade-off, in magpies, between maternal resources, immune function and growth, shaping the evolution of maternal investment in offspring immunity.  相似文献   

15.
Although evidence is accumulating that mothers can transfer antibodies to their offspring, little is known about the consequences of such a transfer to the offspring immune system. Because maternal antibodies are effective only during a short period of time after their transfer to offspring, one hypothesis is that maternal antibodies provides a transitory antigen-specific protection to offspring, thus lessening the need for offspring to mount their own humoral immune response towards these specific antigens. In birds, this scenario predicts that offspring immune response towards a specific antigen is inhibited to a larger extent in hatchlings than in older nestlings. We tested this hypothesis in tawny owls Strix aluco by cross-fostering clutches between nests and then challenging siblings with a vaccine either two times (at 4- and 11-d-old) or only one time at 11-d-old to compare the strength of the humoral response between nestlings born from mothers with naturally high and low levels of antibodies against this vaccine. Because maternal antibodies are expected to be effective only during a short period of time after hatching, we predict that maternal antibodies should inhibit the immune response of nestlings vaccinated from the fourth day after hatching more than in nestlings vaccinated only at a later age. As expected, the inhibitory effect of maternal antibodies was stronger in nestlings vaccinated soon after hatching than in siblings injected at a later age. Therefore, in wild avian populations pre-hatching maternal effects may confer offspring with a transitory immune protection in the first days following hatching.  相似文献   

16.
Serum IgG antibody levels to adult Brugia pahangi antigens were measured in uninfected offspring from uninfected and B. pahangi-infected female jirds. Antibody titers to B. pahangi antigens in sera of offspring from infected females mimicked the maternal titer during the suckling period. Neonate titers peaked at 2 weeks of age at levels as high as 1:4100, then decreased to levels well below maternal titers by 8-12 weeks of age. Concurrent maternal and 2-week-old neonate sera recognized identical B. pahangi antigens in Western blots. Spleen cells from 2-week-old filariae-exposed and unexposed offspring failed to produce measurable antibody to B. pahangi in vitro. Progeny of uninfected mothers nursed by B. pahangi-infected females showed circulating IgG antibody titers to adult worm antigens similar to those of homologously reared offspring. Conversely, offspring born to B. pahangi-infected females and nursed by an uninfected female had no serum antibodies to B. pahangi antigens. Blastogenic responses of spleen cells to the mitogens phytohemagglutinin and pokeweed mitogen, and adult B. pahangi antigens, were not different between offspring groups. Mean areas of pulmonary granulomas induced by the intravenous inoculation of B. pahangi antigen-coated beads also did not differ between 4- and 8-week-old progeny of uninfected or infected females. These results suggest that the circulating IgG antibodies to adult B. pahangi antigens demonstrated in offspring of infected female jirds are maternally derived via the milk and do not alter the cellular responses of uninfected offspring to B. pahangi antigens as measured by antigen-stimulated blastogenesis or pulmonary granulomatous inflammatory response.  相似文献   

17.
If a female survives an infection, she can transfer antibodies against that particular pathogen to any future offspring she produces. The resulting protection of offspring for a period after their birth is termed maternal immunity. Because infection in newborns is associated with high mortality, the duration of this protection is expected to be under strong selection. Evolutionary modelling structured around a trade‐off between fertility and duration of maternal immunity has indicated selection for longer duration of maternal immunity for hosts with longer lifespans. Here, we use a new modelling framework to extend this analysis to consider characteristics of pathogens (and hosts) in further detail. Importantly, given the challenges in characterizing trade‐offs linked to immune function empirically, our model makes no assumptions about costs of longer lasting maternal immunity. Rather, a key component of this analysis is variation in mortality over age. We found that the optimal duration of maternal immunity is shaped by the shifting balance of the burden of infection between young and old individuals. As age of infection depends on characteristics of both the host and the pathogen, both affect the evolution of duration of maternal immunity. Our analysis provides additional support for selection for longer duration of maternal immunity in long‐lived hosts, even in the absence of explicit costs linked to duration of maternal immunity. Further, the scope of our results provides explanations for exceptions to the general correlation between duration of maternal immunity and lifespan, as we found that both pathogen characteristics and trans‐generational effects can lead to important shifts in fitness linked to maternal immunity. Finally, our analysis points to new directions for quantifying the trade‐offs that drive the development of the immune system.  相似文献   

18.
Rutkowska J  Martyka R  Arct A  Cichoń M 《Oecologia》2012,168(2):355-359
The immune system is an important player in individual trade-offs, but what has rarely been explored is how different strategies of investment in immune response may affect reproductive decisions. We examined the relationship between the strength of maternal immune response and offspring viability and immune response in captive zebra finches Taeniopygia guttata. In three independent experiments, the females and subsequently their adult offspring were challenged with sheep red blood cells, and their responses were measured. There was no relationship between offspring immune response and that of their mothers. However, we found offspring survival until adulthood to be negatively related to maternal antibody titers. That effect was consistent among all experiments and apparent despite the fact that we partially cross-fostered newly hatched nestlings between nests of different females. This suggests that the observed effects of maternal immune response is not mediated by potentially altered female rearing abilities. To our knowledge, this is the first study showing the relationship between the strength of the immune response and between-generational fitness costs in birds.  相似文献   

19.
Maternal provisioning can have profound effects on offspring phenotypes, or maternal effects, especially early in life. One ubiquitous form of provisioning is in the makeup of egg. However, only a few studies examine the role of specific egg constituents in maternal effects, especially as they relate to maternal selection (a standardized selection gradient reflecting the covariance between maternal traits and offspring fitness). Here, we report on the evolutionary consequences of differences in maternal acquisition and allocation of amino acids to eggs. We manipulated acquisition by varying maternal diet (milkweed or sunflower) in the large milkweed bug, Oncopeltus fasciatus. Variation in allocation was detected by examining two source populations with different evolutionary histories and life‐history response to sunflower as food. We measured amino acids composition in eggs in this 2 × 2 design and found significant effects of source population and maternal diet on egg and nymph mass and of source population, maternal diet, and their interaction on amino acid composition of eggs. We measured significant linear and quadratic maternal selection on offspring mass associated with variation in amino acid allocation. Visualizing the performance surface along the major axes of nonlinear selection and plotting the mean amino acid profile of eggs from each treatment onto the surface revealed a saddle‐shaped fitness surface. While maternal selection appears to have influenced how females allocate amino acids, this maternal effect did not evolve equally in the two populations. Furthermore, none of the population means coincided with peak performance. Thus, we found that the composition of free amino acids in eggs was due to variation in both acquisition and allocation, which had significant fitness effects and created selection. However, although there can be an evolutionary response to novel food resources, females may be constrained from reaching phenotypic optima with regard to allocation of free amino acids.  相似文献   

20.
We investigate the effect of offspring and maternal inbreeding on maternal and offspring traits associated with early offspring fitness in the burying beetle Nicrophorus vespilloides. We conducted two experiments. In the first experiment, we manipulated maternal inbreeding only (keeping offspring outbred) by generating mothers that were outbred, moderately inbred or highly inbred. Meanwhile, in the second experiment, we manipulated offspring inbreeding only (keeping females outbred) by generating offspring that were outbred, moderately inbred or highly inbred. In both experiments, we monitored subsequent effects on breeding success (number of larvae), maternal traits (clutch size, delay until laying, laying skew, laying spread and egg size) and offspring traits (hatching success, larval survival, duration of larval development and average larval mass). Maternal inbreeding reduced breeding success, and this effect was mediated through lower hatching success and greater larval mortality. Furthermore, inbred mothers produced clutches where egg laying was less skewed towards the early part of laying than outbred females. This reduction in the skew in egg laying is beneficial for larval survival, suggesting that inbred females adjusted their laying patterns facultatively, thereby partially compensating for the detrimental effects of maternal inbreeding on offspring. Finally, we found evidence of a nonlinear effect of offspring inbreeding coefficient on number of larvae dispersing. Offspring inbreeding affected larval survival and larval development time but also unexpectedly affected maternal traits (clutch size and delay until laying), suggesting that females adjust clutch size and the delay until laying in response to being related to their mate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号