首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After irradiation of HeLa S3 cells with 220 kv x-rays during G1, treatment with any of six inhibitors of DNA synthesis results in the progressive enhancement of cell killing (loss of colony-forming ability). Incubation with hydroxyurea, cytosine arabinoside, or hydroxylamine reduces survival five- to twentyfold in about 8 hr, following an x-ray dose of 400 rads. In contrast, treatment with 5-fluorodeoxyuridine, deoxyadenosine, or thymidine after this same dose reduces survival less than twofold during a comparable time interval. These differences occur at drug concentrations which reduce the rate of DNA synthesis by at least 95% (except in the case of hydroxylamine, which inhibits DNA synthesis to a smaller extent), but which kill no unirradiated cells during the treatment periods. When inhibition of DNA synthesis with either hydroxyurea or cytosine arabinoside is reversed by addition of appropriate precursors of DNA, the enhancement is abolished. With hydroxyurea, the rate of cell killing is dependent on the dose of x-rays previously administered, and the extent of enhancement seems to be related to the drug concentration. Imposition of a delay between irradiation and addition of hydroxyurea does not abolish the enhancement effect, but instead causes a proportional lag in its inception. Postirradiation treatment of S phase cells with either hydroxyurea or cytosine arabinoside also enhances killing. Furthermore, unlike early G1 cells, S cells (and, as shown previously, cells blocked at the G1-S transition) are sensitized by preirradiation exposure to hydroxyurea.  相似文献   

2.
WK Sinclair 《Radiation research》2012,178(2):AV112-AV124
Various radiation responses in mammalian cells depend on the position of the cell within its generation cycle (that is, its age) at the time of irradiation. Studies have most often been made by irradiating synchronized populations of cells in vitro. Results in different cell lines are not easy to compare, but an attempt has been made here to point out similarities and differences with regard to cell killing and division delay. In general, survival data obtained so far show that, in cells with a short G(1), cells are most sensitive in mitosis and in G(2), less sensitive in G(1), and least sensitive during the latter part of the S period. In cells with a long G(1), in addition to the above, there is usually a resistant phase early in G(1) followed by a sensitive stage near its end. (The latter may be as sensitive as mitosis.) Exceptions to the above, especially in some L cell sublines, have been noted, and a possible explanation is given. In Chinese hamster cells, maximum survival after irradiation occurs during S, but it does not coincide with the time of the maximum rate of DNA synthesis or with the time of the maximum number of cells in DNA synthesis, and changes in survival also occur in cells inhibited from synthesizing DNA. Rather, survival depends on the position the cell has reached in the cycle at that time, which involves not only DNA synthesis but other processes as well. Survival is not completely correlated with DNA synthesis, since halting DNA synthesis just before or just after irradiation only slightly affects survival at its maximum. Division delay exhibits a pattern of response which is similar in most cell lines. Delay is considerable for cells irradiated in mitosis, is small for cells in G(1), increases to a maximum for cells during S, and declines for cells in G(2). L cells or human kidney cells may have a longer delay for cells irradiated in G(2) than for those irradiated in S. The results can be explained in terms of a two-component model of division delay. One component results from the prolongation of the S period due to the reduced rate of DNA synthesis, and the other, a block in G(2), is independent of DNA synthesis. The proportion of the two components may vary in different cell lines.  相似文献   

3.
The initiation of DNA synthesis is governed by the licensing of replication origins, which consists of assembling a pre-replication complex (pre-RC) on origins during late M- and G1-phases. In metazoans, functional replication origins do not show defined DNA consensus sequences, thus evoking the involvement of chromatin determinants in the selection of these origins. Here, we show that the onset of licensing in mammalian cells coincides with an increase in histone H4 Lys 20 monomethylation (H4K20me1) at replication origins by the methyltransferase PR-Set7 (also known as Set8 or KMT5A). Indeed, tethering PR-Set7 methylase activity to a specific genomic locus promotes the loading of pre-RC proteins on chromatin. In addition, we demonstrate that PR-Set7 undergoes a PCNA- and Cul4-Ddb1-driven degradation during S phase that contributes to the disappearance of H4K20me1 at origins and the inhibition of replication licensing. Strikingly, expression of a PR-Set7 mutant insensitive to this degradation causes the maintenance of H4K20me1 and repeated DNA replication at origins. These results elucidate a critical role for PR-Set7 and H4K20me1 in the chromatin events that regulate replication origins.  相似文献   

4.
A comparison was made of the ability of either X-radiation or a DNA-specific ligand (the vital bis-benzimidazole dye; Hoechst 33342) to induce: cell killing, inhibition of de novo DNA synthesis, DNA strand breakage and the delay of cell division in human colon adenocarcinoma cells in vitro. Unlike radiation-induced cell killing, ligand-induced cytotoxicity appeared to be positively correlated with the extent of inhibition of de novo DNA synthesis--a feature consistent with the persistent binding of ligand molecules to nuclear DNA. Ligand-induced DNA strand-breaks disappeared slowly although ligand-treated cells retained apparently normal capacities to repair discrete radiogenic DNA strand-breaks. Pre-treatment of cells with Hoechst 33342 resulted in a dose-modifying enhancement of radiation resistance not associated with altered dosimetry for strand-break induction. However, radioresistance was accompanied by the protracted retention of cells in the G2 phase of the cell cycle. We suggest that the results provide direct evidence that the retention of cells in G2 phase is a sparing phenomenon and is triggered by the responses of chromatin domains to the presence of DNA damage. Our results have implications for the use of DNA-interactive agents in combined modalities for tumour therapy, and indicate a possible basis for the sparing of some tumour cells in dividing populations.  相似文献   

5.
6.
Covalent circular sex-factor DNA has been isolated from donor and recipient cells during the conjugation of normal and temperature-sensitive DNA mutants of Escherichia coli. Single strands of sex-factor DNA were centrifuged in cesium chloride-poly(U,G) gradients to give two components that have been identified by annealing experiments as the separated complementary strands. When matings are performed with either DNA temperature-sensitive donor or recipient cells, the inhibition of vegetative DNA synthesis at the restrictive temperature does not interfere with transfer and circularization of the sex-factor DNA. If DNA is isolated from temperature-sensitive donor cells mated at the restrictive temperature, a specific stimulation of sex-factor DNA synthesis can be demonstrated. By separating the complementary strands of the sex-factor in a cesium chloride-poly (U,G) gradient, this DNA synthesis has been found to be asymmetric. The sex-factor DNA strand which is synthesized in the donor has the same polarity as the strand which is transferred to the recipient.  相似文献   

7.
Imprinted autosomal loci apparently reside in very large chromosomal domains that exhibit asynchrony in replication of homologous alleles during the DNA synthesis phase. Replication asynchrony can be cytogenetically visualized by a replication-banding discordance between homologous bands of a given pair of chromosomal homologs. The replication time of a chromosomal band at high resolution can be determined by blocking DNA synthesis at the R/G-band transition and using replication banding. The R/G transition reflects the transition from early (R-) to late (G- and C-) band DNA replication. We studied discordance between two groups of homologous chromosomal bands: (a) four bands, 6q26–27, 11p13, 11p15.5 and 15q11.2–12, each containing at least one imprinted gene; and (b) nine bands containing no known imprinted genes. Fifty pairs of chromosomes were analyzed at high resolution after R/G transition blocking and late 5-bromo-2′-deoxyuridine incorporation. The rate of discordance was the same for bands containing imprinted genes and for control bands. Both homologous bands of a pair replicate either before or after the R/G transition and do not straddle the R/G transition. Repression associated with imprinting does not appear to involve late replication at the band level of resolution. Tissue-specific inactivation is associated with DNA methylation and late replication, whereas allele-specific inactivation is associated with DNA methylation but not with delayed or late replication. Received: 7 May 1996; in revised form: 27 January 1997 / Accepted: 31 July 1997  相似文献   

8.
Monoclonal antibody (mAb) G7 has been developed and appears to recognize a triggering structure on porcine natural killer (NK) cells and granulocytes. G7 mAb binds to approximately 13% of lymphocytes, 70% of monocytes, and greater than 95% of granulocytes. G7 mAb does not react with B cells. G7 mAb immunoprecipitates a heterodispersed molecule of approximately 40 kDa. Functionally, whole but not F(ab')2 fragments of G7 mAb enhance NK killing of Fc receptor positive K562, U937, and MOLT-4 targets but not Fc receptor negative CEM, WEHI-164, or YAC-1 targets. Both whole and F(ab')2 fragments of G7 mAb inhibit lymphocyte-mediated antibody-dependent cellular cytotoxicity. Interestingly, G7 mAb induces dramatic levels of granulocyte killing against nucleated K562 targets. These results suggest that G7 mAb recognizes a trigger molecule involved in porcine cellular cytotoxicity.  相似文献   

9.
Novobiocin and nalidixic acid, inhibitors of the bacterial enzyme DNA gyrase, inhibit DNA, RNA and protein synthesis in several human and rodent cell lines. The sensitivity of DNA synthesis (both replicative and repair) to inhibition by novobiocin and nalidixic acid is greater than that of protein synthesis. Novobiocin inhibits RNA synthesis about half as effectively as it does DNA synthesis, whereas nalidixic acid inhibits both equally well. Replicative DNA synthesis, as measured by incorporation of [3H]thymidine, is blocked by novobiocin in a number of cell strains; the inhibition is reversible with respect to both DNA synthesis and cell killing, and continues for as long as 20--30 h if the cells are kept in novobiocin-containing growth medium. Both novobiocin and nalidixic acid inhibit repair DNA synthesis (measured by BND-cellulose chromatography) induced by ultraviolet light or N-methyl-N'-nitro-N-nitrosoguanidine (but not that induced by methyl methanesulfonate) at lower concentration (as low as 5 micrograms/ml) than those required to inhibit replicative DNA synthesis (50 micrograms/ml or greater). Neither novobiocin nor nalidixic acid alone induces DNA repair synthesis. Incubation of ultraviolet-irradiated cells with 10--100 micrograms/ml novobiocin results in little, if any, further reduction of colony-forming ability (beyond that caused by the ultraviolet irradiation). Novobiocin at sufficiently low concentrations (200 micrograms/ml) apparently generates a quiescent state (in terms of cellular DNA metabolism) from which recovery is possible. Under more drastic conditions of time in contact with cells and concentration, however, novobiocin itself induces mammalian cell killing.  相似文献   

10.
The alkylating antitumor agent triethyleneiminobenzoquinone (Trenimon) causes a rapid decrease in the incorporation of labeled thymidine into the DNA of Yoshida or Ehrlich ascites tumor cells. The effect is expressed 4 h after administration of 6 × 10−8 moles/kg of the drug to mice bearing Yoshida ascites tumors or of 6 × 10−7 moles/kg to Ehrlich ascites tumor-bearing animals, respectively. The reduced incorporation of labeled thymidine which is observed under these conditions is not due to an inhibition of DNA synthesis. DNA synthesis was measured by an isotope dilution assay after pulse-labeling with 3H-thymidine and by monitoring the increase in the total amount of DNA of the cell populations. The data demonstrate that DNA synthesis is not affected during the first 8 h after exposure to the drug. This conclusion is supported by cell kinetic measurements which indicate that the alkylating agent does not interfere with the progression of cells into the S phase, but exerts a block at the G 2 stage of the cell cycle. The reduced incorporation of thymidine into DNA is explained by a decreased transport of the nucleoside into the cells.  相似文献   

11.
12.
The progression of Swiss 3T3 fibroblasts from the quiescent state (G0) through G1 to DNA synthesis in S phase generally requires the synergistic action of two mitogens. The main aim of this study was to compare systematically the early Ca2+ and pH responses in quiescent cells to all of the pair combinations of eight mitogens (bombesin, platelet-derived growth factor, vasopressin, prostaglandin F2 alpha, epidermal growth factor, 12-O-tetradecanoyl phorbol-13-acetate, insulin, 8-bromo-cAMP) with their subsequent effects on DNA synthesis. Each of the mitogens which caused inositol phosphate accumulation (bombesin, platelet-derived growth factor, vasopressin, prostaglandin F2 alpha) also activated Ca2+- and phospholipid-dependent protein kinase (protein kinase C) and generated both the Ca2+ and pH responses, although epidermal growth factor also generated the ionic responses without causing release of inositol phosphates or activation of protein kinase C. For sequential mitogen additions the ionic signals were measured in single cells as well as in cell populations to avoid ambiguities due to heterogeneity in the responses of the cells to the various mitogens. The modulating effects of the mitogens on the [Ca2+]i responses to subsequent mitogen additions varied widely, but detailed comparisons showed that the pattern of blocking effects could not be attributed solely to the effect of the first mitogen causing either maximal breakdown of phosphatidylinositol 4,5-bisphosphate or complete depletion of the intracellular Ca2+ pool or activation of protein kinase C. From these analyses it was concluded that the requirement for two mitogens for effective DNA synthesis could not be attributed to the summation to a critical threshold of either the ionic signals or phosphatidylinositol 4,5-bisphosphate breakdown, and that these responses are insufficient by themselves to cause the cells to progress to DNA synthesis in S phase.  相似文献   

13.
Events that are essential for progression through the G1 period begin immediately or shortly after resting chick embryo cells are given fresh medium with serum. The following observations support the contention that the critical events include the production of non-ribosomal RNAs: (1) Addition to the “shift-up” medium of either of two inhibitors of RNA formation, comptothecin or 5, 6-dichloro?1-β-D-ribofuranosylbenzimidazole, delays the onset of DNA replication by about the length of time the cells are exposed to the drugs. (2) Although entry into the S phase is delayed by the inhibitors, the slopes of the DNA response curves are identical to that of control cultures. (3) Neither drug reduces significantly the rate of overall protein synthesis. Observations (2) and (3) are taken to mean that expansion of the G1 period is not due to cell damage. (4) A third inhibitor of RNA synthesis, cordycepin, also delays passage of stimulated cells throgh the G1 phase, but, in this case, the length of the delay period is greater than that of the exposure period. (5) A low dose of actinomycin D does not impede movement towards the S phase, even though the synthesis of preribosomal RNA is considerably reduced. The possibility is considered that the essential G1 molecules are mRNAs.  相似文献   

14.
Cyclic AMP dependent regulation of mitosis in human lymphoid cells   总被引:6,自引:0,他引:6  
Intracellular levels of cyclic AMP (cAMP), cAMP-dependent phosphodiesterase activity, and adenylate cyclase activity are examined in an established line of human lymphoid cells synchronized by either excess thymidine or by colcemid treatment. cAMP levels and adenylate cyclase activities during the two G periods are high when compared with the values in M. cAMP-dependent phosphodiesterase activity, which is low during early G 2, is shown to increase during G 2 and reach a maximum activity during M. Agents such as dibutyryl cAMP, 1-methyl-3-isobutyl xanthine, noradrenaline, and isopropyl noradrenaline, which increase the levels of intracellular cAMP were examined to determine their effects on mitosis and on DNA synthesis. In thymidine-synchronized cells the onset of mitosis is prevented by increasing or maintaining high levels of cAMP during G 2. The specificity of inhibition of DNA synthesis or mitosis by dibutyryl cAMP is a function of the time, during the cell cycle, when the analogue is added. The elevation of cAMP by methyl xanthine results in a more general inhibition of nucleic acid synthesis and mitosis. Although both catecholamine hormones inhibit mitosis, isopropylnoradrenaline also inhibits DNA synthesis while noradrenaline treatment does not result in such inhibition.  相似文献   

15.
Imprinted genes are important in development and their allelic expression is mediated by imprinting control regions (ICRs). On their DNA-methylated allele, ICRs are marked by trimethylation at H3 Lys 9 (H3K9me3) and H4 Lys 20 (H4K20me3), similar to pericentric heterochromatin. Here, we investigate which histone methyltransferases control this methylation of histone at ICRs. We found that inactivation of SUV4-20H leads to the loss of H4K20me3 and increased levels of its substrate, H4K20me1. H4K20me1 is controlled by PR-SET7 and is detected on both parental alleles. The disruption of SUV4-20H or PR-SET7 does not affect methylation of DNA at ICRs but influences precipitation of H3K9me3, which is suggestive of a trans-histone change. Unlike at pericentric heterochromatin, however, H3K9me3 at ICRs does not depend on SUV39H. Our data show not only new similarities but also differences between ICRs and heterochromatin, both of which show constitutive maintenance of methylation of DNA in somatic cells.  相似文献   

16.
Induction of DNA synthesis in embryonic chick red cells has been examined during the first and second cell cycles after fusion with HeLa cells synchronized in different parts of G1 and S-phase. The data indicate that: (i) the younger the embryonic blood the more rapidly the red cells are induced into DNA synthesis; (ii) the greater the ratio of HeLa to chick nuclei in the heterokaryon, the more rapidly the induction occurs; (iii) DNA synthesis in the chick nucleus can continue after the HeLa nucleus has left S-phase and entered either G2 or mitosis; (iv) the induction potential of late S-phase HeLa is somewhat lower than that of early or mid S-phase cells; (v) less than 10% of the chick DNA is replicated during the first cycle after fusion and only a small proportion (15%) of the chick nuclei approach the 4C value of DNA during the second cycle after fusion; (vi) the newly synthesized DNA is associated either with the condensed regions of the nucleus or with the boundaries between condensed and non-condensed regions; (vii) the chick chromosomes at the first and second mitosis after fusion are in the form of PCC prematurely condensed chromosomes); they are never fully replicated and are often fragmentary; (viii) DNA synthesis in the chick nuclei is accompanied by an influx of protein (both G1 and S-phase protein) from the HeLa component of the heterokaryon.  相似文献   

17.
Postreplication repair in Neurospora crassa   总被引:1,自引:0,他引:1  
Summary Changes in the molecular weight of nascent DNA made after ultraviolet (UV) irradiation have been studied in the excision-defective Neurospora mutant uvs-2 using isotopic pulse labeling, alkaline gradient centrifugation and alkaline filter elution. Both the size of nascent DNA and the rate of incorporation of label into DNA was reduced by UV light in a dose dependent manner. However, this DNA repair mutant did recover the ability to synthesize control-like high molecular weight DNA 3 hours after UV treatment, although the rate of DNA synthesis remained depressed after the temporary block to elongation (or ligation) had been overcome. Photoreactivation partially eliminated the depression of DNA synthesis rate and UV light killing of cells, providing strong evidence that the effects on DNA synthesis and killing were caused by pyrimidine cyclobutane dimers. The caffeine inhibition repair studies performed were difficult to quantitate but did suggest either partial inhibition of a single repair pathway or alternate postreplication DNA repair pathways in Neurospora. No enhancement in killing was detected after UV irradiation when cells were grown on caffeine containing plates.  相似文献   

18.
19.
Chromatin prepared from S phase hepatoma tissue culture (HTC) cell incorporates in vitro about 11-14 pmoles [3H]dTMP into DNA in 30 min. Single-stranded DNA added to this chromatin stimulates DNA synthesis more than 40-fold whereas activated DNA enhances it about 60-fold. By contrast, stimulation of DNA synthesis by activated DNA in a crude nuclear extract exceeds the stimulation exerted by denatured DNA by a factor of 7. Stimulation of DNA synthesis by denatured DNA is not due to stabilization of either the chromatin or the product of the endogenous reaction. On the other hand, we find that poly(dC) and poly (dT) enhance DNA synthesis by serving as templates which are copied by chromatin in a true complementary fashion. It seems therefore, that eukaryotic cell chromatin is able to copy single-stranded DNA at a high efficiency. Chromatin of G1 arrested cell copies exogenous templates at a considerably reduced rate. The enzyme responsible for the copying of denatured DNA is tentatively identified as DNA polymerase alpha on the basis of its sensitivity to sulfhydril group blocking, its requirements for ions and failure to copy the ribo strand of oligo(dT) poly(A).  相似文献   

20.
Although ataxia telangiectasia (AT) cells are more sensitive than normal cells to killing by ionizing radiation, their DNA synthesis is more resistant to inhibition by radiation. It was thought that this anomaly in DNA synthesis was likely to perturb cell cycle progression. Flow cytometry and the fraction of labelled mitoses (FLM) were used to investigate effects of irradiation in normal and AT cell lines. The FLM indicated that radiation apparently induced a longer G2 delay in normal cells than in AT cells. However, flow cytometry showed that radiation induced much larger and more prolonged increases in the proportion of G2 cells in AT than in normals. AT populations also showed much larger postirradiation decreases in viable cell numbers. These data suggest that a large proportion of the radiosensitive AT cells are not reversibly blocked in G2 but die there, and never proceed through mitosis. The less radiosensitive normal cells are delayed in G2 and then proceed through mitosis. We suggest that the apparently shorter radiation-induced mitotic delay seen in AT cells by FLM is not real but is an artifact arising from perturbation of steady state conditions by selective elimination of a particular cohort of AT cells. Accumulation of AT cells in G2 is compatible with radiosensitivity of these cells and may arise from a defect in DNA repair or an anomaly in DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号