首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Familial resemblance in the second‐to‐fourth digit ratio (2D:4D), a proxy for prenatal androgen action, was studied in 1,260 individuals from 235 Austrian families. In agreement with findings from twin studies of 2D:4D, heritability estimates based on parent–child and full‐sib dyad similarity indicated substantial genetic contributions to trait expression (57% for right hand, 48% for left hand 2D:4D). Because twin studies have found nonadditive genetic as well as shared environmental effects on 2D:4D to be negligible or nil, these family‐based estimates in all likelihood reflect the narrow‐sense (additive genetic) heritability of the trait. Directional (right‐minus‐left) asymmetry in 2D:4D was only weakly heritable (6%). The pattern of same‐sex and different‐sex parent–child and full‐sib correlations yielded no evidence for X‐linked inheritance. This is surprising, considering evidence for associations of male 2D:4D with sensitivity to testosterone (functional variants of the X‐linked androgen receptor gene). 2D:4D was particularly strongly heritable through male lines (father–son and brother–brother correlations), thus raising the possibility that Y‐linked genes (such as the sex‐determining region SRY) might influence 2D:4D expression. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
3.
Sib correlations for height and weight decrease with absolute age difference. Parent-child correlations increase with age of child, with greater resemblance to the mother than the father. Estimates of the relative variance due to common environment are greater, and heritability estimates less, than for earlier studies. Heritability is less for adults than children. There is no significant major locus for height or weight.  相似文献   

4.
The rhesus macaque is an important model for human atherosclerosis but genetic determinants of relevant phenotypes have not yet been investigated in this species. Because lipid levels are well-established and heritable risk factors for human atherosclerosis, our goal was to assess the heritability of lipoprotein cholesterol and triglyceride levels in a single, extended pedigree of 1,289 Indian-origin rhesus macaques. Additionally, because increasing evidence supports sex differences in the genetic architecture of lipid levels and lipid metabolism in humans and macaques, we also explored sex-specific heritability for all lipid measures investigated in this study. Using standard methods, we measured lipoprotein cholesterol and triglyceride levels from fasted plasma in a sample of 193 pedigreed rhesus macaques selected for membership in large, paternal half-sib cohorts, and maintained on a low-fat, low cholesterol chow diet. Employing a variance components approach, we found moderate heritability for total cholesterol (h2=0.257, P=0.032), LDL cholesterol (h2=0.252, P=0.030), and triglyceride levels (h2=0.197, P=0.034) in the full sample. However, stratification by sex (N=68 males, N=125 females) revealed substantial sex-specific heritability for total cholesterol (0.644, P=0.004, females only), HDL cholesterol (0.843, P=0.0008, females only), VLDL cholesterol (0.482, P=0.018, males only), and triglyceride levels (0.705, P=0.001, males only) that was obscured or absent when sexes were combined in the full sample. We conclude that genes contribute to spontaneous variation in circulating lipid levels in the Indian-origin rhesus macaque in a sex-specific manner, and that the rhesus macaque is likely to be a valuable model for sex-specific genetic effects on lipid risk factors for human atherosclerosis. These findings are a first-ever report of heritability for cholesterol levels in this species, and support the need for expanded analysis of these traits in this population.  相似文献   

5.

Background

The objective was to estimate the heritability for height and weight during fetal life and early childhood in two independent studies, one including parent and singleton offsprings and one of mono- and dizygotic twins.

Methods

This study was embedded in the Generation R Study (n = 3407, singletons) and the Netherlands Twin Register (n = 33694, twins). For the heritability estimates in Generation R, regression models as proposed by Galton were used. In the Twin Register we used genetic structural equation modelling. Parental height and weight were measured and fetal growth characteristics (femur length and estimated fetal weight) were measured by ultrasounds in 2nd and 3rd trimester (Generation R only). Height and weight were assessed at multiple time-points from birth to 36 months in both studies.

Results

Heritability estimates for length increased from 2nd to 3rd trimester from 13% to 28%. At birth, heritability estimates for length in singletons and twins were both 26% and 27%, respectively, and at 36 months, the estimates for height were 63% and 72%, respectively. Heritability estimates for fetal weight increased from 2nd to 3rd trimester from 17% to 27%. For birth weight, heritability estimates were 26% in singletons and 29% in twins. At 36 months, the estimate for twins was 71% and higher than for singletons (42%).

Conclusions

Heritability estimates for height and weight increase from second trimester to infancy. This increase in heritability is observed in singletons and twins. Longer follow-up studies are needed to examine how the heritability develops in later childhood and puberty.  相似文献   

6.
The use of skeletal nonmetric traits in studies of biological relationships often involves the assumption that variation in these traits is genetic. Studies of nonmetric traits in human groups and in inbred strains of mice and rabbits have indicated a genetic component to nonmetric trait variation. Skeletons of animals with known matrilineage membership were obtained from the Cayo Santiago skeletal collection in order to obtain a direct estimate of the heritabilities of several nonmetric traits in the free-ranging population of rhesus macaques on Cayo Santiago. Falconer's (1965) method was used to calculate heritability. Heritability estimates range from zero to one, and half of them are greater than 0.5. This indicates that there is a considerable amount of genetic variation for these traits among the Cayo macaques. There is a significant tendency for traits scoring the number of foramina to have lower heritabilities than those scoring hyperstotic or hypostotic traits.  相似文献   

7.
Although relations between 2D:4D and dominance rank in both baboons and rhesus macaques have been observed, evidence in humans is mixed. Whereas behavioral patterns in humans have been discovered that are consistent with these animal findings, the evidence for a relation between dominance and 2D:4D is weak or inconsistent. The present study provides experimental evidence that male 2D:4D is related to dominance after (fictitious) male-male interaction when the other man has a dominant, but not a submissive or neutral face. This finding provides evidence that the relationship between 2D:4D and dominance emerges in particular, predictable situations and that merely dominant facial characteristics of another person are enough to activate supposed relationships between 2D:4D and dominance.  相似文献   

8.
The heritability of life‐history traits is of particular importance for insects that are very dependent on host conditions. Severe defoliation caused by the spruce budworm negatively impacts its food source, which in turn imposes environmental constraints on the insect. The heritability of those traits can help elucidate this species' evolutionary process. Heritability also helps identify which traits exhibit significant additive variance and can be key to understanding natural selection effects. Individuals were reared under laboratory conditions over three generations on an artificial diet. Heritability was estimated by parent–offspring regression. Fertility and fecundity demonstrated significant heritability followed by larval development, while pupal mass showed minimal heritable variation. These results suggest an important percent of additive variance in life‐history traits. This study contributes to our understanding of the relationship of this forest pest to its environmental conditions. This study also reveals an important genetic architectural structure of life‐history traits in the spruce budworm.  相似文献   

9.
Osteochondrosis is a common developmental orthopedic disease characterized by a failure of endochondral ossification. Standardbred horses are recognized as being predisposed to tarsal osteochondrosis. Prior heritability estimates for tarsal osteochondrosis in European Standardbreds and related trotting breeds have been based on pedigree data and range from 17–29%. Here, we report on genetic architecture and heritability based on high‐density genotyping data in a cohort of North American Standardbreds (= 479) stringently phenotyped for tarsal osteochondrosis. Whole‐genome array genotyping data were imputed to ~2 million single nucleotide polymorphisms (SNPs). SNP‐based heritability of osteochondrosis in this population was explained by 2326 SNPs. The majority of these SNPs (86.6%) had small effects, whereas fewer SNPs had moderate or large effects (10% and 2.9% respectively), which is consistent with a polygenic/complex disease. Heritability was estimated at 0.24 ± 0.16 using two methods of restricted maximum likelihood analysis, as implemented in gcta (with and without a weighted relatedness matrix) and ldak software. Estimates were validated using bootstrapping. Heritability estimates were within the range previously reported and suggest that osteochondrosis is moderately heritable but that a significant portion of disease risk is due to environmental factors and/or genotype × environment interactions. Future identification of the genes/variants that have the most impact on disease risk may allow early recognition of high‐risk individuals.  相似文献   

10.
This study presents univariate narrow-sense heritability estimates for 33 common craniometric dimensions, calculated using the maximum likelihood variance components method on a skeletal sample of 298 pedigreed individuals from Hallstatt, Austria. Quantitative genetic studies that use skeletal cranial measurements as a basis for inferring microevolutionary processes in human populations usually employ heritability estimates to represent the genetic variance of the population. The heritabilities used are often problematic: most come from studies of living humans, and/or they were calculated using statistical techniques or assumptions violated by human groups. Most bilateral breadth measures in the current study show low heritability estimates, while cranial length and height measures have heritability values ranging between 0.102-0.729. There appear to be differences between the heritabilities calculated from crania and those from anthropometric studies of living humans, suggesting that the use of the latter in quantitative genetic models of skeletal data may be inappropriate. The univariate skeletal heritability estimates seem to group into distinct regions of the cranium, based on their relative values. The most salient group of measurements is for the midfacial/orbital region, with a number of measures showing heritabilities less than 0.30. Several possible reasons behind this pattern are examined. Given the fact that heritabilities calculated on one population should not be applied to others, suggestions are made for the use of the data presented.  相似文献   

11.
1. Many studies investigating fitness correlates of dispersal in vertebrates report dispersers to have lower fitness than philopatric individuals. However, if dispersers are more likely to produce dispersing young or are more likely to disperse again in the next year(s) than philopatric individuals, there is a risk that fitness estimates based on local adult survival and local recruitment will be underestimated for dispersers. 2. We review the available empirical evidence on parent-offspring resemblance and individual lifelong consistency in dispersal behaviour, and relate these studies to recent studies of fitness correlates of dispersal in vertebrates. 3. Of the 12 studies testing directly for parent-offspring resemblance in dispersal propensity, five report a significant resemblance. The average effect size (r) of parent-offspring resemblance in dispersal was 0.15 [95% confidence interval (CI) = 0.07-0.22], with no difference between the sexes (average weighted effect size of 0.12 (0.08-0.16) and 0.16 (0.11-0.20) for females and males, respectively). Only three studies report data on within-individual consistency in dispersal propensity, of which two suggest dispersers to be more likely to disperse again. 4. To assess the magnitude of fitness underestimation expected for dispersing individuals depending on the heritability of dispersal distance and study area size, we used a simulation approach. Even when study area size is 10 times the mean dispersal distance, local recruitment per breeding event may be underestimated by 4-10%, generating a potential difference of 4-60% in average lifetime production of recruits between dispersing and philopatric individuals, with larger differences in long-lived species. 5. Estimates of both fitness correlates of dispersal and parent-offspring resemblance or within-individual consistency in dispersal behaviour have been reported for 11 species. Although some comparisons suggest genuine differences in fitness components between philopatric and dispersing individuals, others, based on adult and juvenile survival, are open to the alternative explanation of biased fitness estimates. 6. We list three potential ways of reducing the risk of making wrong inferences on biased fitness estimates due to such non-random dispersal behaviour between dispersing and philopatric individuals: (a) diagnosing effects of non-random dispersal, (b) reducing the effects of spatially limited study area and (c) performing controlled experiments.  相似文献   

12.
We present heritability estimates for final size of body traits and egg size as well as phenotypic and genetic correlations between body and egg traits in a recently established population of the barnacle goose (Branta leucopsis) in the Baltic area. Body traits as well as egg size were heritable and, hence, could respond evolutionarily to phenotypic selection. Genetic correlations between body size traits were significantly positive and of similar magnitude or higher than the corresponding phenotypic correlations. Heritability estimates for tarsus length obtained from full-sib analyses were higher than those obtained from midoffspring-midparent regressions, and this indicates common environment effects on siblings. Heritabilities for tarsus length obtained from midoffspring-mother regressions were significantly higher than estimates from midoffspring-father regressions. The results suggest that this discrepancy is not caused by maternal effects through egg size, nor by extra-pair fertilizations, but by a socially inherited foraging site fidelity in females.  相似文献   

13.
We have studied heritability of the concentration of each glycolytic intermediate and adenine nucleotide in the cytosol of human erythrocytes obtained from a random sample of apparently healthy young individuals. Preliminary to analysis of heritability, each trait was statistically described and the effects attributable to variation in measured concomitants were removed by regression. Heritability was estimated using the family-set method. This method removes covariances between the index case, sibling and first cousin, due to those environmental determinants of the phenotypic values that are shared with a matched, unrelated control member of the family set. It also removes covariances due to environments that are shared by siblings and first cousins. Heritability was estimated by employing the fact that the variance of differences between first cousins minus the variance of differences between full siblings estimates three-fourths of the additive genetic variance. The heritability estimates for G6P†, F6P, ATP and some other metabolite concentrations are high and significantly greater than zero. The heritabilities of G6P and F6P are likely attributable to genetic variation in the in vivo activity of HK and/or PFK, because the concentrations of these metabolites are tightly controlled by the two regulatory enzymes. Statistically significant heritability estimates for HK and PFK mass action ratios strongly suggest genes are responsible for a portion of the quantitative variation in these enzyme activities. Since HK and PFK regulate glycolysis and the production of ATP, genetic variation in their activities might be causally related to the heritability of ATP concentration.  相似文献   

14.
The estimation of quantitative genetic parameters in wild populations is generally limited by the accuracy and completeness of the available pedigree information. Using relatedness at genomewide markers can potentially remove this limitation and lead to less biased and more precise estimates. We estimated heritability, maternal genetic effects and genetic correlations for body size traits in an unmanaged long‐term study population of Soay sheep on St Kilda using three increasingly complete and accurate estimates of relatedness: (i) Pedigree 1, using observation‐derived maternal links and microsatellite‐derived paternal links; (ii) Pedigree 2, using SNP‐derived assignment of both maternity and paternity; and (iii) whole‐genome relatedness at 37 037 autosomal SNPs. In initial analyses, heritability estimates were strikingly similar for all three methods, while standard errors were systematically lower in analyses based on Pedigree 2 and genomic relatedness. Genetic correlations were generally strong, differed little between the three estimates of relatedness and the standard errors declined only very slightly with improved relatedness information. When partitioning maternal effects into separate genetic and environmental components, maternal genetic effects found in juvenile traits increased substantially across the three relatedness estimates. Heritability declined compared to parallel models where only a maternal environment effect was fitted, suggesting that maternal genetic effects are confounded with direct genetic effects and that more accurate estimates of relatedness were better able to separate maternal genetic effects from direct genetic effects. We found that the heritability captured by SNP markers asymptoted at about half the SNPs available, suggesting that denser marker panels are not necessarily required for precise and unbiased heritability estimates. Finally, we present guidelines for the use of genomic relatedness in future quantitative genetics studies in natural populations.  相似文献   

15.
The heritability of quantitative traits, or the proportion of phenotypic variation due to additive genetic or heritable effects, plays an important role in determining the evolutionary response to natural selection. Most quantitative genetic studies are performed in the laboratory, due to difficulty in obtaining genealogical data in natural populations. Genealogies are known, however, from a unique 20-year study of toque macaques (Macaca sinica) at Polonnaruwa, Sri Lanka. Heritability in this natural population was, therefore, estimated. Twenty-seven body measurements representing the lengths and widths of the head, trunk, extremities, and tail were collected from 270 individuals. The sample included 172 offspring-mother pairs from 39 different matrilineal families. Heritabilities were estimated using traditional mother-offspring regression and maximum likelihood methods which utilize all genealogical relationships in the sample. On the common assumption that environmental (including social) factors affecting morphology were randomly distributed across families, all but two of the traits (25 of 27) were significantly heritable, with an average heritability of 0.51 for the mother-offspring analysis and 0.56 for the maximum likelihood analysis. Heritability estimates obtained from the two analyses were very similar. We conclude that the Polonnaruwa macaques exhibit a comparatively moderate to high level of heritability for body form. © 1992 Wiley-Liss, Inc.  相似文献   

16.
The second‐to‐fourth digit ratio (2D:4D) has been proposed as a biomarker reflecting prenatal androgen effects (PAE), such that individuals with lower ratios have experienced higher PAE than those with higher ratios. 2D:4D has been correlated with a number of sex‐linked traits in humans such as aggression, promiscuity, and competitiveness. In addition, polygynous societies reportedly have lower 2D:4D (higher PAE) than more monogamous populations. This evidence suggests that PAE may be implicated in the development of sexually selected behaviors in humans. To place 2D:4D research into a broader context, we test the relationship between digit ratios and behavior across nonhuman anthropoids; polygynous species, with higher levels of intrasexual competition, should have more pronounced markers of PAE (lower 2D:4D) than pair‐bonded species. Our results accord with those found in humans: 2D:4D is lower in polygynous species and higher (lower PAE) in pair‐bonded species. Old World monkeys have low, and relatively invariant 2D:4D (high PAE), which is coupled with high levels of intrasexual competition. This contrasts with higher and more variable ratios in both great apes and New World monkeys. In addition, both male and female ratios decrease with increasing levels of intrasexual competition. Human ratios are intermediate between pair‐bonded and more promiscuous hominoids. We propose that PAE may be involved in promoting species characteristic social behavior in anthropoids. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Heritability is a central parameter in quantitative genetics, from both an evolutionary and a breeding perspective. For plant traits heritability is traditionally estimated by comparing within- and between-genotype variability. This approach estimates broad-sense heritability and does not account for different genetic relatedness. With the availability of high-density markers there is growing interest in marker-based estimates of narrow-sense heritability, using mixed models in which genetic relatedness is estimated from genetic markers. Such estimates have received much attention in human genetics but are rarely reported for plant traits. A major obstacle is that current methodology and software assume a single phenotypic value per genotype, hence requiring genotypic means. An alternative that we propose here is to use mixed models at the individual plant or plot level. Using statistical arguments, simulations, and real data we investigate the feasibility of both approaches and how these affect genomic prediction with the best linear unbiased predictor and genome-wide association studies. Heritability estimates obtained from genotypic means had very large standard errors and were sometimes biologically unrealistic. Mixed models at the individual plant or plot level produced more realistic estimates, and for simulated traits standard errors were up to 13 times smaller. Genomic prediction was also improved by using these mixed models, with up to a 49% increase in accuracy. For genome-wide association studies on simulated traits, the use of individual plant data gave almost no increase in power. The new methodology is applicable to any complex trait where multiple replicates of individual genotypes can be scored. This includes important agronomic crops, as well as bacteria and fungi.  相似文献   

18.
OBJECTIVES: Pulse pressure (PP) is a measure of large artery stiffness and has been shown to be an important predictor of cardiovascular morbidity and mortality. The aims of the present study were to investigate the heritability of PP in three studies, the Diabetes Heart Study (DHS), the Insulin Resistance Atherosclerosis Family Study (IRAS FS), and the NHLBI Family Heart Study (FHS), to estimate the residual heritability after inclusion of a common set of covariates, and to investigate the impact of pedigree structure on estimating heritability. METHODS AND RESULTS: DHS is primarily a sibling pair nuclear family study design, while both IRAS FS and FHS have large pedigrees. Heritability estimates of log-transformed PP were obtained using variance component models. After adjusting for age, gender, ethnicity/center, height, diabetes status, and mean arterial pressure (MAP), heritability estimates of PP were 0.40 +/- 0.08 , 0.22 +/- 0.05, and 0.19 +/- 0.03 in DHS, IRAS FS, and FHS, respectively. The heritability estimate from DHS was significantly different from both IRAS FS and FHS (both p values <0.05). A random re-sampling technique (modified bootstrap) was used to explore the heritability in the IRAS FS and FHS data when these pedigrees were trimmed to mimic the DHS pedigree structure. The re-sampling method (mimicking a sibling pair nuclear family design in all studies) yielded PP heritability estimates of 0.37, 0.34, and 0.27 in DHS, IRAS FS, and FHS, respectively. There was no significant difference among the heritability estimates from the three studies based on the re-sampling method. CONCLUSION: We have shown that PP has a moderately heritable component in three different studies. These data illustrate the influence of pedigree structure can have on estimating heritability. Thoughtful comparisons of heritability estimates must consider study design factors such as pedigree structure.  相似文献   

19.
In humans, the ratio of the second digit to the fourth digit — the 2D:4D ratio — is a sexually dimorphic trait (men, on average, exhibit lower 2D:4D ratios than do women) that is influenced by prenatal testosterone exposure, but not by circulating testosterone levels in adulthood. Consequently, 2D:4D ratios are commonly used as indirect measures of prenatal testosterone exposure. Many studies have examined the associations of 2D:4D ratios with sexually dimorphic adaptations that are thought to be influenced by such exposure, including physical prowess. The existing literature, however, remains unclear as to (1) whether 2D:4D ratios are more closely linked to strength or to endurance; and (2) whether 2D:4D ratios are linked with physical prowess for both men and women. In 100 men and 122 women, the relationship of 2D:4D ratios with maximum voluntary contraction (MVC) scores (hand grip strength) and maximum endurance time (MET) scores (local muscular endurance) using a hand dynamometer was examined. Controlling for age, height, weight, and average digit length, we found that 2D:4D ratios significantly predicted MVC scores in men, but not in women. 2D:4D ratios did not significantly predict MET scores for either sex. These results suggest that prenatal testosterone exposure in this sample is significantly related to hand grip strength in men, but not in women (and to local muscular endurance in neither sex), and, therefore, that strength, rather than local muscular endurance, potentially drives the relationship between 2D:4D ratios and physical prowess.  相似文献   

20.
The estimation of genetic components of phenotypic variance is based on the resemblance between relatives. In natural populations of most forest tree species without genealogical information, a possible alternative approach is the use of relatedness estimates obtained indirectly from molecular marker data. Heritability (h 2) is then estimated from the covariance of estimated relatedness and phenotypic resemblance. In a stand of Prosopis alba planted in 1991 in Argentina, relatedness was estimated for all individual pairs of trees by means of the information proceeding from 128 dominant markers (57 AFLPs and 71 ISSRs) and compared with estimates obtained from six microsatellite loci previously studied. We empirically compared the accuracy of different relatedness estimators based on dominant markers proposed by Lynch and Milligan (Mol Ecol 3:91–99, 1994), Hardy (Mol Ecol 12:1577–1588, 2003), Wang (Mol Ecol 13:3169–3178, 2004), and Ritland (Mol Ecol 14:3157–3165, 2005). Heritabilities of 13 quantitative traits were then estimated from the regression of pairwise phenotypic distances on pairwise relatedness according to Ritland (Genet Res 67:175–185, 1996a). Relatedness inferred from molecular markers was in all cases significantly correlated with actual relatedness, although Ritland's estimator showed the highest bias but the lowest variance. Dominant marker-based h 2 estimates were evidently downwards biased and showed poor correlation with those based on family records. In conclusion, the use of dominant molecular markers evidently produces much greater underestimates of h 2 than from using co-dominant ones, attributable to the lower accuracy in the indirect estimation of relatedness coefficient. Many traits with enough genetic variability as to respond readily to selection would remain undetected; only those with very high heritability would show significant h 2 estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号