首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) plays an important role in protection against the onset and progression of various cardiovascular disorders. Therefore, the NO/guanosine 3',5'-cyclic monophosphate (cGMP) pathway has gained considerable attention and has become a target for new drug development. We have established a rapid, homogeneous, cell-based, and highly sensitive reporter assay for NO generated by endothelial nitric oxide synthase (eNOS). In a coculture system, NO production is indirectly monitored in living cells via soluble guanylyl cyclase (sGC) activation and calcium influx mediated by the olfactory cyclic nucleotide-gated (CNG) cation channel CNGA2, acting as the intracellular cGMP sensor. Using this NO reporter assay, we performed a fully automated high-throughput screening campaign for stimulators of NO synthesis. The coculture system reflects most aspects of the natural NO/cGMP pathway, namely, Ca(2+)-dependent and Ca(2+)-independent regulation of eNOS activity by G protein-coupled receptor agonists, oxidative stress, phosphorylation, and cofactor availability as well as NO-mediated stimulation of cGMP synthesis by sGC activation. The NO reporter assay allows the real-time detection of NO synthesis within living cells and makes it possible to identify and characterize activators and inhibitors of enzymes involved in the NO/cGMP signaling pathway.  相似文献   

2.
Nitrosothiols are increasingly regarded as important participants in a range of physiological processes, yet little is known about their biological generation. Nitrosothiols can be formed from the corresponding thiols by nitric oxide in a reaction that requires the presence of oxygen and is mediated by reactive intermediates (NO2 or N2O3) formed in the course of NO autoxidation. Because the autoxidation of NO is second order in NO, it is extremely slow at submicromolar NO concentrations, casting doubt on its physiological relevance. In this paper we present evidence that at submicromolar NO concentrations the aerobic nitrosation of glutathione does not involve NO autoxidation but a reaction that is first order in NO. We show that this reaction produces nitrosoglutathione efficiently in a reaction that is strongly stimulated by physiological concentrations of Mg2+. These observations suggest that direct aerobic nitrosation may represent a physiologically relevant pathway of nitrosothiol formation.  相似文献   

3.
Nitric oxide (NO) mediates intercellular signaling through activation of its receptor, soluble guanylyl cyclase (sGC), leading to elevation of intracellular guanosine 3′,5′-cyclic monophosphate (cGMP) levels. Through this signal transduction pathway, NO regulates a diverse range of physiological effects, from vasodilatation and platelet disaggregation to synaptic plasticity. Measurement of sGC activity has traditionally been carried out using end-point assays of cGMP accumulation or by transfection of cells with “detector” proteins such as fluorescent proteins coupled to cGMP binding domains or cyclic nucleotide gated channels. Here we report a simpler approach: the use of a fluorescently labeled substrate analog, mant-GTP (2′-O-(N-methylanthraniloyl) guanosine 5′-triphosphate), which gives an increase in emission intensity after enzymatic cyclization to mant-cGMP. Activation of purified recombinant sGC by NO led to a rapid rise in fluorescence intensity within seconds, reaching a maximal 1.6- to 1.8-fold increase above basal levels. The sGC inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), eliminated the fluorescence increase due to NO, and the synergistic activator of sGC, BAY 41-2272 (3-(4-amino-5-cyclopropylpyrimidin-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine), increased the rate at which the maximal fluorescence increase was attained. High-performance liquid chromatography (HPLC) confirmed the formation of mant-cGMP product. This real-time assay allows the progress of purified sGC activation to be quantified precisely and, with refinement, could be optimized for use in a cellular environment.  相似文献   

4.
Free nitric oxide (NO) activates soluble guanylate cyclase (sGC), an enzyme, within both pulmonary and vascular smooth muscle. sGC catalyzes the cyclization of guanosine 5'-triphosphate to guanosine 3',5'-cyclic monophosphate (cGMP). Binding rates of NO to the ferrous heme(s) of sGC have been measured in vitro. However, a missing link in our understanding of the control mechanism of sGC by NO is a comprehensive in vivo kinetic analysis. Available literature data suggests that NO dissociation from the heme center of sGC is accelerated by its interaction with one or more cofactors in vivo. We present a working model for sGC activation and NO consumption in vivo. Our model predicts that NO influences the cGMP formation rate over a concentration range of approximately 5-100 nM (apparent Michaelis constant approximately 23 nM), with Hill coefficients between 1.1 and 1.5. The apparent reaction order for NO consumption by sGC is dependent on NO concentration, and varies between 0 and 1.5. Finally, the activation of sGC (half-life approximately 1-2 s) is much more rapid than deactivation (approximately 50 s). We conclude that control of sGC in vivo is most likely ultra-sensitive, and that activation in vivo occurs at lower NO concentrations than previously reported.  相似文献   

5.
We describe the development of a rapid colorimetric assay for soluble guanylate cyclase (sGC) activity adapted for a 96-well microplate. The assay greatly decreases the analysis time and cost over traditional methodologies based on radio- and immunoassays and high-performance liquid chromatography (HPLC) separations. The method does not demonstrate any significant interference with chemicals commonly used for sGC purification and reaction kinetics. The assay converts the inorganic pyrophosphate produced in the cyclase reaction to inorganic phosphate, which is then measured using a modified Fiske-Subbarow assay. We used the assay to compare the reaction kinetics of preparations of sGC from a commercial source with those from our lab with Mg(2+)-guanosine 5'-triphosphate (GTP) or Mn(2+)-GTP as a substrate. The commercial preparation was found to have a specific activity of around 1.5 micromol/min/mg, which is significantly lower than expected, as was the fold-activation upon addition of nitric oxide (NO). Our laboratory preparation had a higher specific activity that was consistent with results from HPLC assays. We determined that the human isoform of sGC is more active in the basal and NO forms with Mn(2)-GTP as a substrate than Mg(2+)-GTP, a feature more similar to rat lung sGC than the more commonly studied bovine lung.  相似文献   

6.
The mechanism for the reaction between nitric oxide (NO) and O2 bound to the heme iron of myoglobin (Mb), including the following isomerization to nitrate, has been investigated using hybrid density functional theory (B3LYP). Myoglobin working as a NO scavenger could be of importance, since NO reversibly inhibits the terminal enzyme in the respiration chain, cytochrome c oxidase. The concentration of NO in the cell will thus affect the respiration and thereby the synthesis of ATP. The calculations show that the reaction between NO and the heme-bound O2 gives a peroxynitrite intermediate whose O–O bond undergoes a homolytic cleavage, forming a NO2 radical and myoglobin in the oxo-ferryl state. The NO2 radical then recombines with the oxo-ferryl, forming heme-bound nitrate. Nine different models have been used in the present study to examine the effect on the reaction both by the presence and the protonation state of the distal His64, and by the surroundings of the proximal His93. The barriers going from the oxy-Mb and nitric oxide reactant to the peroxynitrite intermediate and further to the oxo-ferryl and NO2 radical are around 10 and 7 kcal/mol, respectively. Forming the product, nitrate bound to the heme iron has a barrier of less than ~7 kcal/mol. The overall reaction going from a free nitric oxide and oxy-Mb to the heme bound nitrate is exergonic by more than 30 kcal/mol.  相似文献   

7.
iNOS-mediated nitric oxide production and its regulation   总被引:29,自引:0,他引:29  
Aktan F 《Life sciences》2004,75(6):639-653
  相似文献   

8.
The rate that hemoglobin reacts with nitric oxide (NO) is limited by how fast NO can diffuse into the heme pocket. The reaction is as fast as any ligand/protein reaction can be and the result, when hemoglobin is in its oxygenated form, is formation of nitrate in what is known as the dioxygenation reaction. As nitrate, at the concentrations made through the dioxygenation reaction, is biologically inert, the only role hemoglobin was once thought to play in NO signaling was to inhibit it. However, there are now several mechanisms that have been discovered by which hemoglobin may preserve, control, and even create NO activity. These mechanisms involve compartmentalization of reacting species and conversion of NO from or into other species such as nitrosothiols or nitrite which could transport NO activity. Despite the tremendous amount of work devoted to this field, major questions concerning precise mechanisms of NO activity preservation as well as if and how Hb creates NO activity remain unanswered.  相似文献   

9.
Quantitative nitric oxide production by rat, bovine and porcine macrophages   总被引:1,自引:0,他引:1  
The aim of this work was to compare in vitro nitric oxide (NO) production by rat, bovine and porcine macrophages. NO production was induced by lipopolysaccharide (LPS) or by phorbol 12-myristate 13-acetate (PMA) with ionomycin or recombinant interferon gamma (rIFN-γ) and was assessed by Griess reaction. NO synthase type II (NOS II) expression was quantified by immunocytochemistry, Western blot and real-time polymerase chain reaction (RT-PCR). There were differences in NO production by pulmonary alveolar macrophages (PAM) in all species tested. The largest amounts of NO were produced by rat PAM. Less NO was produced by bovine PAM. Moreover, PAM in rats and cows differed in their abilities to respond to various stimulators. Neither porcine PAM nor Kupffer cells produced NO. Stimulation of porcine PAM with alternative concentrations of LPS did not lead to inducing NO production. Stimulation of porcine PAM with rIFN-γ together with LPS led to a significant increase in the expression of NOS II mRNA, albeit without detectable NO production or NOS II expression on the protein level.  相似文献   

10.
Cell-free hemoglobin, released from the red cell, may play a major role in regulating the bioavailability of nitric oxide. The abundant serum protein haptoglobin, rapidly binds to free hemoglobin forming a stable complex accelerating its clearance. The haptoglobin gene is polymorphic with two classes of alleles denoted 1 and 2. We have previously demonstrated that the haptoglobin 1 protein–hemoglobin complex is cleared twice as fast as the haptoglobin 2 protein–hemoglobin complex. In this report, we explored whether haptoglobin binding to hemoglobin reduces the rate of nitric oxide scavenging using time-resolved absorption spectroscopy. We found that both the haptoglobin 1 and haptoglobin 2 protein complexes react with nitric oxide at the same rate as unbound cell-free hemoglobin. To confirm these results we developed a novel assay where free hemoglobin and hemoglobin bound to haptoglobin competed in the reaction with NO. The relative rate of the NO reaction was then determined by examining the amount of reacted species using analytical ultracentrifugation. Since complexation of hemoglobin with haptoglobin does not reduce NO scavenging, we propose that the haptoglobin genotype may influence nitric oxide bioavailability by determining the clearance rate of the haptoglobin–hemoglobin complex. We provide computer simulations showing that a twofold difference in the rate of uptake of the haptoglobin–hemoglobin complex by macrophages significantly affects nitric oxide bioavailability thereby providing a plausible explanation for why there is more vasospasm after subarachnoid hemorrhage in individuals and transgenic mice homozygous for the Hp 2 allele.  相似文献   

11.
The source size and density determine the extent of nitric oxide (NO) diffusion which critically influences NO signaling. In the brain, NO released from postsynaptic somas following NMDA-mediated activation of neuronal nitric oxide synthase (nNOS) retrogradely affects smaller presynaptic targets. By contrast, in guinea pig trigeminal motor nucleus (TMN), NO is produced presynaptically by tiny and disperse nNOS-containing terminals that innervate large nNOS-negative motoneurons expressing the soluble guanylyl-cyclase (sGC); consequently, it is uncertain whether endogenous NO supports an anterograde signaling between pre-motor terminals and postsynaptic trigeminal motoneurons. In retrogradely labeled motoneurons, we indirectly monitored NO using triazolofluorescein (DAF-2T) fluorescence, and evaluated sGC activity by confocal cGMP immunofluorescence. Multiple fibers stimulation enhanced NO content and cGMP immunofluorescence into numerous nNOS-negative motoneurons; NOS inhibitors prevented depolarization-induced effects, whereas NO donors mimicked them. Enhance of cGMP immunofluorescence required extracellular Ca(2+), a nNOS-physiological activator, and was prevented by inhibiting sGC, silencing neuronal activity or impeding NO diffusion. In conclusion, NO released presynaptically from multiple cooperative tiny fibers attains concentrations sufficient to activate sGC in many motoneurons despite of the low source/target size ratio and source dispersion; thus, endogenous NO is an effective anterograde neuromodulator. By adjusting nNOS activation, presynaptic Ca(2+) might modulate the NO diffusion field in the TMN.  相似文献   

12.
Soluble guanylate cyclase (sGC), as a nitric oxide (NO) sensor, is a critical heme-containing enzyme in NO-signaling pathway of eukaryotes. Human sGC is a heterodimeric hemoprotein, composed of a α-subunit (690 AA) and a heme-binding β-subunit (619 AA). Upon NO binding, sGC catalyzes the conversion of guanosine 5′-triphosphate (GTP) to 3′,5′-cyclic guanosine monophosphate (cGMP). cGMP is a second messenger and initiates the nitric oxide signaling, triggering vasodilatation, smooth muscle relaxation, platelet aggregation, and neuronal transmission etc. The breakthrough of the bottle neck problem for sGC-mediated NO singling was made in this study. The recombinant human sGC β1 subunit (HsGCβ619) and its truncated N-terminal fragments (HsGCβ195 and HsGCβ384) were efficiently expressed in Escherichia coli and purified successfully in quantities. The three proteins in different forms (ferric, ferrous, NO-bound, CO-bound) were characterized by UV–vis and EPR spectroscopy. The homology structure model of the human sGC heme domain was constructed, and the mechanism for NO binding to sGC was proposed. The EPR spectra showed a characteristic of five-coordinated heme-nitrosyl species with triplet hyperfine splitting of NO. The interaction between NO and sGC was investigated and the schematic mechanism was proposed. This study provides new insights into the structure and NO-binding of human sGC. Furthermore, the efficient expression system of E. coli will be beneficial to the further studies on structure and activation mechanism of human sGC.  相似文献   

13.
We point out the advantages of membrane inlet mass spectrometry for the measurement of nitric oxide in aqueous solution. The membrane inlet probe was a 1.0-cm segment of Silastic tubing attached to the vacuum inlet leading to the ion source. Silastic is a semipermeable silicon rubber that allows flux of uncharged substances including nitric oxide (NO). The use of such an inlet to measure NO has several advantages that we demonstrate in this report. It provides a direct, continuous, and quantitative determination of dissolved nitric oxide concentrations over long periods of real time. The use of such an inlet in our system had a response time of 5 to 7 s and a detection lower limit with the current model of 1.0 nM. This apparatus was used to measure the generation of NO from solutions of nitrite, NONOates, and nitroprusside. The usefulness of such an inlet in measuring NO in physiological systems is discussed.  相似文献   

14.
Soluble Guanylate Cyclase (sGC) is the receptor for the signalling agent nitric oxide (NO) and catalyses the production of the second messenger cyclic guanosine monophosphate (cGMP) from guanosine triphosphate (GTP). The enzyme is an attractive drug target for small molecules that act in the cardiovascular and pulmonary systems, and has also shown to be a potential target in neurological disorders. We have discovered that 5-(indazol-3-yl)-1,2,4-oxadiazoles activate the enzyme in the absence of added NO and shown they bind to the catalytic domain of the enzyme after development of a surface plasmon resonance assay that allows the biophysical detection of intrinsic binding of ligands to the full length sGC and to a construct of the catalytic domain.  相似文献   

15.
Nitric oxide (NO) is a diatomic free radical that is extremely short lived in biological systems (less than 1 second in circulating blood). NO may be considered one of the most important signaling molecules produced in our body, regulating essential functions including but not limited to regulation of blood pressure, immune response and neural communication. Therefore its accurate detection and quantification in biological matrices is critical to understanding the role of NO in health and disease. With such a short physiological half life of NO, alternative strategies for the detection of reaction products of NO biochemistry have been developed. The quantification of relevant NO metabolites in multiple biological compartments provides valuable information with regards to in vivo NO production, bioavailability and metabolism. Simply sampling a single compartment such as blood or plasma may not always provide an accurate assessment of whole body NO status, particularly in tissues. The ability to compare blood with select tissues in experimental animals will help bridge the gap between basic science and clinical medicine as far as diagnostic and prognostic utility of NO biomarkers in health and disease. Therefore, extrapolation of plasma or blood NO status to specific tissues of interest is no longer a valid approach. As a result, methods continue to be developed and validated which allow the detection and quantification of NO and NO-related products/metabolites in multiple compartments of experimental animals in vivo. The established paradigm of NO biochemistry from production by NO synthases to activation of soluble guanylyl cyclase (sGC) to eventual oxidation to nitrite (NO(2)(-)) and nitrate (NO(3)(-)) may only represent part of NO's effects in vivo. The interaction of NO and NO-derived metabolites with protein thiols, secondary amines, and metals to form S-nitrosothiols (RSNOs), N-nitrosamines (RNNOs), and nitrosyl-heme respectively represent cGMP-independent effects of NO and are likely just as important physiologically as activation of sGC by NO. A true understanding of NO in physiology is derived from in vivo experiments sampling multiple compartments simultaneously. Nitric oxide (NO) methodology is a complex and often confusing science and the focus of many debates and discussion concerning NO biochemistry. The elucidation of new mechanisms and signaling pathways involving NO hinges on our ability to specifically, selectively and sensitively detect and quantify NO and all relevant NO products and metabolites in complex biological matrices. Here, we present a method for the rapid and sensitive analysis of nitrite and nitrate by HPLC as well as detection of free NO in biological samples using in vitro ozone based chemiluminescence with chemical derivitazation to determine molecular source of NO as well as ex vivo with organ bath myography.  相似文献   

16.
Due to the involvement of nitric oxide (NO) in numerous and diverse physiological processes, site-directed delivery of therapeutic NO in order to minimize unwanted side-effects is necessary. O2-(4-Nitrobenzyl) diazeniumdiolates are designed as substrates for Escherichia coli nitroreductase (NTR), an enzyme that is frequently used to facilitate directed delivery of cytotoxic species to cancers. O2-(4-Nitrobenzyl) diazeniumdiolates are found to be stable in aqueous buffer but are metabolized by NTR to produce NO. A cell viability assay revealed that cytotoxic effects of O2-(4-nitrobenzyl)1-(2-methylpiperidin-1-yl)diazen-1-ium-1,2-diolate (4b) towards two cancer cell lines is significantly enhanced in the presence of NTR suggesting the potential for use of this compound in nitric oxide-based directed prodrug therapy.  相似文献   

17.
Jiao J  Wang H  Lou W  Jin S  Fan E  Li Y  Han D  Zhang L 《Experimental cell research》2011,(17):2548-2553

Objectives

Our purpose was to investigate the role of the nitric oxide (NO) signaling pathway in the regulation of ciliary beat frequency (CBF) in mouse nasal and tracheal epithelial cells.

Methods

We studied the effects of the NO donor l-arginine (L-Arg) and specific inhibitors of the NO signaling pathway on CBF of both nasal and tracheal epithelial cells by using high-speed digital microscopy. We also examined eNOS, sGC β, PKG I and acetylated α tubulin expression in native mouse nasal and tracheal epithelium using immunohistochemical methods.

Results

L-Arg significantly increased CBF of cultured nasal and tracheal epithelial cells, and the effects were blocked by pretreatment with NG-nitro-l-arginine methyl ester (L-NAME), a NOS inhibitor, with LY-83583, a sGC inhibitor, or with KT-5823, a PKG inhibitor. Positive immunostaining for NO signaling molecules including eNOS, sGC β and PKG I was observed in either nasal or tracheal ciliated epithelium.

Conclusion

NO plays a role in regulating CBF of mouse respiratory epithelial cells via a eNOS–NO–sGC β–cGMP–PKG I pathway.  相似文献   

18.
We investigated the mechanism of guanosine 3′,5′-monophosphate (cGMP) production in rabbit parotid acinar cells. Methacholine, a muscarinic cholinergic agonist, stimulated cGMP production in a dose-dependent manner but not isoproterenol, a β-adrenergic receptor stimulant. Methacholine-stimulated cGMP production has been suggested to be coupled to Ca2+ mobilization, because intracellular Ca 2+ elevating reagents, such as thapsigargin and the Ca2+ ionophore A23187, mimicked the effect of methacholine. The cGMP production induced by Ca2+ mobilization has also been suggested to be coupled to nitric oxide (NO) generation because the effects of methacholine, thapsigargin and A23187 on cGMP production were blocked by NG-nitro-L-arginine methyl ester (L-NAME), a specific inhibitor of nitric oxide synthase (NOS), and hemoglobin, a scavenger of nitric oxide (NO). Sodium nitroprusside (SNP), a NO donor, stimulated cGMP production. Furthermore, methacholine stimulated NO generation, and NOS activity in the cytosolic fraction in rabbit parotid acinar cells was exclusively dependent on Ca2+. These findings suggest that cGMP production induced by the activation of muscarinic cholinergic receptors is coupled to NO generation via Ca2+ mobilization.  相似文献   

19.
Nitric oxide (NO) serves as a messenger for cellular signaling and physiological reactions such as inflammatory responses in vivo. Fluorescent bioimaging of nitric oxide is a very useful tool in NO functional research. Although many encouraging results have been achieved in the field of NO fluorescent detection, there is rarely satisfying result in inflammatory NO imaging in vivo. Here we report that fluorescent 5′-chloro-2-(2′-hydroxyphenyl)-1H-naphtho[2,3-d]imidazol can coordinate with Cu(II) to form a non-fluorescent coordination compound, which is able to directly and quickly image NO in cellular system or in vivo inflammation system with a turn-on fluorescence, based on a redox action of Cu(II). It was used to image NO produced by inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS) activated murine macrophages. More importantly, it could image the NO production in an acute severe hepatic injury (ASHI) model of BALB/c mice induced by integrative LPS and d-galactosamine (GalN) treatment. The results prove that the 5′-chloro-2-(2′-hydroxyphenyl)-1H-naphtho[2,3-d]imidazol coordinated with cupric ions can serve as an excellent NO bioimaging agent in different biological systems especially in inflammation related systems, and it may be valuable for diagnostic and pathological studies of NO related diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号