首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional structure of methanogen chromosomal protein 1 (MC1), a chromosomal protein extracted from the archaebacterium Methanosarcina sp. CHTI55, has been solved using (1)H NMR spectroscopy. The small basic protein MC1 contains 93 amino acids (24 basic residues against 12 acidic residues). The main elements of secondary structures are an alpha helix and five beta strands, arranged as two antiparallel beta sheets (a double one and a triple one) packed in an orthogonal manner forming a barrel. The protein displays a largely hydrophilic surface and a very compact hydrophobic core made up by side chains at the interface of the two beta sheets and the helix side facing the interior of the protein. The MC1 solution structure shows a globular protein with overall dimensions in the range of 34-40 A, which potentially corresponds to a DNA-binding site of 10-12 base pairs. The presumed DNA-binding site is located on the sequence comprising residues K62-P82, which is formed by a part of strands II2 and II3 belonging to the triple-stranded antiparallel beta sheet and a loop flanked by prolines P68 and P76. The tryptophan W74 that is expected to play a key role in the DNA-binding according to photocross-linking experiments was found completely exposed to the solvent, in a good position to interact with DNA. The overall fold of MC1, characterized by its linking beta-beta-alpha-beta-beta-loop-beta, is different from other known DNA-binding proteins. Its structure suggests a different DNA-binding mode than those of the histone-like proteins HU or HMGB. Thus, MC1 may be classified as a member of a new family.  相似文献   

2.
Xiong Y  Liu J  Wei DQ 《Proteins》2011,79(2):509-517
Proteins that interact with DNA play vital roles in all mechanisms of gene expression and regulation. In order to understand these activities, it is crucial to analyze and identify DNA-binding residues on DNA-binding protein surfaces. Here, we proposed two novel features B-factor and packing density in combination with several conventional features to characterize the DNA-binding residues in a well-constructed representative dataset of 119 protein-DNA complexes from the Protein Data Bank (PDB). Based on the selected features, a prediction model for DNA-binding residues was constructed using support vector machine (SVM). The predictor was evaluated using a 5-fold cross validation on above dataset of 123 DNA-binding proteins. Moreover, two independent datasets of 83 DNA-bound protein structures and their corresponding DNA-free forms were compiled. The B-factor and packing density features were statistically analyzed on these 83 pairs of holo-apo proteins structures. Finally, we developed the SVM model to accurately predict DNA-binding residues on protein surface, given the DNA-free structure of a protein. Results showed here indicate that our method represents a significant improvement of previously existing approaches such as DISPLAR. The observation suggests that our method will be useful in studying protein-DNA interactions to guide consequent works such as site-directed mutagenesis and protein-DNA docking.  相似文献   

3.
4.
Although atomic-resolution crystal structures of the conserved C-terminal domain of several species of TBP and their complexes with DNA have been determined, little information is available concerning the structure in solution of full-length TBP containing both the conserved C-terminal and nonconserved N-terminal domains. Quantitation of the amino acid side chain oxidation products generated by synchrotron X-ray radiolysis by mass spectrometry has been used to determine the solvent accessibility of individual residues in monomeric Saccharomyces cerevisiae TATA binding protein (TBP) free in solution and in the TBP-DNA complex. Amino acid side chains within the C-terminal domain of unliganded full-length TBP that are predicted to be accessible from crystal structures of the isolated domain are protected from oxidation. Residues within the N-terminal domain are also protected from oxidation in both the absence and presence of DNA. Some residues within the DNA-binding "saddle" of the C-terminal domain are protected upon formation of a TBP-DNA complex as expected, while others are protected in both the absence and presence of bound DNA. In addition, residues on the upper side of the beta-sheets undergo reactivity changes as a function of DNA binding. These data suggest that the DNA-binding saddle of monomeric unliganded yeast TBP is only partially accessible to solvent, the N-terminal domain is partially structured, and the N- and C-terminal domains form a different set of contacts in the free and DNA-bound protein. The functional implications of these results are discussed.  相似文献   

5.
Based on the (1)H-(15)N NMR spectroscopy data, the three-dimensional structure and internal dynamic properties of ribosomal protein L7 from Escherichia coli were derived. The structure of L7 dimer in solution can be described as a set of three distinct domains, tumbling rather independently and linked via flexible hinge regions. The dimeric N-terminal domain (residues 1-32) consists of two antiparallel alpha-alpha-hairpins forming a symmetrical four-helical bundle, whereas the two identical C-terminal domains (residues 52-120) adopt a compact alpha/beta-fold. There is an indirect evidence of the existence of transitory helical structures at least in the first part (residues 33-43) of the hinge region. Combining structural data for the ribosomal protein L7/L12 from NMR spectroscopy and x-ray crystallography, it was suggested that its hinge region acts as a molecular switch, initiating "ratchet-like" motions of the L7/L12 stalk with respect to the ribosomal surface in response to elongation factor binding and GTP hydrolysis. This hypothesis allows an explanation of events observed during the translation cycle and provides useful insights into the role of protein L7/L12 in the functioning of the ribosome.  相似文献   

6.
Tripet BP  Goel A  Copie V 《Biochemistry》2011,50(23):5140-5153
Backbone amide dynamics of the Escherichia coli tryptophan repressor protein (WT-TrpR) and two functionally distinct variants, L75F-TrpR and A77V-TrpR, in their holo (l-tryptophan corepressor-bound) form have been characterized using (15)N nuclear magnetic resonance (NMR) relaxation. The three proteins possess very similar structures, ruling out major conformational differences as the source of their functional differences, and suggest that changes in protein flexibility are at the origin of their distinct functional properties. Comparison of site specific (15)N-T(1), (15)N-T(2), (15)N-{(1)H} nuclear Overhauser effect, reduced spectral density, and generalized order (S(2)) parameters indicates that backbone dynamics in the three holo-repressors are overall very similar with a few notable and significant exceptions for backbone atoms residing within the proteins' DNA-binding domain. We find that flexibility is highly restricted for amides in core α-helices (i.e., helices A-C and F), and a comparable "stiffening" is observed for residues in the DNA recognition helix (helix E) of the helix D-turn-helix E (HTH) DNA-binding domain of the three holo-repressors. Unexpectedly, amides located in helix D and in adjacent turn regions remain flexible. These data support the concept that residual flexibility in TrpR is essential for repressor function, DNA binding, and molecular recognition of target operators. Comparison of the (15)N NMR relaxation parameters of the holo-TrpRs with those of the apo-TrpRs indicates that the single-point amino acid substitutions, L75F and A77V, perturb the flexibility of backbone amides of TrpR in very different ways and are most pronounced in the apo forms of the three repressors. Finally, we present these findings in the context of other DNA-binding proteins and the role of protein flexibility in molecular recognition.  相似文献   

7.
Bacillus anthracis, a spore-forming infectious bacterium, produces an exotoxin, called the edema factor (EF), that functions in part by disrupting internal signalling pathways. When complexed with human host cell calmodulin (CaM), EF becomes an active adenylyl cyclase, producing the internal signal substance cyclic-AMP in an uncontrolled fashion. Recently, the crystal structures for uncomplexed EF and EF:CaM complexes in the presence and absence of a substrate analog (3'-deoxy-ATP), were reported. EF mutational studies have implicated a number of residues important in CaM binding and/or in the generation of the adenylyl cyclase active site, formed by the movements of the EF switch A, B and C regions upon CaM binding. Here we report on the results of molecular dynamics (MD) simulations on two EF:CaM complexes, one containing wild-type EF and the other containing EF in which a cluster of residues in the switch A region (L523, K525, Q526 and V529) have been mutated to alanine. The switch A mutations cause a large increase in the flexibility of the switch C region, the rupture of a number of EF-CaM interactions, an expansion of the carboxyl-terminal domain of CaM, and a change in the Ca(2+) ion binding abilities of the CaM that is in complex with EF. The results indicate the importance of the mutated switch A residues in maintaining a compact EF:CaM complex that appears to be a prerequisite for the generation of a fully-functional adenylyl cyclase active site. The effects of mutating key residues (K346, K353, H577, E588, D590 and N639) in the active site region of EF (to alanine) on the ability of EF to bind the 3'-deoxy-ATP substrate analog were also examined. Active-site residue substitutions at positions 583 (N583A) and 577 (H577A) were found to be particularly disruptive for the placement of the adenine ring moiety into the position found in the x-ray crystal structure of the ligand-protein complex.  相似文献   

8.
As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function (Distance-scaled finite ideal-gas reference state for protein-DNA interactions). A leave-one-out cross validation of the method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient (MCC) of 0.77 with high precision (94%) and high sensitivity (65%). We further found 51% sensitivity for 82 newly determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA)] is available as an on-line server at http://sparks-lab.org.  相似文献   

9.
Bacillus anthracis, a spore-forming infectious bacterium, produces a toxin consisting of three proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). LF and EF possess intracellular enzymatic functions, the net effect of which is to severely compromise host innate immunity. During an anthrax infection PA plays the critical role of facilitating entry of both EF and LF toxins into host cell cytoplasm. Crystal structures of all three of the anthrax toxins have been determined, as well as the crystal structure of the (human) von Willebrand factor A (integrin VWA/I domain) -- an anthrax toxin receptor. A theoretical structure of the complex between VWA/I and PA has also been reported. Here we report on the results of 1,000 psec molecular dynamics (MD) simulations carried out on complexes between the Anthrax Protective Antigen Domain 4 (PA-D4) and the von Willebrand Factor A (VWA/I). MD simulations (using Insight II software) were carried out for complexes containing wild-type (WT) PA-D4, as well as for complexes containing three different mutants of PA-D4, one containing three substitutions in the PA-D4 "small loop" (residues 679-693) (D683A/L685E/Y688C), one containing a single substitution at a key site at the PA-D4 -- receptor interface (K679A) and another containing a deletion of eleven residues at the C-terminus of PA (Delta724-735). All three sets of PA mutations have been shown experimentally to result in serious deficiencies in PA function. Our MD results are consistent with these findings. Major disruptions in interactions were observed between the mutant PA-D4 domains and the anthrax receptor during the MD simulations. Many secondary structural features in PA-D4 are also severely compromised when VWA complexes with mutant variants of PA-D4 are subjected to MD simulations. These MD simulation results clearly indicate the importance of the mutated PA-D4 residues in both the "small loop" and at the carboxyl terminus in maintaining a PA conformation that is capable of effective interaction with the anthrax toxin receptor.  相似文献   

10.
To understand the cellular functions of HDM2, we attempted to identify novel HDM2-interacting proteins by proteomic analysis. Along with previously identified interactions with the ribosomal proteins, our analysis reveals interactions of HDM2 with the ribosomal translation elongation factor EF1alpha, 40S ribosomal protein S20, tubulins, glyceraldehyde 3-phosphate dehydrogenase, and a proteolysis-inducing factor dermicidin in the absence of tumor suppressor p53. Because a CTCL tumor antigen HD-CL-08 has high degree of homology with EF1alpha, we confirmed interaction of HDM2 with EF1alpha by immunoprecipitation and Western blot analysis in transformed as well as near normal diploid cells. Endogenous HDM2- EF1alpha complex was detected in cancer cells overexpressing HDM2, suggesting a possible role of this interaction in HDM2-mediated oncogenesis. Consistent with their interaction, colocalization of HDM2 and EF1alpha can be detected in the cytoplasm of normal or transformed cells. Amino acid residues 1-58 and 221-325 of HDM2 were found to be essential for its interaction with EF1alpha, suggesting that the interaction is independent of its other ribosomal interacting proteins L5, L11, and L23. Overexpression of HDM2 did not affect translation. Because EF1alpha has been implicated in DNA replication and severing of microtubules, interaction of HDM2 with EF1alpha may signify a p53-independent cell growth regulatory role of HDM2.  相似文献   

11.
The site-specific recombinase (Int) of bacteriophage lambda is a heterobivalent DNA-binding protein that binds two different classes of DNA-binding sites within its recombination target sites. The several functions of Int are apportioned between a large carboxy-terminal domain that cleaves and ligates DNA at each of its four "core-type" DNA-binding sites and a small amino-terminal domain, whose primary function is binding to each of its five "arm-type" DNA sites, which are distant from the core region. Int bridges between the two classes of binding sites are facilitated by accessory DNA-bending proteins that along with Int comprise higher-order recombinogenic complexes. We show here that although the 64 amino-terminal residues of Int bind efficiently to a single arm site, this protein cannot form doubly bound complexes on adjacent arm sites. However, 1-70 Int does show the same cooperative binding to adjacent arm sites as the full length protein. We also found that 1-70 Int specifies cooperative interactions with the accessory protein Xis when the two are bound to their adjacent cognate sites P2 and X1, respectively. To complement the finding that these two amino-terminal domain functions (along with arm DNA binding) are all specified by residues 1-70, we determined that Thr75 is the first residue of the minimal carboxy-terminal domain, thereby identifying a specific interdomain linker region. We have measured the affinity constants for Int binding to each of the five arm sites and the cooperativity factors for Int binding to the two pairs of adjacent arm sites, and we have identified several DNA structural features that contribute to the observed patterns of Int binding to arm sites. Taken together, the results highlight several interesting features of arm DNA binding that invite speculation about additional levels of complexity in the regulation of lambda site-specific recombination.  相似文献   

12.
13.
14.
15.
Calmodulin (CaM) is a cytosolic Ca(2+) signal-transducing protein that binds and activates many different cellular enzymes with physiological relevance, including the nitric oxide synthase (NOS) isozymes. CaM consists of two globular domains joined by a central linker; each domain contains an EF hand pair. Four different mutant CaM proteins were used to investigate the role of the two CaM EF hand pairs in the binding and activation of the mammalian inducible NOS (iNOS) and the constitutive NOS (cNOS) enzymes, endothelial NOS (eNOS) and neuronal NOS (nNOS). The role of the CaM EF hand pairs in different aspects of NOS enzymatic function was monitored using three assays that monitor electron transfer within a NOS homodimer. Gel filtration studies were used to determine the effect of Ca(2+) on the dimerization of iNOS when coexpressed with CaM and the mutant CaM proteins. Gel mobility shift assays were performed to determine binding stoichiometries of CaM proteins to synthetic NOS CaM-binding domain peptides. Our results show that the N-terminal EF hand pair of CaM contains important binding and activating elements for iNOS, whereas the N-terminal EF hand pair in conjunction with the central linker region is required for cNOS enzyme binding and activation. The iNOS enzyme must be coexpressed with wild-type CaM in vitro because of its propensity to aggregate when residues of the highly hydrophobic CaM-binding domain are exposed to an aqueous environment. A possible role for iNOS aggregation in vivo is also discussed.  相似文献   

16.
The eukaryotic single-stranded DNA-binding protein, replication protein A (RPA), is essential for DNA replication, and plays important roles in DNA repair and DNA recombination. Rad52 and RPA, along with other members of the Rad52 epistasis group of genes, repair double-stranded DNA breaks (DSBs). Two repair pathways involve RPA and Rad52, homologous recombination and single-strand annealing. Two binding sites for Rad52 have been identified on RPA. They include the previously identified C-terminal domain (CTD) of RPA32 (residues 224-271) and the newly identified domain containing residues 169-326 of RPA70. A region on Rad52, which includes residues 218-303, binds RPA70 as well as RPA32. The N-terminal region of RPA32 does not appear to play a role in the formation of the RPA:Rad52 complex. It appears that the RPA32CTD can substitute for RPA70 in binding Rad52. Sequence homology between RPA32 and RPA70 was used to identify a putative Rad52-binding site on RPA70 that is located near DNA-binding domains A and B. Rad52 binding to RPA increases ssDNA affinity significantly. Mutations in DBD-D on RPA32 show that this domain is primarily responsible for the ssDNA binding enhancement. RPA binding to Rad52 inhibits the higher-order self-association of Rad52 rings. Implications for these results for the "hand-off" mechanism between protein-protein partners, including Rad51, in homologous recombination and single-strand annealing are discussed.  相似文献   

17.
Charged residues in the beta10-M1 linker region ("pre-M1") are important in the expression and function of neuromuscular acetylcholine receptors (AChRs). The perturbation of a salt bridge between pre-M1 residue R209 and loop 2 residue E45 has been proposed as being a principle event in the AChR gating conformational "wave." We examined the effects of mutations to all five residues in pre-M1 (positions M207-P211) plus E45 in loop 2 in the mouse alpha(1)-subunit. M207, Q208, and P211 mutants caused small (approximately threefold) changes in the gating equilibrium constant (K(eq)), but the changes for R209, L210, and E45 were larger. Of 19 different side chain substitutions at R209 on the wild-type background, only Q, K, and H generated functional channels, with the largest change in K(eq) (67-fold) from R209Q. Various R209 mutants were functional on different E45 backgrounds: H, Q, and K (E45A), H, A, N, and Q (E45R), and K, A, and N (E45L). Phi values for R209 (on the E45A background), L210, and E45 were 0.74, 0.35, and 0.80, respectively. Phi values for R209 on the wt and three other backgrounds could not be estimated because of scatter. The average coupling energy between 209/45 side chains (six different pairs) was only -0.33 kcal/mol (for both alpha subunits, combined). Pre-M1 residues are important for expression of functional channels and participate in gating, but the relatively modest changes in closed- vs. open-state energy caused mutations, the weak coupling energy between these residues and the functional activity of several unmatched-charge pairs are not consistent with the perturbation of a salt bridge between R209 and E45 playing the principle role in gating.  相似文献   

18.
Kumar S  Nussinov R 《Proteins》2001,43(4):433-454
This report investigates the effect of systemic protein conformational flexibility on the contribution of ion pairs to protein stability. Toward this goal, we use all NMR conformer ensembles in the Protein Data Bank (1) that contain at least 40 conformers, (2) whose functional form is monomeric, (3) that are nonredundant, and (4) that are large enough. We find 11 proteins adhering to these criteria. Within these proteins, we identify 22 ion pairs that are close enough to be classified as salt bridges. These are identified in the high-resolution crystal structures of the respective proteins or in the minimized average structures (if the crystal structures are unavailable) or, if both are unavailable, in the "most representative" conformer of each of the ensembles. We next calculate the electrostatic contribution of each such ion pair in each of the conformers in the ensembles. This results in a comprehensive study of 1,201 ion pairs, which allows us to look for consistent trends in their electrostatic contributions to protein stability in large sets of conformers. We find that the contributions of ion pairs vary considerably among the conformers of each protein. The vast majority of the ion pairs interconvert between being stabilizing and destabilizing to the structure at least once in the ensembles. These fluctuations reflect the variabilities in the location of the ion pairing residues and in the geometric orientation of these residues, both with respect to each other, and with respect to other charged groups in the remainder of the protein. The higher crystallographic B-factors for the respective side-chains are consistent with these fluctuations. The major conclusion from this study is that salt bridges observed in crystal structure may break, and new salt bridges may be formed. Hence, the overall stabilizing (or, destabilizing) contribution of an ion pair is conformer population dependent.  相似文献   

19.
A "HFPK3" peptide containing the 23 residues of the human immunodeficiency virus (HIV) fusion peptide (HFP) plus three non-native C-terminal lysines was studied in dodecylphosphocholine (DPC) micelles with 2D 1H NMR spectroscopy. The HFP is at the N-terminus of the gp41 fusion protein and plays an important role in fusing viral and target cell membranes which is a critical step in viral infection. Unlike HFP, HFPK3 is monomeric in detergent-free buffered aqueous solution which may be a useful property for functional and structural studies. H alpha chemical shifts indicated that DPC-associated HFPK3 was predominantly helical from I4 to L12. In addition to the highest-intensity crosspeaks used for the first chemical shift assignment (denoted I), there were additional crosspeaks whose intensities were approximately 10% of those used for assignment I. A second assignment (II) for residues G5 to L12 as well as a few other residues was derived from these lower-intensity crosspeaks. Relative to the I shifts, the II shifts were different by 0.01-0.23 ppm with the largest differences observed for HN. Comparison of the shifts of DPC-associated HFPK3 with those of detergent-associated HFP and HFP derivatives provided information about peptide structures and locations in micelles.  相似文献   

20.
The structures of DNA-protein complexes have illuminated the diversity of DNA-protein binding mechanisms shown by different protein families. This lack of generality could pose a great challenge for predicting DNA-protein interactions. To address this issue, we have developed a knowledge-based method, DNA-binding Domain Hunter (DBD-Hunter), for identifying DNA-binding proteins and associated binding sites. The method combines structural comparison and the evaluation of a statistical potential, which we derive to describe interactions between DNA base pairs and protein residues. We demonstrate that DBD-Hunter is an accurate method for predicting DNA-binding function of proteins, and that DNA-binding protein residues can be reliably inferred from the corresponding templates if identified. In benchmark tests on approximately 4000 proteins, our method achieved an accuracy of 98% and a precision of 84%, which significantly outperforms three previous methods. We further validate the method on DNA-binding protein structures determined in DNA-free (apo) state. We show that the accuracy of our method is only slightly affected on apo-structures compared to the performance on holo-structures cocrystallized with DNA. Finally, we apply the method to approximately 1700 structural genomics targets and predict that 37 targets with previously unknown function are likely to be DNA-binding proteins. DBD-Hunter is freely available at http://cssb.biology.gatech.edu/skolnick/webservice/DBD-Hunter/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号