首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characteristics of neurons in Area 17 of the visual cortex in cats were investigated by extracellular recording of their activity. Unit responses to flashes modulated by intensity and duration (100 µsec-1 sec) were recorded. Of 80 neurons tested, 67.6% were spontaneously active and 32.4% were silent. The threshold responses of the neurons to flashes varied by 7 logarithmic units. The distribution curve of the cells by response thresholds had one maximum corresponding to an energy of the order of 1–10 lm·sec. The time during which the cells could summate excitation did not exceed a mean value of 34 msec. Depending on the latent periods of the visual cortical neurons they can be divided into three groups. The first group includes neurons responding 20–40 msec after stimulation, the second and third neurons responding after 100–120 and 160–180 msec, respectively. Photic stimulation considerably altered the ratio between the numbers of cells generating spikes with high and low frequency. No correlation was found between the sensitivity of the visual cortical cells to light, the latent period of their response, and the critical time of summation. This shows that the cortex contains many duplicate units which are grouped together on the basis of only one of the functional characteristics of their spike response.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 173–179, March–April, 1970.  相似文献   

2.
Functional properties of skin afferents were studied by the method of registration of spike activity from single nerve fibres, innervated non-hairy skin in white rats. It was found that mechanoreceptor units varied by the threshold intensity of applied stimulus. These units were divided to three functional groups: low-, medium- and high-threshold units. Transcranial electrical stimulation (TES) strongly affected on the functional characteristics of skin afferents. Full suppression of responses was observed in 18-20 min. irrespective of the category of units. A local intracutaneous injection of naloxon eliminated the effect of TES. It is supposed that endogenous opioid peptides regulate an afferent discharge on the level of sensory endings during TES.  相似文献   

3.
Synaptic responses (postsynaptic potentials and action potentials) were evoked in mesencephalic decerebellated cats by stimulating pontine bulbar locomotor and inhibitory sites (LS and IS, respectively) with a current of not more than 20 µA in "medial" and "lateral" neurons of the medulla. Some neurons even produced a response to presentation of single (actually low — 2–5 Hz — frequency) stimuli. The remaining cells responded to stimulation at a steady rate of 30–60 Hz only. Both groups of medial neurons were more receptive to input from LS. Lateral neurons responding to even single stimuli reacted more commonly to input from LS and those responding to steady stimulation only to input from IS. Many neurons with background activity (whether lateral or medial) produced no stimulus-bound response, but rhythmic stimulation either intensified or inhibited such activity. This response occurs most commonly with LS stimulation. Partial redistribution of target neurons in step with increasing rate of presynaptic input may play a major part in control of motor activity.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 257–266, March–April, 1990.  相似文献   

4.
Unit activity was recorded extracellularly from the pontomedullary reticular nuclei of kittens aged 1–5 and 15–30 days, immobilized with diplacin. Properties of neurons located in the medial and lateral zones were compared. As regards the amplitude of spike potentials and types of spontaneous and evoked activity, the cells of the two groups were shown to differ. Tetanic stimulation with a frequency of 300 Hz caused a decrease in the medial zone but an increase in the lateral zone in the number of responding units compared with responses to single stimulation. In neurons of the medial zone intensification of spontaneous activity in the interval between stimuli was more marked and continued after the end of stimulation for a long time. It is suggested that units whose activity is recorded in the medial and lateral zones are mainly giant densely branched and reticular sparsely branched neurons respectively. The difference in the characteristics of activity is connected with the geometry of the dendrites and the foci of their maximal branching.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 140–148, March–April, 1982.  相似文献   

5.
Responses of 246 auditory cortical neurons to paired and repetitive stimulation of geniculo-cortical fibers were studied in experiments on cats immobilized with tubocurarine. The refractory period (RP) varied from 1 to 200 msec in different neurons. For neurons excited antidromically it varied from 1 to 3 msec. Among neurons excited monosynaptically there were some with a short (1.3–6 msec), medium, (8–16 msec) or long (30–100 msec) refractory period. Most neurons excited polysynaptically had a RP of mean length. RPs 30–200 msec in length were due to inhibition arising in the neuron after conditioning stimulation. In some neurons, after a short (1.5–2.0 msec) initial period of refractoriness there was a temporary (for 2–3 msec) recovery of responsiveness, followed by another period of ineffectiveness of the testing stimulus lasting 30–100 msec. Barbiturates selectively inhibited long-latency unit responses in the auditory cortex and during their action the number of responding neurons with a mean RP decreased sharply. The results demonstrate functional heterogeneity of auditory cortical neurons responding to an incoming volley of afferent impulses.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 3, pp. 236–245, May–June, 1973.  相似文献   

6.
Thermowaves spreading through the cerebral cortex were observed and investigated during acute experiments on white rats using a new technique — that of thermoencephaloscopy (TES) through the intact skull. These waves were induced by regular visual stimulation (at intervals of 1.5–3 min) or by initiating one of the flashes and spread through the cortex along trajectories of five basic types; amplitude of thermowaves: 0.005–0.1°C; length: 10–15 mm; duration 1.2–11.4 sec; velocity: 1–33 mm/sec; extent of pathway: 2–56 mm. They appeared with a high degree of probability (of 0.92) during the interval between 15 sec before and 26 sec after the flash. Numbers of moving waves declined by the point of stimulus application and rose by 7–8 sec after the flash. Waves arose in 50% of cases in the contralateral visual cortex (areas 17 and 18a), spreading to the midline and crossing to the ipsilateral hemisphere (areas 17, 18a, and 7). Local waves moving along a circular trajectory were also discovered in the contralateral visual cortex. Several types of wave, differing in trajectory, also arose in the ipsilateral visual cortex. Mechanisms and possible significance of this effect are examined.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 467–475, July–August, 1989.  相似文献   

7.
The response was investigated of cutaneous C-fiber polymodal mechano-thermo-sensitive sensory units (SMT units) to injecting potassium, acetylcholine, and methacholine ions at noxious and subnoxious concentrations into the arteries of anesthetized cats. Subnoxious chemical stimulation induced low-frequency excitation in SMT units. The parameters of firing in these units, when subjected to excitation during noxious or subnoxious chemical stimulation, may be used to estimate the analgesic action of local anesthetics. Local anesthesia may be achieved by inhibiting exclusively high-frequency discharge in SMT units, without complete blockade of these sensors. We propose use-dependent neural excitation blockers for this purpose. SMT units were found to be inhibited in this way by mechanical stimulation under the action of lidocaine or n-propylaj-maline. Mathematical modeling of C-fibers showed that slow alterations in ionic permeability play a major part in determining firing rate produced by chemical stimulation.Experimental Cardiological Research Institute, All-Union Cardiological Research Center, Russian Academy of Medical Sciences, Moscow. Translated from Neirofiziologiya, Vol. 24, No. 5, pp. 517–529, September–October, 1992.  相似文献   

8.
Efferent activity was investigated in the phrenic nerve during startle reflex manifesting as somatic nerve discharges (lower intercostal nerves and the nerve endings) in chloralose anesthetized cats. Inhibition (usually of short duration, lasting 23–36 msec) of inspiration activity was found to be the main component of response in the phrenic nerve in the shaping of "low threshold" startle reflex produced by acoustic and tactile stimuli and stimulation of low threshold peripheral afferents. Reflex discharge prevailed amongst the response patterns produced in the phrenic nerve by stimulating high threshold afferents, i.e., early (propriospinal) and late (suprasegmental, arising from stimulating intercostal nerve) or late only (when stimulating the hindlimb nerves). Two patterns of late response could be distinguished, one on inspiration (found in roughly 3 out of 4 experiments) and other on exhalation — the respiratory homologs of somatic startle reflex. Response pattern is described throughout the respiratory cycle. Structure and respiratory modulation of reflex responses produced in the phrenic nerve by stimulating bulbar respiratory structure are also examined. Possible neurophysiological mechanisms underlying phrenic response during the shaping of startle reflex are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 4, pp. 473–482, July–August, 1987.  相似文献   

9.
The effect of stimulation of the ipsilateral and contralateral red nuclei on motoneurons of the hypoglossal nucleus was studied in cats anesthetized with chloralose and pentobarbital. In 35 (69%) of the 51 motoneurons tested, PSPs were generated in response to stimulation of the red nuclei by series of 3 to 5 stimuli of threshold strength and with a frequency of 500–600/sec. Of this number, 33 motoneurons responded to stimulation by EPSPs, whose latent periods varied from 3.5 to 14.0 msec (mean value for the ipsilateral red nucleus 5.7±0.75, for the contralateral nucleus 6.8±0.8 msec), whereas two motoneurons responded (after 6.2 msec) by IPSPs. Of the 35 motoneurons responding to stimulation of the red nuclei, stimulation of the lingual nerve evoked EPSPs in 31 and IPSPs in 4 (two of them were inhibited by rubrofugal impulses). IPSPs were generated as a result of stimulation of the lingual nerve in 16 motoneurons which did not respond to rubrofugal impulses.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 62–66, January–February, 1978.  相似文献   

10.
In acute experiments on rats, studies have been made on impulse activity of single fibres of n. ischiadicus evoked by stimulation of the receptive fields of the sole by focused ultrasound. Mechanical effects were produced by rectangular ultrasonic stimuli, thermal ones--by trapezoid ones. With respect to the magnitude of a threshold response to a rectangular stimuli, the receptor structures were divided into three groups, i.e. low, mean and high threshold ones. Low and mean threshold receptor units responded to local thermal stimulation. Mean threshold units exhibited an increase of the threshold to mechanical stimulation after local thermal one. In human subjects, the structures which are functionally similar to mean threshold units, evoke thermal sensations, and may be classified not only as temperature dependent, but also as temperature sensitive.  相似文献   

11.
Responses of 251 neurons in the anterior part of the middle suprasylvian gyrus to stimulation of primary sensory (auditory, visual, somatosensory) areas and also to acoustic, visual, and somatosensory stimuli were studied in acute experiments on cats anesthetized with chloralose (40 mg/kg) and pentobarbital (20 mg/kg). Three groups of neurons were distinguished by their responses to stimulation of the primary sensory areas: those responding by an increased firing rate (117) or by inhibition (35) and those not responding (99). Responses of 193 neurons to stimulation of the peripheral afferent systems were analyzed. Neurons of the parietal associative cortex responded more frequently to cortical stimulation than to peripheral. By the duration of the latent period of their response to cortical stimulation the neurons were divided into three groups: those with short (less than 20 msec), medium (20–30 msec), and long latent periods (over 30 msec). The first group was the largest.Kemerovo State Medical Institute. Translated from Neirofiziologiya, Vol. 4, No. 5, pp. 524–530, September–October, 1972.  相似文献   

12.
Electrical stimulation (ES) at the surface of the rat brain (10–200 Hz; brief trains of 10 pulses) was found to be most effective for evoking waves of spreading depression (SD) in the cortex. Repeated stimuli spaced at 10–15 min intervals did not produce convulsive activity and nor did mechanisms of SD inhibition set in under these conditions. A 5–6-fold reduction in SD threshold occurred when the intra-burst rate was increased from 10 to 200 Hz. Temporal summation of residual processes occurring with suprathreshold ES applied at the rate of 50 and 200 Hz resulted in significant broadening of the SD focus in the ES area and regular occurrence of additional SD foci on the side ipsilateral to stimulation and in the contralateral cortex. The protracted changes in cortical excitation lingering after ES by high-frequency currents brought about a decline in SD threshold and pointed to the active part played by synaptic processes in triggering this reaction.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 6, pp. 789–796, November–December, 1989.  相似文献   

13.
Stimulation of the infraorbital nerve at strengths 1.4–2.5 times higer than the threshold of excitation of A fibers in cats anesthetized with chloralose and pentobarbital evoked EPSPs with an amplitude up to 3.0 mV and a duration of 9–15 msec in 69% of masseter motoneurons after 1.5–3.0 msec. These EPSPs were complex and formed by summation of simpler short-latency and long-latency EPSPs. The short-latency EPSPs appeared in response to infraorbital nerve stimulation at 1.1–1.5 thresholds and had a slow rate of rise (2.5–4.5 msec, mean 3.7±0.4 msec), low amplitude (under 2.0 mV), and short duration (5–6 msec). Their latent period varied from 1.5 to 3.0 msec (mean 2.1±0.2 msec). The shortness of the latent period and its constancy during stimulation of the nerve at increasing strength, and also the character of development of facilitation and inhibition of the EPSP during high-frequency stimulation suggests that these EPSPs are monosynaptic. The slow rate of rise suggested that these EPSPs arise on distal dendrites of the motoneurons. Long-latency EPSPs appeared 7–9 msec after stimulation of the infraorbital nerve at 1.1–1.5 thresholds. Their amplitude reached 1.5–2.0 mV and their duration 7–9 msec. The long duration of the latent period combined with low ability to reproduce high-frequency stimulation (up to 30/sec) points to the polysynaptic origin of these EPSPs.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 6, pp. 583–591, November–December, 1977.  相似文献   

14.
The reaction of field CA1 hippocampal neurons to stimulation of the reticular formation (RF) with impulses of different frequencies was investigated in experiments on unanesthetized rabbits. The effect of electrical and sensory stimuli was compared and the effect of reticular stimulation on the sensory responses was determined. With an increase in the frequency of RF stimulation, the number of neurons of field CA1 responding with inhibition of the activity increases. Multimodal neurons of the hippocampus depend on the reticular input to a greater degree than unimodal neurons. Neurons whose activity does not change in response to the effect of sensory stimuli also do not respond to stimulation of the RF. Neurons responding with inhibitory reactions to sensory stimulation show a higher correlation with the effects of RF stimulation than neurons with activation reactions and, especially those with "complex" responses to the effect of sensory stimuli. In a considerable number of hippocampal neurons the responses to sensory stimuli change in the course of 10–15 min after stimulation of the RF. The role of the RF in the organization of the reactions of hippocampal neurons is discussed.Division of Memory Problems, Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oke. Translated from Neirofiziologiya, Vol. 3, No. 3, pp. 227–235, May–June, 1971.  相似文献   

15.
Changes in the firing rate of posterior hypothalmic neurons in response to local elevation of the brain temperature by 0.6–1.5°C and to a rise and fall (separately and simultaneously) of the skin temperature by 3–5°C were investigated in unanesthetized rabbits. Neurons responding selectively to changes in brain temperature and skin temperature and neurons responding to both temperature stimuli were found in the posterior hypothalamus. During combined stimulation the unit activity was changed much more than in response stimulus. It is concluded that the region of the posterior hypothalamus participates in the integration of impulses from central and peripheral temperature receptors.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 490–496, September–October, 1973.  相似文献   

16.
Extracellular and intracellular single unit responses of neurons of the auditory cortex to electrical stimulation of geniculocortical fibers (GCF) were recorded in experiments on cats immobilized with tubocurarine. The latent period of responses of 15% of neurons to GCF stimulation was 0.3–1.5 msec. It is postulated that they were excited anti-dromically. The latent period of spikes generated by neurons responding to GCF stimulation orthodromically varied from 1.6 to 12 msec. In 28.6% of neurons the latent period was 1.6–2.5 msec. It is postulated that these neurons were excited monosynaptically. Intracellular recording revealed primary IPSPs in response to GCF stimulation in 63.3% of neurons, a brief EPSP followed by a prolonged IPSP in 17.7%, an EPSP-spike-IPSP complex in 12.3%, and subthreshold EPSPs in 7% of neurons. The latent period of the primary IPSPs varied from 1.8 to 11 msec, being 1.8–3.7 in 72%, 3.8–5.7 in 20.0%, and 5.8–11 msec in 8.0% of neurons. The latent period of responses beginning with an EPSP was 1–4 msec (mean 1.8 msec). Orthodromic responses arising 3–10 msec after the antidromic response, and consisting of 3–5 spikes, were recorded in some antidromically excited neurons. Hypotheses regarding the functional organization of the auditory cortex and mechanisms of inhibition in its neurons are put forward on the basis of the results obtained.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 3, pp. 227–235, May–June, 1972.  相似文献   

17.
Responses of rabbit visual cortical neurons to single and repetitive intracortical electrical stimulation were investigated. The stimulating electrode was located 0.7–1.2 mm away from the recording electrode. Response thresholds to single stimulation were as a rule 150–180 µA, whereas to series of stimuli they were 30–60 µA. The latent period to the first spike averaged 5–15 msec but the probability of the initial discharge was very low, namely 3–6%. With an increase in current intensity the duration of the initial inhibitory pause was increased in half of the neurons responding to it, whereas in the rest it was unchanged. After presentation of series of stimuli spontaneous activity was enhanced for a short time (4–6 sec). In about half of the cells the same kinds of discharge dynamics were observed in response to repetitive stimulation (frequency 0.25 Hz) as in responses to light, but more neurons with sensitization of discharge and fewer "habituating" neurons took part in responses to electrical stimulation. It is postulated that stimulation of a given point of the visual cortex evokes excitation of a local neuron hypercolumn and inhibition of neighboring cell columns.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 15, No. 4, pp. 412–419, July–August, 1983.  相似文献   

18.
The effects of severing the spinal trigeminal tract and its caudal nucleus on high-threshold jaw-opening reflex elicited by tooth pulp stimulation were investigated during experiments on cats under chloralose-Nembutal anesthesia. Low-threshold jaw-opening reflex produced by stimulating the A--infraorbital nerve at an intensity 2–3 thresholds in relation to the most excitable fibers on this nerve was also observed, as well as suppression of these reflexes induced by central gray matter stimulation. It was found that spinal trigeminal tract section produces a 8–52% increase in high-threshold reflex. The amplitude of low-threshold reflex either remained unchanged or showed a slight tendency to rise or fall. Brief stimulation of the central gray matter produced a 100% decrease in high-threshold reflex in intact animals compared with a 40–60% decrease after section of the trigeminal tract. Protracted stimulation of the central gray brought about an 80% decline in high-threshold reflex in intact animals as against 25–30% after section. The degree to which brief stimulation of the central gray produced depression of low-threshold stimulation remained unchanged by trigeminal tract section. Protracted stimulation of the central gray matter brought about a 25–50% reduction in low-threshold reflex in intact animals and a reduction of 75% in three animals and 15–20% in four animals. This implied that the caudal nucleus of the spinal trigeminal tract exerts a more substantial influence on the process of high- than low-threshold reflex inhibition when the central gray matter is stimulated.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 362–368, May–June, 1987.  相似文献   

19.
During chronic experiments on unanesthetized cats neuronal response in the caudate nucleus to the presentation of local photic stimuli and electrical stimulation of the specific (field 17) and the association (Clare-Bishop) areas were compared. Stimulation of the Clare-Bishop area proved more effective than stimulating field 17 for neurons of the caudate nucleus; a response was produced in 47% of test neurons in comparison with 8% of units only in the specific area. Lower average values were observed for latency of neuronal response to stimulation of the Clare-Bishop area. An insignificant number of caudate nucleus neurons were activated as a result of stimulation of both cortical areas. A comparison between the response of one set of neurons to electrical cortical and visual stimulation showed that cells responding to visual stimulation were more highly activated by stimulating the Clare-Bishop area than by stimulation of field 17. This type of neuron predominated in the caudate nucleus. A discussion follows of the possible involvement of the Clare-Bishop area in shaping neuronal response to visual stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 619–627, September–October, 1985.  相似文献   

20.
Analysis of afferent activity in unmyelinated fibers of a cutaneous nerve was carried out by the colliding impulses method in cats. The effect of antidromic excitation of the nerve and mechanical stimulation of the receptors on subsequent orthodromic activity during stretching of the skin was investigated. Both these factors were shown to reduce subsequent orthodromic activity evoked by testing stimulation. The reduction in activity was greatest 10–15 sec after stimulation. The duration of the inhibitory effect was greater after mechanical than after antidromic stimulation. Combined mechanical stimulation and antidromic excitation resulted in a greater decrease of afferent activity and an increase in the time of its recovery. An increase in the frequency of antidromic excitation potentiated the inhibitory effect of preliminary stimulation on orthodromic activity in C fibers.Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii Gor'kii State University. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 307–312, May–June, 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号