首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
The aim of the present study was to investigate the occurrence of mycotoxins in commercial dog food, as a basis to estimate the risk of adverse effects. Seventy-six dry dog food samples from 27 producers were purchased from retail shops, supermarkets, and specialized pet food shops in Vienna, Austria. The frequency and levels of deoxynivalenol (DON), zearalenone (ZEA), fumonisins (FUM), ochratoxin A (OTA). and aflatoxins (AF) in dry dog food were determined. Mycotoxin analysis were performed by commercial enzyme-linked immunosorbent assay (ELISA) test kits. Confirmatory analyses were done for DON, ZEA, and FUM by high performance liquid chromatography (HPLC) after extract clean-up with immunoaffinity columns. The correlations between ELISA and HPLC results for DON and ZEA were acceptable and indicated that ELISA could be a simple, low cost, and sensitive screening tool for mycotoxins detection, contributing to quality and safety of pet food. DON was the mycotoxin most frequently found (83% positives; median 308 μg/kg, maximum 1,390 μg/kg). ZEA (47% positives, median 51 μg/kg and maximum 298 μg/kg) and FUM (42% positives, median 122 μg/kg and maximum 568 μg/kg) were also frequently detected in dog food. OTA was less frequently found (5%, median 3.6 μg/kg, maximum 4.7 μg/kg. AF were not detected (<0.5 μg/kg) in any sample. The results show that dry dog food marketed in Vienna are frequently contaminated with mycotoxins (DON > ZEA > FUM > OTA) in low concentrations, but do not contain AF. The high frequency of Fusarium toxins DON, ZEA, and FUM indicates the need for intensive control measures to prevent mycotoxins in dog foods. The mycotoxin levels found in dry dog food are considered as safe in aspects of acute mycotoxicoses. However, repeated and long-time exposure of dogs to low levels of mycotoxins may pose a health risk.  相似文献   

2.
The aim of this study was to investigate the contamination of pig feed with moulds and the occurrence of mycotoxins. A total of 30 feed samples were collected at different animal feed factories in the north-western part of Croatia. Mycological analysis showed that the total number of moulds ranged from 1?×?103 to 1?×?105?cfu/g with samples contaminated with Aspergillus spp. (63?%), Penicillium spp. (80?%), and Fusarium spp. (77?%). A determination of aflatoxin B1 (AFB1), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), T-2 toxin (T-2) and fumonisin (FUM) concentration was done using the validated ELISA method. The mean concentrations of AFB1 (0.5?±?0.6???g/kg), OTA (1.53?±?0.42???g/kg) and FUM (405?±?298???g/kg) were below the maximum levels or recommended values in the EU in all the investigated samples. The observed results indicated an increased contamination of pig feed with Fusarium mycotoxins DON and ZEA with mean concentrations of 817?±?447 and 184?±?214???g/kg, higher than recommended in 40 and 17?% of the analysed samples, respectively.  相似文献   

3.
Aims: To quantify and to compare the occurrence of Fusarium species in maize kernels and stalk pieces, to analyse mycotoxins in kernels and maize crop residues, to evaluate two approaches to obtain kernel samples and to compare two methods for mycotoxin analyses. Methods and Results: The occurrence of Fusarium species in maize kernels and stalk pieces from a three‐year maize hybrid trial and 12 kernel samples from grower’s fields was assessed. Nine to 16 different Fusarium species were detected in maize kernels and stalks. In kernels, F. graminearum, F. verticillioides and F. proliferatum were the most prevalent species whereas in stalks, they were F. equiseti, F. proliferatum and F. verticillioides. In 2006, 68% of the kernel samples exceeded the recommended limit for pig feed for deoxynivalenol (DON) and 42% for zearalenone (ZON), respectively. Similarly, 75% of the samples from grower’s fields exceeded the limits for DON and 50% for ZON. In maize crop residues, toxin concentrations ranged from 2·6 to 15·3 mg kg?1 for DON and from 0·7 to 7·4 mg kg?1 for ZON. Both approaches to obtain maize kernel samples were valid, and a strong correlation between mycotoxin analysis using ELISA and LC‐MS/MS was found. Conclusions: The contamination of maize kernels, stalk pieces and remaining crop residues with various mycotoxins could pose a risk not only to animal health but also to the environment. With the hand‐picked sample, the entire Fusarium complex can be estimated, whereas combine harvested samples are more representative for the mycotoxin contents in harvested goods. Significance and Impact of the Study: This is the first multi‐year study investigating mycotoxin contamination in maize kernels as well as in crop residues. The results indicate a high need to identify cropping factors influencing the infection of maize by Fusarium species to establish recommendations for growers.  相似文献   

4.
Fusarium toxin-contaminated ground maize was hydrothermally treated in the presence of different combinations of chemicals in order to simultaneously reduce zearalenone (ZEA) and deoxynivalenol (DON) concentrations. Treatments were carried out in a laboratory conditioner at 80 °C and 17 % moisture. Six different treatments were performed, consisting of 3 doses of methylamine (MMA; 2.5, 5 and 10 g/kg maize) at a constant dose of 5 g sodium metabisulfite (SBS)/kg, either with or without the addition of 20 g calcium hydroxide (Ca(OH)2)/kg. The used maize was contaminated with approximately 45.99 mg DON/kg and 3.46 mg ZEA/kg. Without the addition of Ca(OH)2, DON reductions reached approximately 82 % after 1-min treatment and the toxin disappeared nearly completely after 10 min when 2.5 or 5 g MMA were applied. ZEA concentrations were only marginally affected. In the presence of Ca(OH)2, reductions in DON concentrations were lower, but were enhanced by increasing doses of MMA. ZEA concentrations were reduced by 72, 85 and 95 % within the first 5 min of the treatment at MMA dosages of 2.5, 5 and 10 g/kg maize, respectively. The application of SBS in combination with a strong alkaline during hydrothermal treatment seems to be a promising approach to simultaneously decontaminate even high amounts of DON and ZEA in ground maize and may contribute to reduce the toxin load of diets  相似文献   

5.
Nitrogen (N) fertilization and fungicide applications are still subject to discussion concerning the influence on Fusarium head blight (FHB) and related mycotoxin accumulation. Field studies were made in 2000–2001 and 2001–2002 to investigate the effect of two N‐rates and 11 plant protection treatments on FHB severity and the content of FHB‐related mycotoxins, namely deoxynivalenol (DON) and zearalenone (ZEA) under conditions of natural infection. The treatments applied can be summarized as (i) an integrated approach using a decision support system, (ii) the use of two plant strengtheners, Bion® (benzo [1,2,3]thiadiazole‐7‐carbothioic acid S‐methyl‐ester, BTH) and a compound based on the biomass of the cyanobacterium Spirulina platensis, (iii) the use of plant strengtheners in combination with a broad‐spectrum fungicide and (iv) common fungicide strategies against foliar diseases. Fusarium infections as well as the analysed mycotoxins were observed at low levels in both years. Disease severity was significantly increased by conventional N‐fertilization only in 2001. Neither FHB severity nor mycotoxin accumulation was significantly influenced by any of the treatments, although treatments without fungicides appeared to lead to lower disease severities. In 2002, there was a tendency towards higher disease severities when common fungicide strategies were applied. Mycotoxin contamination was found in grain samples from both years. In 2001 DON was mainly traceable, whereas in 2002 ZEA was also detected. Mycotoxin contamination was influenced by N‐fertilization rather than by the treatments. In 2001, the DON content was significantly increased due to the conventional N‐supply. Our results indicate that less intensive fungicide strategies, including plant strengtheners, are no worse than common fungicide strategies under conditions of low FHB severity and mycotoxin accumulation. Immoderate N‐fertilization however, can increase mycotoxin levels significantly even under conditions unfavourable for Fusarium spp.  相似文献   

6.
Maize (Zea mays) is an important food crop in the foothills of the Nepal Himalaya Mountains. Surveys have found that maize in Nepal is contaminated withFusarium species, mainlyF. verticillioides andF. proliferatum, which produce fumonisins, andF. graminearum, which produces trichothecenes, mainly nivalenol and 4-deoxynivalenol. Maize from smallholder farms and markets is often contaminated with fumonisins and trichothecenes above 1000 ng/g, a level of concern for human health. These mycotoxins were not eliminated by traditional fermentation for producing maize beer, but Nepalese women were able to detoxify contaminated maize by hand-sorting visibly disease kernels. An integrated approach to reduce mycotoxins risks in maize in Nepal and other developing countries should include plant breeding to produce ear rot resistant cultivars, along with education in mycotoxins risks and in agricultural and grain storage practices to reduce mycotoxin contamination. Presented at the EU-USA Bilateral Workshop on Toxigenic Fungi & Mycotoxins, New Orleans, USA, July 5–7, 2005  相似文献   

7.
Approximately 22 000 hectares (5% of the total maize growing area) of transgenic maize expressing the Cry1Ab toxin from Bacillus thuringiensis (Bt maize) have been planted annually in Spain since 1998. Changes in the susceptibility to Cry1Ab of Spanish populations of the Mediterranean corn borer (MCB), Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae), and the European corn borer (ECB), Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), were assessed by annual monitoring on Bt maize fields. No increase in resistance was detected in the MCB populations from Ebro, Albacete, and Badajoz, nor in the ECB populations from Ebro and Badajoz during the period 1999–2002. The susceptibility of the MCB population from Madrid fluctuated from year to year, but a gradual trend towards higher levels of tolerance was not observed. Laboratory selection assays for eight generations yielded selected strains of MCB and ECB that were 21‐ and 10‐fold significantly more tolerant to Cry1Ab than the corresponding unselected strains, respectively. Nevertheless, none of the field‐collected or laboratory‐selected larvae were able to survive on Bt maize. Considering these data, no consistent shifts in susceptibility were found for Spanish populations of MCB nor ECB after 5 years of Bt maize cultivation, but systematic field monitoring needs to be continued.  相似文献   

8.
9.
Infections of maize with phytopathogenic and toxinogenic Fusarium spp. may occur throughout the cultivation period. This can cause different types of diseases in vegetative and generative organs of the plant. Along with these infections, mycotoxins are often produced and accumulated in affected tissues, which could pose a significant risk on human and animal health when entering the food and feed chain. Most important fungal species infecting European maize belong to the Fusarium sections Discolour and Liseola, the first being more prevalent in cooler and humid climate regions than the second predominating in warmer and dryer areas. Coexistence of several Fusarium spp. pathogens in growing maize under field conditions is the usual case and may lead to multi-contamination with mycotoxins like trichothecenes, zearalenone and fumonisins. The pathways how the fungi gain access to the target organs of the plant are extensively described in relation to specific symptoms of typical rot diseases regarding ears, kernels, rudimentary ears, roots, stem, leaves, seed and seedlings. Both Gibberella and Fusarium ear rots are of major importance in affecting the toxinogenic quality of grain or ear-based products as well as forage maize used for human or animal nutrition. Although rudimentary ears may contain high amounts of Fusarium toxins, the contribution to the contamination of forage maize is minor due to their small proportion on the whole plant dry matter yield. The impact of foliar diseases on forage maize contamination is regarded to be low, as Fusarium infections are restricted to some parts on the leaf sheaths and husks. Mycotoxins produced in rotted basal part of the stem may contribute to forage maize contamination, but usually remain in the stubbles after harvest. As the probability of a more severe disease progression is increasing with a prolonged cultivation period, maize should be harvested at the appropriate maturity stage to keep Fusarium toxin contamination as low as possible. Ongoing surveillance and research is needed to recognise changes in the spectrum of dominating Fusarium pathogens involved in mycotoxin contamination of maize to ensure safety in the food and feed chain.  相似文献   

10.
Fusarium mycotoxins such as deoxynivalenol (DON) can occur in cereals conjugated to glucose and probably also to other sugars. These conjugates, which are often referred to as ??masked mycotoxins??, will not be detected with routine analytical techniques. Furthermore, it is suspected that the parent toxin may again be released after hydrolysis in the digestive tracts of animals and humans. Today, our knowledge of the occurrence of these compounds in cereal grains is limited. In this paper, a LC-MS/MS method for the simultaneous determination of DON, deoxynivalenol-3-??-d-glucoside (DON-3-glucoside), 3 acetyl-DON, nivalenol, fusarenon-X, diacetoxyscirpenol, HT-2 toxin, and T-2 toxin in naturally (n?=?48) and artificially (n?=?30) contaminated cereal grains (wheat, barley, oat, rye triticale) is reported. The method has also been applied to whole fresh maize plant intended for production of maize silage (n?=?10). The samples were collected from the harvest years 2006?C2010, The results show that DON-3-glucoside and DON co-occurred in cereal grains and, especially in several of the highly contaminated samples, the concentration of the glucoside can be relatively high, corresponding to over 37?% of the DON concentration. The DON-3-glucoside levels in both the naturally and in the artificially grain inoculated with Fusarium were second only to DON, and were generally higher than those of the other tested trichothecenes, which were found at low concentrations in most samples, in many cases even below the detection limit of the method. This argues for the importance of taking DON-3-glucoside into account in the ongoing discussion within the European Community concerning exposure re-evaluations for setting changed values for the tolerable intake for DON. Our results indicate that, in the naturally contaminated grains and in the Fusarium infested cereal grains (winter and spring wheat, oat, triticale), the concentration level of DON-3-glucoside is positively correlated to the DON content. When the DON concentration is high, then the content of DON-3-glucoside will most probably also be high and vice versa.  相似文献   

11.
A dose response study was carried out with piglets to examine the effects of increasing amounts of Fusarium toxins in the diet on performance, clinical serum characteristics, organ weights and residues of zearalenone (ZON) and deoxynivalenol (DON) and their metabolites in body fluids and tissues. For this purpose, Fusarium toxin contaminated maize (1.2 mg ZON and 8.6 mg DON per kg maize) was incorporated into a maize based diet for piglets at 0, 6, 12.5, 25 and 50% at the expense of control maize. The experimental diets were tested on 100 female piglets allotted to 20 boxes (five animals per box) covering a body weight range of 12.4 ± 2.2 kg to 32.5 ± 5.6 kg. Voluntary feed intake and, consequently, body weight gain of the animals receiving the highest proportion of Fusarium toxin contaminated maize were significantly decreased while the feed conversion ratio was not affected by the treatment. The mean weight of the uterus related to the body weight of the animals of the same group was increased by almost 100% as compared to the control. For this group, significantly decreased values of total serum protein were determined, while the serum activity of the liver enzyme glutamate dehydrogenase and the serum concentration of the follicle stimulating hormone were decreased for all treatment groups receiving 6% contaminated maize or more in the diet. Serum concentrations of immune-globulins were not consistently altered by the treatment. Corresponding to the dietary exposure, increasing concentrations of ZON and α-zearalenol were detected in the bile fluid, liver and in pooled urine samples. The metabolite β-zearalenol was detected only in bile fluid. The total concentration of ZON plus its metabolites in bile fluid correlated well with the diet contamination (r = 0.844). DON was found in serum, bile fluid and pooled urine samples while de-epoxy-DON was detected only in urine. The serum concentration of DON correlated well with the respective toxin intake 3 - 4 h prior to slaughtering (r = 0.957). For all mentioned analyses of residues it has to be noted that toxin residues were detectable even if negligible concentrations were present in the diet.  相似文献   

12.
Fusarium species cause not only root, stem and ear rot with severe reductions in crop yield, they produce also toxic secondary metabolites (mycotoxins) such as deoxynivalenol (DON) and zearalenone (ZEA). During several growing seasons the presence of Fusarium spp was followed up. DON and ZEA were determined and related to infection levels. The distribution of DON and ZEA in the different plant parts was studied as well as the influence of the ensiling process on the mycotoxin content. More or less important varietal differences in susceptibility for Fusarium spp. could be detected. DON and ZEA were clearly present in most of the analysed samples. No clear relationship could be detected between visual disease symptoms and mycotoxin content. The accumulation of DON and ZEA was different for the analysed aerial plant parts. The ensiling process gave no reduction of the mycotoxin content.  相似文献   

13.
A survey for the natural occurrence of Fusarium mycotoxins, deoxynivalenol (DON), nivalenol (NIV) and zearalenone (ZEN), in Dutch cereals (totaling 29 samples) harvested in 1984/1985, showed that 90%, 79% and 62% of samples were contaminated with DON, NIV and ZEN, respectively. Average contents (ng/g) in the total of positive samples were 221 (DON), 123 (NIV) and 61 (ZEN). Among the cereals examined, the highest concentrations (ng/g) was 3198 (DON), 1875 (NIV) and 677 (ZEN) in a yellow corn sample for animal feed. The results of this survey show that Dutch cereals were relatively significantly contaminated with Fusarium mycotoxins.  相似文献   

14.
Surveys of corn (infected plants and commercial kernels) forFusarium species and their mycotoxins were carried out on samples collected all over Italy and from some European and mediterranean countries.Investigations on samples of corn stalk and ear rot standing in the field, mainly collected in southern Italy, proved to be contaminated with zearalenone (ZON), zearalenols (ZOL), and deoxynivalenol (DON). TheFusarium species most frequently isolated, and their recorded toxigenic capability (in parentheses), were:F. moniliforme;F. culmorum (ZON, ZOL, DON, 3AcDON);F. equiseti (ZON, ZOL); andF. proliferatum (MF). Along with these species,F. graminearum group 2 (ZON, DON and/or 3AcDON or 15AcDON);F. chlamydosporum;F. acuminatum (type-A trichothecene derivatives); andF. semitectum were often found to be associated.F. heterosporum (ZON, ZOL);F. solani;F. crookwellense (ZON, ZOL, FUS, NIV);F. oxysporum (MF);F. avenaceum (MF);F. sporotrichioides (T-2 toxin and derivatives); andF. poae (DAS, MAS) were occasionally isolated.  相似文献   

15.
Deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T2), fumonisin B1 (FB1), zearalenone (ZEA), and moniliformin (MON) mycotoxins are common food and feed contaminants produced by Fusarium spp. However, while they are usually found to co-occur in a large range of commodities, only few data are available on mycotoxin co-exposure effects and cellular response mechanisms. In this study, the individual and combined toxic effects of these fusariotoxins were evaluated on the THP-1 human immune cell line as major fusariotoxins are mostly potent immunomodulators. In particular, four relevant fusariotoxin mixtures, namely DON-MON, DON-FB1, DON-ZEA, and NIV-T2, were studied using several parameters including cell viability as well as the expression of cell surface markers and the main mitogen-activated protein kinases (MAPKs). After 48 h exposure, a reduction of cell viability in a dose-dependent manner was observed for T2, the most cytotoxic mycotoxin, followed by NIV, DON, MON, FB1, and ZEA. Regarding mycotoxin mixtures, they mainly showed antagonism on cell viability reduction. Interestingly, at concentrations inhibiting 50% of cell viability, most viable cells exhibited surface marker loss and thus became potentially non-functional. In addition, during the first 18 h of exposure, the effects of mycotoxin mixtures on early cell apoptosis and necrosis were found to be different from those induced by the toxins alone. At the molecular level, after 1 h exposure of individual and combined mycotoxins, the three main MAPK signaling pathways (p38, SAPK/JNK, and ERK1/2) were activated, highlighting a fast reaction of the exposed cells even at low cytotoxicity levels.  相似文献   

16.
Wheat (as bran) and corn (as dry grain or fermented feed) are main ingredients of feedstuffs used in local cattle and pig farms in the South of the Buenos Aires Province (Argentina). Therefore, determining mycobiota and mycotoxins in wheat and corn is of prime importance for developing feed management techniques to optimise animal production and to minimize toxicity. Then, a mycological survey was carried out in the Southeastern part of the Buenos Aires Province, in order to identify the mycobiota and the main mycotoxins present in fermented feed, wheat grain and corn grain samples. Samples were cultured for fungal quantification, isolation and identification, and analysed for deoxynivalenol (DON), zearalenone (ZEA), T-2 toxin and aflatoxins (AFLA). Penicillium (74%), Aspergillus (32%) and Scopulariopsis (21%) were the prevalent genera in fermented feed. Penicillium (70%), Fusarium (47%) and Aspergillus (34%) were the most frequent fungi isolated from corn. Penicillium (42%), Fusarium (27%) and Alternaria (25%) were the most frequently recovered genera from wheat. DON was detected in 59% of the corn samples, in 45% of the wheat samples and in 38% of the silage samples. ZEA was detected in 36% of the corn samples, in 49% of the wheat samples and in 16% of the silage samples. T-2 toxin and aflatoxin B1 were each detected in 4% of the corn samples. Eighteen percent of the fermented feed samples showed T-2 contamination. Fermented feed and wheat samples were negative for AFLA.  相似文献   

17.
On a global scale, cereal grains and animal feed may be contaminated with trichothecenes, such as deoxynivalenol and T-2 toxin, zearalenone (ZEA), and fumonisins, the major mycotoxins of Fusarium fungi. Of these mycotoxins, ZEA is unequivocally implicated in reproductive disorders of swine and other domestic animals. Experiments in vivo and in vitro indicate that ZEA and its metabolites exert estrogenic effects resulting in functional and morphological alterations in reproductive organs. Recently, the potential of trichothecenes and fumonisins to cause reproductive disorders in domestic animals has been investigated. The present review summarizes the toxicological data on the effects of Fusarium mycotoxins on ovarian function, testicular function, placenta and fetus, and puberty/sexual maturity of domestic animals. The results of in vivo animal studies and in vitro tests are reported and discussed.  相似文献   

18.
Wheat for human consumption (140 samples) was collected after harvest from all regions of Bulgaria. The 1995 crop year was characterized by heavy rainfall in the spring and summer months. The internal mycoflora of wheat samples was dominated by Fusarium spp. and Alternaria spp., and storage fungi were rarely present. The samples were analysed for contamination with Fusarium mycotoxins deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), T-2 Toxin (T-2), diacetoxyscirpenol (DAS), and zearalenone (ZEA), using enzyme immunoassay methods. DON and ZEA were the predominant toxins, with a contamination frequency of 67% and 69%, respectively. The average levels of these toxins in positive samples were 180 g/kg (DON) and 17 g/kg (ZEA), maximum concentrations were 1800 g kg–1 and 120 g kg–1, respectively. Acetyl derivatives of DON, namely 3-AcDON and 15-AcDON, were found in 2.1 % and 0.7% of the samples, at at maximum level of about 100 g kg–1. Only one sample was positive for T-2 (55 g/kg), DAS was not detected. This is the first report about the natural occurrence of a range of Fusarium mycotoxins in wheat for human consumption in Bulgaria.Abbreviations 3-AcDON 3-acetyldeoxynivalenol - 15-AcDON 15-acetyldeoxynivalenol - DAS diacetoxyscirpenol - DON deoxynivalenol - EIA enzyme immunoassay - T-2 T-2 toxin - ZEA zearalenone  相似文献   

19.
Eighty-two samples of dried food commodities from Cameroon were screened and quantified for different mycotoxins, including fumonisin B1 (FB1), zearalenone (ZEA), deoxynivalenol (DON), aflatoxin (AF) and ochratoxin A (OTA), by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC), respectively. The percentage of positive samples was as follows: FB1 41%, AF 51%, ZEA 57%, DON 65% and OTA 3%. High FB1 contents were found in maize, averaging 3,684 μg/kg (range: 37-24,225 μg/kg), whereas the highest average ZEA level was found in peanuts (70 μg/kg), followed by maize (69 μg/kg), rice (67 μg/kg) and beans (48 μg/kg) with no ZEA was detected in soybeans. DON contents were low, ranging from 13 to 273 μg/kg, and for AF the average content was 2.6 μg/kg with peanuts and maize as principal substrates. The incidence of OTA was low, with a mean level of 6.4 μg/kg recorded. The majority (79%) of samples contained more than one mycotoxin and the most frequent co-occurrence found was FB1 + ZEA + DON, detected in 21% of samples (mainly maize) analysed. Co-contamination with FB1 + ZEA + DON + AF was found in 11% of the samples. Although a large proportion of samples had fairly low levels of individual mycotoxins, this should be of concern as the co-occurrence of mycotoxins may generate additive or synergistic effect in humans, especially if the respective commodities are consumed almost on a daily basis.  相似文献   

20.
Conservation forage (17 hay and 18 grass silage samples) from 15 farms with different intensities of grassland management in the Federal State of Brandenburg were examined for contamination with fusaria and their mycotoxins. The numbers of culturable filamentous fungi in hay were determined by plate counting andFusarium isolates were classified taxonomically. The mycotoxins Zearalenone (ZEA) and Deoxynivalenol (DON) were extracted from hay as well as silage by different procedures and detected chromatographically (HPLC). The numbers of filamentous fungi in the hay samples were 102 and 106 CFU/g FM independently of intensive or extensive management. Only fourFusarium species were identified.Fusarium culmorum, a potential toxin producing species, was most frequently detected (52% of all isolates). ZEA was found in two hay and four silage samples (6-66 μg/kg), DON in three hay and seven silage samples (63–1290 μg/kg). There were no differences between forage samples of extensive and intensive cultivated grassland of the year 2003 regarding numbers of fusaria and the content of their mycotoxins.
Presented at the 26th Mykotoxin-Workshop in Herrsching, Germany, May 17–19, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号