首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Vacuolar membrane-derived vesicles isolated from Vigna radiata catalyze oxygen exchange between medium phosphate and water. On the basis of the inhibitor sensitivity and cation requirements of the exchange activity, it is almost exclusively attributable to the vacuolar H+-pyrophosphatase (V-PPase). The invariance of the partition coefficient and the results of kinetic modeling indicate that exchange proceeds via a single reaction pathway and results from the reversal of enzyme-bound pyrophosphate synthesis. Comparison of the exchange reactions catalyzed by V-PPase and soluble PPases suggests that the two classes of enzyme mediate Pi---HOH exchange by the same mechanism and that the intrinsic reversibility of the V-PPase is no greater than that of soluble PPases.  相似文献   

2.
Vacuolar pyrophosphatase (V-PPase) from juice cells of 3 citrus varieties (differing in their vacuolar pH) were partially characterized using purified tonoplast vesicles. Total V-PPase activity was highest in vesicle samples from sweet limes with vacuolar pH of 5.0, while samples from acid limes (with lowest vacuolar pH of 2.0) had the minimal total V-PPase activity. Samples from 'Valencia' orange had intermediate V-PPase levels. When assayed at equal V-PPase activity (measured as Pi production), V-PPase was not able to generate a pH gradient (ΔpH) in vesicles from acid lime, despite its capacity to form a ΔpH in the presence of ATP. Vesicles from sweet lime and 'Valencia' orange were able to form similar ΔpHs in the presence of PPi and ATP supplied together or separately. Antibodies raised against a peptide corresponding to the catalytic site of mung bean V-PPase reacted with samples from all varieties, coinciding with their capacity to hydrolyze PPi. However, antibodies raised against the entire V-PPase polypeptide from mung bean recognized V-PPase from sweet lime and 'Valencia' orange, but did not recognize acid lime samples even at elevated protein concentrations. The structural differences highlighted by antibody recognition, substrate affinity and proton-pumping reactions of V-PPase presented here may reflect evolutionary adaptations related to its reduced function under in vivo conditions and are in agreement with our understanding of acid, sugar accumulation and vacuolar pH changes during the development and maturation of citrus fruits.  相似文献   

3.
The Mg2+-dependent activity of the tonoplast pyrophosphatase (PPase) was investigated by measuring proton transport and by using the acridine orange technique on intact vacuoles of the aquatic liverwort Riccia fluitans L. In solutions with both Mg2+ and pyrophosphate present, a number of complexes are formed, which could all influence the enzymatic and hence the transport activity of the PPase. Therefore, the individual concentrations of these complexes were calculated and their contributions to proton transport across the tonoplast were tested. From these experiments we conclude that Mg2+ has three different roles: (i) Mg2+ stimulates transport activity of the PPase. (ii) Mg2PPi inhibits PPase-mediated H+ transport, (iii) MgPPi* (= MgPPi2-+ MgHPPi-) is the substrate with an apparent K1/2= 5–10 μM, with no discrimination between MgPPi2- and MgHPPi-.  相似文献   

4.
Using a polyclonal antiserum specific for the tonoplastic H+-pyrophosphatase (tPPase), significant amounts of antigenic polypeptides of the correct molecular mass were detected in Western blots of plasma membrane isolated from cauliflower (Brassica oleracea L.) inflorescence by phase-partitioning and subsequent sucrose density centrifugation. Potassium iodide-stripped plasma membranes continued to give a strong positive signal, indicating that the PPase antigen detected was not a result of contamination through soluble PPase released during homogenisation. The same preparation contained negligible vacuolar (v)H+-ATPase activity and the A subunit of the vATPase could not be detected by immunoblotting. Plasma membrane fractions exhibited a proton-pumping activity with ATP as substrate, but such an activity was not measurable with pyrophosphate, although the hydrolysis of this substrate was recorded. By contrast, pyrophosphate supported proton pumping in tonoplast-containing fractions. Immunogold electron microscopy confirmed the presence of PPase at the plasma membrane as well as at the tonoplast, trans Golgi network, and multivesicular bodies. The density of immunogold label was higher at the plasma membrane than at the tonoplast, except for membrane fragments occurring in the lumen of the vacuoles which stained very conspicuously. Received: 29 June 1998 / Accepted: 9 November 1998  相似文献   

5.
6.
The proton pumping activity of the tonoplast (vacuolar membrane) H+-ATPase and H+-pyrophosphatase (H+-PPase) has been studied on a tonoplast-enriched microsomal fraction and on intact vacuoles isolated from a heterotrophic cell suspension culture of Chenopodium rubrum L. in the presence of the lysosphingolipids D-sphingosine, psychosine (galactosylsphingosine) and lysosulfatide (sulfogalactosyl-sphingosine). Sphingosine strongly stimulates (Ka= 0.16 μ M ) the PPase activity, assayed both as ΔpH formation across the tonoplast vesicle membrane, and as reversible clamp current measured by the whole-vacuolar mode of the patch-clamp technique. Psychosine showed a minor, and lysosulfatide no stimulatory effect. No effect upon the ATPase activity has been observed. No sphingosine-induced change could be observed in the affinity of the PPase for its substrate (apparent Km= 10 μ M MgPPi). We tentatively conclude that sphingosine, which is known as a potent inhibitor of the protein kinase C in animal cells, may be a regulator of the plant vacuolar PPase.  相似文献   

7.
The 3-dimensional structure of inorganic pyrophosphatase from Thermus thermophilus (T-PPase) has been determined by X-ray diffraction at 2.0 A resolution and refined to R = 15.3%. The structure consists of an antiparallel closed beta-sheet and 2 alpha-helices and resembles that of the yeast enzyme in spite of the large difference in size (174 and 286 residues, respectively), little sequence similarity beyond the active center (about 20%), and different oligomeric organization (hexameric and dimeric, respectively). The similarity of the polypeptide folding in the 2 PPases provides a very strong argument in favor of an evolutionary relationship between the yeast and bacterial enzymes. The same Greek-key topology of the 5-stranded beta-barrel was found in the OB-fold proteins, the bacteriophage gene-5 DNA-binding protein, toxic-shock syndrome toxin-1, and the major cold-shock protein of Bacillus subtilis. Moreover, all known nucleotide-binding sites in these proteins are located on the same side of the beta-barrel as the active center in T-PPase. Analysis of the active center of T-PPase revealed 17 residues of potential functional importance, 16 of which are strictly conserved in all sequences of soluble PPases. Their possible role in the catalytic mechanism is discussed on the basis of the present crystal structure and with respect to site-directed mutagenesis studies on the Escherichia coli enzyme. The observed oligomeric organization of T-PPase allows us to suggest a possible mechanism for the allosteric regulation of hexameric PPases.  相似文献   

8.
Summary Activities of the tonoplast ATPase (V-ATPase EC 3.6.1.3) and PPase (V-PPase EC 3.6.1.1) provide the proton gradient driving the accumulation of various metabolites, organic and inorganic ions in the plant vacuole. We used anion exchange chromatography, liquid-phase isoelectric focusing (IEF), and continuous-elution native polyacrylamide gel electrophoresis (preparative PAGE) to enrich the V-PPase from solubilized tonoplast proteins from suspension cultured cells ofChenopodium rubrum L.The fractions were identified by their enzymatic activity, sensitivity towards the specific PPase inhibitor aminomethylenediphosphonate, apparent molecular weight, and immunological reactivity with an antibody raised against mung bean V-PPase. All these different methods used for the separation of solubilized tonoplast proteins revealed the existence of two physically separable V-PPase proteins exhibiting substrate specific enzymatic activity and 66 kDa apparent molecular weight after sodium dodecyl sulfate(SDS)-PAGE. The isoelectric points of the active V-PPase forms were 5.05 and 5.48 (V-ATPase 6.1). On the basis of the observation of high recoveries of enzymatic activity after different preparations we suggest that the V-PPase proteins separated may represent physiologically occurring forms of the enzyme which cannot be distinguished by SDS-PAGE and Western blot.  相似文献   

9.
The Arabidopsis vacuolar H+‐pyrophosphatase (AVP1), when over‐expressed in transgenic (TG) plants, regulates root and shoot development via facilitation of auxin flux, and enhances plant resistance to salt and drought stresses. Here, we report that TG perennial creeping bentgrass plants over‐expressing AVP1 exhibited improved resistance to salinity than wild‐type (WT) controls. Compared to WT plants, TGs grew well in the presence of 100 mm NaCl, and exhibited higher tolerance and faster recovery from damages from exposure to 200 and 300 mm NaCl. The improved performance of the TG plants was associated with higher relative water content (RWC), higher Na+ uptake and lower solute leakage in leaf tissues, and with higher concentrations of Na+, K+, Cl and total phosphorus in root tissues. Under salt stress, proline content was increased in both WT and TG plants, but more significantly in TGs. Moreover, TG plants exhibited greater biomass production than WT controls under both normal and elevated salinity conditions. When subjected to salt stress, fresh (FW) and dry weights (DW) of both leaves and roots decreased more significantly in WT than in TG plants. Our results demonstrated the great potential of genetic manipulation of vacuolar H+‐pyrophosphatase expression in TG perennial species for improvement of plant abiotic stress resistance.  相似文献   

10.
A dimeric form can be obtained from native hexameric Escherichia coli inorganic pyrophosphatase (E-PPase) by destroying the hydrophobic intersubunit contacts, and it has been shown earlier to consist of the subunits of different trimers. The present paper is devoted to the kinetic characterization of such a "double-decked" dimer obtained by the dissociation of either the native enzyme or the mutant variant Glu145Gln. The dimeric form of the native inorganic pyrophosphatase was shown to retain high catalytic efficiency that is in sharp contrast to the dimers obtained as a result of the mutations at the intertrimeric interface. The dimeric enzymes described in the present paper, however, have lost the regulatory properties, in contrast to the hexameric and trimeric forms of the enzyme.  相似文献   

11.
A covalent adduct of norchlorpromazine (CAPP) and calmodulin is a very potent antagonist of calmodulin activation of several enzymes. The phenothiazine-calmodulin complex (CAPP-calmodulin) acts as a pure antagonist with phosphodiesterase and myosin kinase or a partial agonist with the phosphoprotein phosphatase, calcineurin. Because of its potency and the selectivity inherent to its calmodulin moiety, CAPP-calmodulin should be a uniquely useful probe of calmodulin actions.  相似文献   

12.
Chao TC  Huang H  Tsai JY  Huang CY  Sun YJ 《Proteins》2006,65(3):670-680
Inorganic pyrophosphatase (PPase) catalyzes the hydrolysis of pyrophosphate (PPi) to orthophosphate (Pi) and controls the level of PPi in cells. PPase plays an essential role in energy conservation and provides the energy for many biosynthetic pathways. The Helicobacter pylori pyrophosphatase (HpPPase) gene was cloned, expressed, purified, and found to have a molecular weight of 20 kDa. The K(m) and V (max) of HpPPase were determined as 214.4 microM and 594 micromol Pi min(-1) mg(-1), respectively. PPi binds Mg(2+) to form a true substrate that activates the enzyme. However, free PPi could be a potent inhibitor for HpPPase. The effects of the inhibitors NaF, ATP, iminodiphosphate, and N-ethylmaleimide on HpPPase activity were evaluated. NaF showed the highest inhibition of the enzyme. Crystal structures of HpPPase and the PPi-HpPPase complex were determined. HpPPase comprises three alpha-helices and nine beta-strands and folds as a barrel structure. HpPPase forms a hexamer in both the solution and crystal states, and each monomer has its own PPi-binding site. The PPi binding does not cause a significant conformational change in the PPi-HpPPase complex, which might represent an inhibition state for HpPPase in the absence of a divalent metal ion.  相似文献   

13.
A cDNA clone with sequence homology to soluble inorganic pyrophosphatase (IPPase) was isolated from a library of developing barley grains. The protein encoded by this clone was produced in transgenic Escherichia coli, and showed IPPase activity. In nondormant barley grains, the gene appeared to be expressed in metabolically active tissue such as root, shoot, embryo and aleurone. During imbibition, a continuous increase of the steady state mRNA level of IPPase was observed in embryos of non-dormant grains. In the embryos of dormant grains its production declined, after an initial increase. With isolated dormant and nondormant embryos, addition of recombinant IPPase, produced by E. coli, enhanced the germination rate. On the other hand, addition of pyrophosphate (PPi), substrate for this enzyme, appeared to reduce the germination rate. A role for this IPPase in germination is discussed.  相似文献   

14.
A nucleotide pyrophosphatase (EC 3.6.1.9) was purified to homogeneity from lentil seedlings. The enzyme is a single polypeptide chain of 75 ± 2 kDa that exhibits hydrolytic activities toward pyrophosphate linkages of several substrates. Reduced and oxidized forms of NAD(P) were shown to be hydrolyzed to nicotinamide mononucleotide and AMP. Other dinucleotides such as FAD and dinucleoside oligophosphates were hydrolyzed as well, but with lower efficiency. Pyrophosphatase activity was increased in the presence of divalent cations such as Ca2+, Mg2+, and Mn2+, whereas Cu2+, Zn2+, and Ni2+ ions inhibited this activity. The active site in the enzyme was not defined, but histidine residue(s) seemed to be crucial for the enzymatic activity.  相似文献   

15.
The effect of Mg2+ ions on inducing pyrophosphatase activity of germinating cotton (Gossypium hirsutum L.) seeds was investigated. The presence of Mg2+ ions in the germination medium markedly shortened time for the attainment of the pyrophosphatase maximum activity (T max). In the absence of Mg2+ ions in the nutrient medium, T max comprised 6.0–6.5 days, whereas in the presence of 3–5 mM Mg2+, T max was decreased to 3–4 days. An increase in the concentration of Mg2+ ions in the medium up to 5 mM resulted in an increase in pyrophosphatase activity. The effect of Mg2+ ions on the activity of a purified pyrophosphatase preparation isolated from three-day-old cotton seedlings was investigated. Mg2+ ions did not affect the rate of attainment of a maximum pyrophosphatase activity, but decreased the value of the Michaelis-Menten constant.  相似文献   

16.
17.
H+-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) drives proton transport against an electrochemical potential gradient by hydrolyzing pyrophosphate (PPi) and is found in various endomembranes of higher plants, bacteria, and some protists. H+-PPase contains seven highly conserved lysines. We examined the functional roles of these lysines, which are, for the most part, found in the cytosolic regions of mung bean H+-PPase by site-directed mutagenesis. Construction of mutants that each had a cytosolic and highly conserved lysine substituted with an alanine resulted in dramatic drops in the PPi hydrolytic activity. The effects caused by ions on the activities of WT and mutant H+-PPases suggest that Lys-730 may be in close proximity to the Mg2+-binding site, and the great resistance of the K694A and K695A mutants to fluoride inhibition suggests that these lysines are present in the active site. The modifier fluorescein 5'-isothiocyanate (FITC) labeled a lysine at the H+-PPase active site but did not inhibit the hydrolytic activities of K250A, K250N, K250T, and K250S, which suggested that Lys-250 is essential for substrate binding and may be involved in proton translocation. Analysis of tryptic digests indicated that Lys-711 and Lys-717 help maintain the conformation of the active site. Proteolytic evidence also demonstrated that Lys-250 is the primary target of trypsin and confirmed its crucial role in H+-PPase hydrolysis.  相似文献   

18.
Plasma-membrane-located primary pumps were investigated in the sieve element (SE)-companion cell complex in the transport phloem of 2-week-old stems of Ricinus communis L. and, for comparison, in stems of Cucurbita pepo L. and in the secondary phloem of Agrobacterium tumefaciens-induced crown galls as a typical sink tissue. The plasma-membrane (PM) H+-ATPase and the tonoplast-type pyrophosphatase (PPase) were immunolocalized by epifluorescence and confocal laser scanning microscopy (CLSM) upon single or double labeling with specific monoclonal and polyclonal antibodies. Quantitative fluorescence evaluation by CLSM revealed both pumps in one membrane, the sieve-element PM. Different PM H+-ATPase antibody clones, raised against the PM H+-ATPase of Zea mays coleoptiles, induced in mouse and produced in mouse hybridoma cells, discriminated between different phloem cell types. Clones 30D5C4 and 44B8A1 labeled sieve elements and clone 46E5B11D5 labeled companion cells, indicating the existence of different phloem PM H+-ATPase isoforms. The results are discussed in terms of energization of SE transporters for retrieval of leaking sucrose, K+ and amino acids, as one of the unknown roles of ATP found in SEs. The function of the PPase could be related to phloem sucrose metabolism in support of ATP-requiring processes. Received: 3 July 2000 / Accepted: 12 October 2000  相似文献   

19.
The first crystal structure of an inorganic pyrophosphatase (S-PPase) from an archaebacterium, the thermophile Sulfolobus acidocaldarius, has been solved by molecular replacement and refined to an R-factor of 19.7% at 2.7 A. S-PPase is a D3 homohexameric protein with one Mg2+ per active site in a position similar to, but not identical with, the first activating metal in mesophilic pyrophosphatases (PPase). In mesophilic PPases, Asp65, Asp70, and Asp102 coordinate the Mg2+, while only Asp65 and Asp102 do in S-PPase, and the Mg2+ moves by 0.7 A. S-PPase may therefore be deactivated at low temperature by mispositioning a key metal ion. The monomer S-PPase structure is very similar to that of Thermus thermophilus (T-PPase) and Escherichia coli (E-PPase), root-mean-square deviations around 1 A/Calpha. But the hexamer structures of S- and T-PPase are more tightly packed and more similar to each other than they are to that of E-PPase, as shown by the increase in surface area buried upon oligomerization. In T-PPase, Arg116 creates an interlocking ionic network to both twofold and threefold related monomers; S-PPase has hydrophilic interactions to threefold related monomers absent in both E- and T-PPase. In addition, the thermostable PPases have about 7% more hydrogen bonds per monomer than E-PPase, and, especially in S-PPase, additional ionic interactions anchor the C-terminus to the rest of the protein. Thermostability in PPases is thus due to subtle improvements in both monomer and oligomer interactions.  相似文献   

20.
Because Plasmodium falciparum replicates inside of a parasitophorous vacuole (PV) within a human erythrocyte, parasite egress requires the rupture of two limiting membranes. Parasite Ca2+, kinases, and proteases contribute to efficient egress; their coordination in space and time is not known. Here, the kinetics of parasite egress were linked to specific steps with specific compartment markers, using live‐cell microscopy of parasites expressing PV‐targeted fluorescent proteins, and specific egress inhibitors. Several minutes before egress, under control of parasite [Ca2+]i, the PV began rounding. Then after ~1.5 min, under control of PfPKG and SUB1, there was abrupt rupture of the PV membrane and release of vacuolar contents. Over the next ~6 min, there was progressive vacuolar membrane deterioration simultaneous with erythrocyte membrane distortion, lasting until the final minute of the egress programme when newly formed parasites mobilised and erythrocyte membranes permeabilised and then ruptured—a dramatic finale to the parasite cycle of replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号