首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cl-/H+ exchange-transporter CLC-ec1 mediates stoichiometric transmembrane exchange of two Cl- ions for one proton. A conserved tyrosine residue, Y445, coordinates one of the bound Cl- ions visible in the structure of this protein and is located near the intersection of the Cl- and H+ pathways. Mutants of this tyrosine were scrutinized for effects on the coupled transport of Cl- and H+ determined electrophysiologically and on protein structure determined crystallographically. Despite the strong conservation of Y445 in the CLC family, substitution of F or W at this position preserves wild-type transport behavior. Substitution by A, E, or H, however, produces uncoupled proteins with robust Cl- transport but greatly impaired movement of H+. The obligatory 2 Cl-/1 H+ stoichiometry is thus lost in these mutants. The structures of all the mutants are essentially identical to wild-type, but apparent anion occupancy in the Cl- binding region correlates with functional H+ coupling. In particular, as determined by anomalous diffraction in crystals grown in Br-, an electrophysiologically competent Cl- analogue, the well-coupled transporters show strong Br- electron density at the "inner" and "central" Cl- binding sites. However, in the uncoupled mutants, Br- density is absent at the central site, while still present at the inner site. An additional mutant, Y445L, is intermediate in both functional and structural features. This mutant clearly exchanges H+ for Cl-, but at a reduced H+-to-Cl- ratio; likewise, both the central and inner sites are occupied by Br-, but the central site shows lower Br- density than in wild-type (or in Y445F,W). The correlation between proton coupling and central-site occupancy argues that halide binding to the central transport site somehow facilitates movement of H+, a synergism that is not readily understood in terms of alternating-site antiport schemes.  相似文献   

2.
Chloride channel (CLC)-type Cl-/H+ exchangers are widespread throughout the biological world, and one of these, CLC-ec1 from Escherichia coli, has been extensively studied. The structure of this protein is known, and several of its mechanistic hot spots have been identified, but a mechanism for Cl-/H+ exchange has not previously been offered. We herein confirm by direct measurements of Cl- and H+ fluxes a Cl--to-H+ exchange stoichiometry of 2, and summarize experimental facts pertinent to the exchange mechanism. While the mechanism must involve a conformational cycle of alternating exposure of substrate-binding sites to the two sides of the membrane, CLC transporters do not adhere to a familiar ping-pong scheme in which the two ions bind in a mutually exclusive fashion. Instead, Cl- and H+ occupy the ion-binding region simultaneously. A conformational cycle is proposed that accounts for the exchange stoichiometry, several key mutants and the tendency of the protein to become uncoupled and allow 'slippage' of Cl-.  相似文献   

3.
CLC-ec1 is a prokaryotic CLC-type Cl(-)/H+ exchange transporter. Little is known about the mechanism of H+ coupling to Cl-. A critical glutamate residue, E148, was previously shown to be required for Cl(-)/H+ exchange by mediating proton transfer between the protein and the extracellular solution. To test whether an analogous H+ acceptor exists near the intracellular side of the protein, we performed a mutagenesis scan of inward-facing carboxyl-bearing residues and identified E203 as the unique residue whose neutralization abolishes H+ coupling to Cl- transport. Glutamate at this position is strictly conserved in all known CLCs of the transporter subclass, while valine is always found here in CLC channels. The x-ray crystal structure of the E203Q mutant is similar to that of the wild-type protein. Cl- transport rate in E203Q is inhibited at neutral pH, and the double mutant, E148A/E203Q, shows maximal Cl- transport, independent of pH, as does the single mutant E148A. The results argue that substrate exchange by CLC-ec1 involves two separate but partially overlapping permeation pathways, one for Cl- and one for H+. These pathways are congruent from the protein's extracellular surface to E148, and they diverge beyond this point toward the intracellular side. This picture demands a transport mechanism fundamentally different from familiar alternating-access schemes.  相似文献   

4.
Isolated human neutrophils possess three distinct pathways by which Cl- crosses the plasma membrane of steady state cells: anion exchange, active transport, and electrodiffusion. The purpose of the present work was to investigate the selectivity of each of these separate processes with respect to other external halide ions. (a) The bulk of total anion movements represents transport through an electrically silent anion-exchange mechanism that is insensitive to disulfonic stilbenes, but which can be competitively inhibited by alpha-cyano-4-hydroxycinnamate (CHC; Ki approximately 0.3 mM). The affinity of the external translocation site of the carrier for each of the different anions was determined (i) from substrate competition between Cl- and either Br-, F-, or I-, (ii) from trans stimulation of 36Cl- efflux as a function of the external concentrations of these anions, (iii) from changes in the apparent Ki for CHC depending on the nature of the replacement anion in the bathing medium, and (iv) from activation of 82Br- and 125I- influxes by their respective ions. Each was bound and transported at roughly similar rates (Vmax values all 1.0-1.4 meq/liter cell water.min); the order of decreasing affinities is Cl- greater than Br- greater than F- greater than I- (true Km values of 5, 9, 23, and 44 mM, respectively). These anions undergo 1:1 countertransport for internal Cl-. (b) There is a minor component of total Cl- influx that constitutes an active inward transport system for the intracellular accumulation of Cl- [( Cl-]i approximately 80 meq/liter cell water), fourfold higher than expected for passive distribution. This uptake is sensitive to intracellular ATP depletion by 2-deoxy-D-glucose and can be inhibited by furosemide, ethacrynic acid, and CHC, which also blocks anion exchange. This active Cl- uptake process binds and transports other members of the halide series in the sequence Cl- greater than Br- greater than I- greater than F- (Km values of 5, 8, 15, and 41 mM, respectively). (c) Electrodiffusive fluxes are small. CHC-resistant 82Br- and 125I- influxes behave as passive leak fluxes through low-conductance ion channels: they are nonsaturable and strongly voltage dependent. These anions permeate the putative Cl- channel in the sequence I- greater than Br- greater than Cl- with relative permeability ratios of 2.2:1.4:1, respectively, where PCl approximately 5 X 10(-9) cm/s.  相似文献   

5.
The effect of Cl- and other anions on the tonoplast H+-translocating ATPase (H+-ATPase) from Hevea brasiliensis (rubber tree) latex was investigated. Cl- and other anions stimulated the ATPase activity of tightly sealed vesicles prepared from Hevea tonoplast, with the following decreasing order of effectiveness: Cl- greater than Br- greater than SO4(2-) greater than NO3-. As indicated by the changes of the protonmotive potential difference, anion stimulation of tonoplast H+-ATPase was caused in part by the ability of these anions to dissipate the electrical potential. This interpretation assumes not a channelling of these anions against a membrane potential, negative-inside, but a modification of the permeability of these ions through the tonoplast membrane. In addition, Cl- and the other anions stimulated the ATPase activity solubilized from the tonoplast membrane. Consequently, the tonoplast H+-pumping ATPase can be considered as an anion-stimulated enzyme. These results are discussed in relation to various models described in the literature for the microsomal H+-ATPase systems claimed as tonoplast entities.  相似文献   

6.
CLC-ec1 is an E. coli homologue of the CLC family of Cl- channels, which are widespread throughout eukaryotic organisms. The structure of this membrane protein is known, and its physiological role has been described, but our knowledge of its functional characteristics is severely limited by the absence of electrophysiological recordings. High-density reconstitution and incorporation of crystallization-quality CLC-ec1 in planar lipid bilayers failed to yield measurable CLC-ec1 currents due to porin contamination. A procedure developed to prepare the protein at a very high level of purity allowed us to measure macroscopic CLC-ec1 currents in lipid bilayers. The current is Cl- selective, and its pH dependence mimics that observed with a 36Cl- flux assay in reconstituted liposomes. The unitary conductance is estimated to be <0.2 pS. Surprisingly, the currents have a subnernstian reversal potential in a KCl gradient, indicating imperfect selectivity for anions over cations. Mutation of a conserved glutamate residue found in the selectivity filter eliminates the pH-dependence of both currents and 36Cl- flux and appears to trap CLC-ec1 in a constitutively active state. These effects correlate well with known characteristics of eukaryotic CLC channels. The E148A mutant displays nearly ideal Cl- selectivity.  相似文献   

7.
Effects of various anions on the Raman spectrum of halorhodopsin.   总被引:2,自引:0,他引:2       下载免费PDF全文
Resonance Raman experiments were conducted to probe and understand the effect of various anions on halorhodopsin. These included monoatomic anions Cl- and Br-, which bind to the so-called halorhodopsin binding sites I and II, and polyatomic anions NO3- and ClO4-, which bind to site I only. The two types of ions clearly show different effects on the vibrational spectrum of the chromophore. The differences are not localized to the Schiff base region of the molecule, but extend to the chromophore structure-sensitive fingerprint region as well. We find that the protonated Schiff base frequency is at 1,633 cm-1 for Cl- and Br- ions, as reported previously for Cl-. However, we find that two Schiff base frequencies characterize halorhodopsin upon binding of the polyatomic anions. One frequency lies at the same location as that found for the monoatomic anions and the other is at 1,645 cm-1. Halorhodopsin with bound NO3- and ClO4- thus may consist of two heterogeneous structures in equilibrium. This heterogeneity does not seem to correlate with a retinal isomeric heterogeneity, which we can also demonstrate in these samples. The results suggest that anions binding to site I do not bind to the Schiff base directly, but can influence chromophore and/or protein conformational states.  相似文献   

8.
Photosystem II, the multisubunit protein complex that oxidizes water to O2, requires the inorganic cofactors Ca2+ and Cl- to exhibit optimal activity. Chloride can be replaced functionally by a small number of anionic cofactors (Br-, NO3-, NO2-, I-), but among these anions, only Br- is capable of restoring rates of oxygen evolution comparable to those observed with Cl-. UV absorption difference spectroscopy was utilized in the experiments described here as a probe to monitor donor side reactions in photosystem II in the presence of Cl- or surrogate anions. The rate of the final step of the water oxidation cycle was found to depend on the activating anion bound at the Cl- site, but the kinetics of this step did not limit the light-saturated rate of oxygen evolution. Instead, the lower oxygen evolution rates supported by surrogate anions appeared to be correlated with an instability of the higher oxidation states of the oxygen-evolving complex that was induced by addition of these anions. Reduction of these states takes place not only with I- but also with NO2- and to a lesser extent even with NO3- and Br- and is not related to the ability of these anions to bind at the Cl- binding site. Rather, it appears that these anions can attack higher oxidation states of the oxygen evolving complex from a second site that is not shielded by the extrinsic 17 and 23 kDa polypeptides and cause a one-electron reduction. The decrease of the oxygen evolution rate may result from accumulated damage to the reaction center protein by the one-electron oxidation product of the anion.  相似文献   

9.
The dependence of active transport of H+ on the presence of anions in synaptic vesicle membranes from rat brain was studied. The H+ transport was measured by monitoring the acidification of the vesicles with a permeant weak base-acridine orange. The fluorescence changes in the latter were proportional to the magnitude of artificially imposed pH gradients (delta pH). The ATP-dependent generation of delta pH was completely dependent on the presence of a permeant anion, was maximal at 150 mM Cl- and was inhibited, when the medium osmolarity was further increased by sucrose or KCl. At 150 mM only Br-, similar to Cl-, behaved as permeant anions, whereas I- was effective only at low (5-20 mM) concentrations. The anions--SCN-, ClO4-, HSO3- and I-(10-20 mM) as well as 4-acetamido-4'-isothiocyanatostilbene-2.2'-disulfonate (K0.5 = 14 microM) blocked the ATP-dependent generation of delta pH observed in the presence of Cl-, while other anions tested (F-, phosphate, bicarbonate, some organic anions) were virtually without effect and did not support the H+ transport. The dependence of the rate and extent of H+ accumulation on Cl- concentration was sigmoidal with a Hill coefficient of 2.8 and a Km value of 85-90 mM. The effects of anions point to the presence in the membrane of synaptic vesicles of an anion (chloride) channel whose conductance can regulate the H+ transport by switching it from an electrogenic to an electroneutral (coupled entry of H+ and Cl-) mode of operation.  相似文献   

10.
A bicyclic polypeptide antibiotic thiostrepton forms both 1:1 and 1:2 complexes with anions (as tetrabutylammonium salts) in organic solvents with K2 >K1 for F- and K2Cl-, Br-, HSO4-, H2PO4-, but in CHCl3 they follow a different order: Cl- approximatelyHSO4- >F- approximately AcO- > Br > H2PO4-. The binding mode of anions to thiostrepton is discussed on the basis of solvent effects on the complexation selectivity.  相似文献   

11.
The mechanism by which SO4(2-) is transported across the plasma membrane of isolated human neutrophils was investigated. Unlike the situation in erythrocytes, SO4(2-) and other divalent anions are not substrates for the principal Cl-/HCO3- exchange system in these cells. At an extracellular concentration of 2 mM, total one-way 35SO4(2-) influx and efflux in steady-state cells amounted to approximately 17 mumol/liter of cell water per min. The intracellular SO4(2-) content was approximately 1 mM, approximately 25-fold higher than the passive distribution level. Internal Cl- trans stimulated 35SO4(2-) influx. Conversely, 35SO4(2-) efflux was trans stimulated by external Cl- (Km approximately 25 mM) and by external SO4(2-) (Km approximately 14 mM), implying the presence of a SO4(2-)/Cl- countertransport mechanism. The exchange is noncompetitively inhibited by 4-acetamido-4'-isothiocyanostilbene-2,2' -disulfonate (SITS) (Ki approximately 50 microM) and competitively blocked by alpha-cyano-4-hydroxycinnamate (Ki approximately 230 microM) and by ethacrynate (Ki approximately 7 microM); furosemide and probenecid also suppressed activity. The carrier exhibits broad specificity for a variety of monovalent (NO3- approximately Cl- greater than Br- greater than formate- greater than I- approximately p-aminohippurate-) and divalent WO4(2-) greater than oxalate2- greater than SO4(2-) greater than MoO4(2-) greater than SeO4(2-) greater than AsO4(2-) anions. There was little, if any, affinity for HCO3-, phosphate, or glucuronate. The influx of SO4(2-) is accompanied by an equivalent cotransport of H+, the ion pair H+ + SO4(2-) being transported together in exchange for Cl-, thereby preserving electroneutrality. These findings indicate the existence of a separate SO4(2-)/Cl- exchange carrier that is distinct from the neutrophil's Cl-/HCO3- exchanger. The SO4(2-) carrier shares several properties in common with the classical inorganic anion exchange mechanism of erythrocytes and with other SO4(2-) transport systems in renal and intestinal epithelia, Ehrlich ascites tumor cells, and astroglia.  相似文献   

12.
The fluorescent anion indicator 6-methoxy-N-(3-sulfopropyl)quinolinium was trapped in proteoliposomes reconstituted with purified 32-kDa uncoupling protein and used to detect GDP-sensitive uniports of Cl-, Br-, and I-. Transport of these halide anions was rapid and potential-dependent. F- and nitrate were found to inhibit Cl- uptake competitively, suggesting that these anions are also substrates for transport. This preparation also exhibited H+(OH-) transport, showing that the reconstituted uncoupling protein possesses both halide and H+ transport functions, as is observed in intact brown adipose tissue mitochondria. Cl- transport was inhibited to the residual level observed in liposomes without protein when GDP was present on both sides of the membrane. Cl- transport was inhibited by about 50% when GDP was present only on one side of the membrane. We infer that uncoupling protein reconstitutes into proteoliposomes with a 1:1 ratio of sidedness orientation. The Km values for Cl- uniport were 100 and 65 mM, respectively, in GDP-loaded and non-GDP-loaded vesicles. Participation of the inner membrane anion channel in the observed transport is rendered unlikely by the fact that this carrier is insensitive to GDP. A variety of additional experiments probing for inner membrane anion channel yielded uniformly negative results, confirming the absence of contamination by this protein. Our results therefore demonstrate that the uncoupling protein mediates anion translocation, a function previously reported as lacking in the reconstituted system.  相似文献   

13.
The effects of extracellular anions (10-150 mM, added as Na salts to normal growth medium) on the growth of Chinese hamster V-79 cells were examined. Additions of NaCl and NaNO3 at concentrations greater than 60 mM reduced the growth rate dose-dependently. Several other anions also inhibited cell growth in the decreasing order of potency, SCN- greater than NO2- greater than NO3- greater than Br- greater than Cl- greater than gluconate- glutamate- greater than Mes-. When the added anions were removed, the growth rate was restored to the control rate. Cell survival was markedly reduced by the addition of SCN-, but was less affected by other anions (Cl-,NO3- and NO2-) of comparable potency. The respective syntheses of cellular DNA and protein, as estimated from the incorporation of [3H]-thymidine and [14C]leucine, also decreased with the increase in the concentration (60-120 mM) of anions added, the order of potency being SCN- greater than NO2- greater than NO3- greater than Cl-. After anion-treatment, the cellular Na+ concentration increased and the cellular Cl- concentration decreased in the order of SCN- greater than NO2- greater than NO3-, Cl-, but, the cellular K+ concentration did not change significantly. These data suggest that changes in extracellular anions affect cell growth and survival, probably through changes in the intracellular Na+ or Cl- concentration and in the rates of protein and/or DNA synthesis.  相似文献   

14.
The mechanism for HCO3-(-)independent proton permeability in microvillus membrane vesicles (MVV) isolated from human placenta was examined by using the entrapped pH indicator 6-carboxyfluorescein (6CF). Proton fluxes (JH) across MVV were determined in response to induced pH and anion gradients from the time course of 6CF fluorescence, the MVV buffer capacity, and the 6CF vs. pH calibration. In the absence of anions, JH was 12 +/- 2 nequiv s-1 (mg of protein)-1 (pHin 7.4, pHout 6.0, MVV voltage-clamped with K+/valinomycin, 23 degrees C), corresponding to a proton permeability coefficient of 0.02 cm/s, with an activation energy of 9.1 +/- 0.3 kcal/mol. JH was inhibited 20% by dihydro-4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (H2DIDS) with KI = 8 microM [( Cl-]out = 0 mM). For a 0.5-unit pH gradient JH increased from 1.5 to 4.6 nequiv s-1 (mg of protein)-1 as the internal MVV pH was increased (5.5-7.5). External Cl-, Br-, and I- (but not SO4(2-) and PO4-) increased JH 1.3-2.5-fold for both inwardly and outwardly directed pH gradients with KD = 1.0 +/- 0.4 mM (Br-) and greater than 100 mM (Cl-). This increase was blocked by 100 microM H2DIDS but not by amiloride or furosemide. Internal Cl- did not alter JH induced by pH gradients nor were proton fluxes induced by anion gradients in the absence of a pH gradient. Experiments in which JH was driven by membrane potentials (induced by valinomycin and K+ gradients) indicated that proton transport was voltage-sensitive. These experiments demonstrate a stilbene-sensitive electrogenic proton transport mechanism in MVV that is regulated allosterically by anions at an external binding site.  相似文献   

15.
The role of Cl- in photosynthetic O2 evolution has been investigated by measurement of the steady-state O2 rate and EPR of the electron donors responsible for the S2 multiline signal and Signal IIs upon Cl- depletion and substitution in Photosystem II membranes. Cl- removal has three effects upon the donor side of Photosystem II. (1) It abolishes O2 evolution reversibly, while decreasing the yield of the S2 multiline signal indicative of the manganese site of the O2-evolving complex in the S2 oxidation state. This decrease is brought about by (2) the reversible disconnection of the manganese complex from the reaction center; and by (3) deactivation of S1 centers having reduced primary acceptor QA to form SO centers having a reduced Signal IIs species. Reactivation of O2 evolution by anions confirms earlier work showing a requirement for a univalent anion of optimum charge density. The observed order of reactivation is Cl- greater than Br- approximately NO3- much greater than OH- approximately F-. Reactivation of the S2 multiline signal follows Cl- approximately Br- greater than NO3- approximately OH- greater than F-, in near correspondence with reactivation of O2-evolution rates. Cl- titrations of F- -inhibited samples reveal two binding sites for Cl- which differ in binding affinity by 11-fold. The higher-affinity site reactivates the S1----S2 light reaction, while the lower-affinity site reactivates the S3----S0 light reaction. The high affinity site is located within the O2-evolving complex at an undetermined site, while the lower-affinity site functions in coupling the reaction center photochemistry to the O2-evolving complex. The results are compared with Cl-/F- exchange equilibria for Mn3+ in solution. A model for the lower S-state transitions is presented in which specific oxidation state assignments are made for some of the donors and acceptors of Photosystem II.  相似文献   

16.
The specific binding of [3H]1-[2-(diphenyl-methoxy)ethyl]-4-(3-phenyl-2-propenyl)piperazine ([3H]GBR 12783) to the dopamine (DA) neuronal carrier present in membranes prepared from rat striatum was not affected when Cl- was replaced by either Br- or NO3-. In media containing Cl-, Br-, or NO3-, d-amphetamine and DA competed with the radioligand in a monophasic manner with Hill coefficients of close to 1 (0.94-1.12). Replacement of Cl- by Br- impaired the ability of some substrates (d-amphetamine, DA, p-hydroxyamphetamine, and m-tyramine) to compete with [3H]GBR 12783. The potency of Br- to decrease the affinity of substrates for the specific binding site was significantly correlated (t = 7.07, p less than 0.001) with their affinity for this binding site. These results suggest that the various substrates tested could bind to recognition sites in which Cl- is differently involved; as a consequence, substrates could bind to the neuronal carrier by means of partly different links. In experiments dealing with the specific uptake of [3H]DA, F-, NO3-, isethionate-, or acetate- was unable to substitute for Cl-, whereas Br- was quite a total substitute. Replacement of Cl- by equimolar concentrations of either NO3- or isethionate- resulted in inhibition curves of DA specific uptake with Hill coefficients of close to 1 (0.77 and 1.04 respectively); this indicates that both NO3- and isethionate- are devoid of inhibitory effects on neuronal uptake and are quite ineffective substitutes for Cl-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Lysosomal H+-translocating ATPase (H+-ATPase) was solubilized with lysophosphatidylcholine and reconstituted into liposomes (Moriyama, Y., Takano, T. and Ohkuma, S. (1984) J. Biochem. (Tokyo) 96, 927-930). In this study, the sensitivities of membrane-bound, solubilized and liposome-incorporated ATPase to various anions and drugs were measured in comparison with those of similar forms of mitochondrial H+-ATPase (mitochondrial F0F1-ATPase) with the following results. (1) Bicarbonate and sulfite activated solubilized lysosomal H+-ATPase, but not the membrane-bound ATPase or ATPase incorporated into liposomes. All three forms of mitochondrial F0F1-ATPase were activated by these anions. (2) All three forms of both lysosomal H+-ATPase and mitochondrial F0F1-ATPase were strongly inhibited by SCN-, NO3- and F-, but scarcely affected by Cl-, Br- and SO2-4. (3) The solubilized lysosomal H+-ATPase was strongly inhibited by azide, quercetin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and oligomycin. Its sensitivity was almost the same as that of mitochondrial F0F1-ATPase. Neither membrane-bound ATPase nor ATPase incorporated into liposomes was affected appreciably by these drugs. These results indicate that the sensitivity to anions and drugs of lysosomal H+-ATPase depends on the form of the enzyme and that the sensitivity of the solubilized lysosomal H+-ATPase is very similar to that of mitochondrial F0F1-ATPase. On the other hand, the two ATPases differ in their sensitivity to N-ethylmaleimide and pyridoxal phosphate: only the mitochondrial ATPase is inhibited by pyridoxal phosphate whereas only the lysosomal ATPase is inhibited by N-ethylmaleimide.  相似文献   

18.
Anion dependence of (Ca2+ + K+)-stimulated Mg2+-dependent transport ATPase and its phosphorylated intermediate have been characterized in both "intact" and "broken" vesicles from endoplasmic reticulum of rat pancreatic acinar cells using adenosine 5'-[gamma-32P] triphosphate ([gamma-32P]ATP). In intact vesicles (Ca2+ + K+)-Mg2+-ATPase activity was higher in the presence of Cl- or Br- as compared to NO3-, SCN-, cyclamate-, SO4(2-) or SO3(2-). Incorporation of 32P from [gamma-32P]ATP into the 100-kDa intermediate of this Ca2+ATPase was also higher in the presence of Cl-, Br-, NO3- or SCN- as compared to cyclamate-, SO4(2-) or SO3(2-). When the membrane permeability barrier to anions was abolished by breaking vesicle membrane with the detergent Triton X-100 (0.015%) (Ca2+ + K+)-Mg2+ATPase activity in the presence of weakly permeant anions, such as SO4(2-) and cyclamate-, increased to the level obtained with Cl-. However, 32P incorporation into 100-kDa protein was still higher in the presence of Cl- as compared to cyclamate-, indicating a direct effect of Cl- on the Ca2+ATPase molecule. The anion transport blocker 4,4-diisothiocyanostilbene-2,2-disulfonate (DIDS) inhibited (Ca2+ + K+)-Mg2+ATPase activity to about 10% of the Cl- stimulation level, irrespective of the sort of anions present in both intact and broken vesicles. This indicates a direct effect of DIDS on (Ca2+ + K+)-Mg2+ATPase. K+ ionophore valinomycin influenced (Ca2+ + K+)-Mg2+ATPase activity according to the actual K+ gradient: Ko+ greater than Ki+ caused inhibition, Ko+ less than Ki+ caused stimulation. From these results we conclude that Ca2+ transport into endoplasmic reticulum is coupled to ion movements which must occur to maintain electroneutrality.  相似文献   

19.
We have systematically investigated certain characteristics of the ATP-dependent proton transport mechanism of bovine brain clathrin-coated vesicles. H+ transport specific activity was shown by column chromatograpy to co-purify with coated vesicles, however, the clathrin coat is not required for vesicle acidification as H+ transport was not altered by prior removal of the clathrin coat. Acidification of the vesicle interior, measured by fluorescence quenching of acridine orange, displayed considerable anion selectively (Cl- greater than Br- much greater than NO3- much greater than gluconate, SO2-(4), HPO2-(4), mannitol; Km for Cl- congruent to 15 mM), but was relatively insensitive to cation replacement as long as Cl- was present. Acidification was unaffected by ouabain or vanadate but was inhibited by N-ethylmaleimide (IC50 less than 10 microM), dicyclohexylcarbodiimide (DCCD) (IC50 congruent to 10 microM), chlorpromazine (IC50 congruent to 15 microM), and oligomycin (IC50 congruent to 3 microM). In contrast to N-ethylmaleimide, chlorpromazine rapidly dissipated preformed pH gradients. Valinomycin stimulated H+ transport in the presence of potassium salts (gluconate much greater than NO3- greater than Cl-), and the membrane-potential-sensitive dye Oxonol V demonstrated an ATP-dependent interior-positive vesicle membrane potential which was greater in the absence of permeant anions (mannitol greater than potassium gluconate greater than KCl) and was abolished by N-ethylmaleimide, protonophores or detergent. Total vesicle-associated ouabain-insensitive ATPase activity was inhibited 64% by 1 mM N-ethylmaleimide, and correlated poorly with H+ transport, however N-ethylmaleimide-sensitive ATPase activity correlated well with proton transport (r = 0.95) in the presence of various Cl- salts and KNO3. Finally, vesicles prepared from bovine brain synaptic membranes exhibited H+ transport activity similar to that of the coated vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The cytoplasmic concentrations of Cl-([Cl-]i) and Ca2+ ([Ca2+]i) were measured with the fluorescent indicators N-(ethoxycarbonylmethyl)-6-methoxyquinilinum bromide (MQAE) and fura-2 in pancreatic beta-cells isolated from ob/ob mice. Steady-state [Cl-]i in unstimulated beta-cells was 34 mM, which is higher than expected from a passive distribution. Increase of the glucose concentration from 3 to 20 mM resulted in an accelerated entry of Cl- into beta-cells depleted of this ion. The exposure to 20 mM glucose did not affect steady-state [Cl-]i either in the absence or presence of furosemide inhibition of Na+, K+, 2 Cl- co-transport. Glucose-induced oscillations of [Ca2+]i were transformed into sustained elevation in the presence of 4,4' diisothiocyanato-dihydrostilbene-2,2'-disulfonic acid (H2DIDS). A similar effect was noted when replacing 25% of extracellular Cl- with the more easily permeating anions SCN-, I-, NO3- or Br-. It is concluded that glucose stimulation of the beta-cells is coupled to an increase in their Cl- permeability and that the oscillatory Ca2+ signalling is critically dependent on transmembrane Cl- fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号