首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study of Campylobacter jejuni on a broiler chicken farm between 1989 and 1994 gave an estimated isolation rate of 27% (3,304 of 12,233) from a 0.9% sample of 1.44 million broiler chickens from six to eight sheds over 32 consecutive rearing flocks comprising 251 broiler shed flocks. During the study, C. jejuni was found in 35.5% of the 251 shed flocks but only 9.2% (23 of 251) had Campylobacter isolates in successive flocks, with 9 of those 23 sheds having the same serotype between consecutive flocks, indicating a low level of transmission between flocks. Analysis of a systematic sample of 484 of 3,304 (14.6%) C. jejuni isolates showed that 85% were of 10 serotype complexes but 58% were of 3 serotype complexes, indicating a high degree of strain similarity throughout the entire study. The three commonest types were detected in 8 of 32 flocks during the 5-year study period, suggesting an intermittent common external Campylobacter source. This hypothesis was tested by a retrospective cohort analysis of C. jejuni rates and types by reference to hatchery supplier of the 1-day-old chicks. Isolation rates of C. jejuni and frequency distribution of types were determined in 6-week-old broiler chickens identified by the hatchery supplying the original chicks. The isolation rate of C. jejuni in broilers, supplied by hatchery A, was 17.6%, compared to 42.9% (P < 0.0001) for broilers reared from chicks supplied by hatchery B. In two instances, when both hatcheries were used to stock the same farm flock, Campylobacter isolates were found only in those sheds with chicks supplied by hatchery B. Thus, the frequency distribution of Campylobacter types for chickens supplied by the two hatcheries over the 5-year period showed marked dissimilarity. These findings suggest that the isolation rate and type of Campylobacter isolates in broiler chickens was associated with the hatchery supplying chicks. The lack of diversity of types and the intermittent high positivity of sheds is evidence for a common source of C. jejuni introduced by vertical transmission rather than contamination at the hatchery or during transportation.  相似文献   

2.
Bacteriophage specific for Campylobacter were isolated from chicken excreta collected from established free-range layer breed stock. Bacteriophage were either propagated on a Campylobacter jejuni host with broad susceptibility to bacteriophage (NCTC 12662) or on Campylobacter isolates from the same samples. Campylobacters were confirmed as being C. jejuni and or C. coli, using a combination of standard biochemical tests and PCR analysis with genus and species specific primers. The bacteriophage displayed differential patterns of susceptibility against reference NCTC strains and contemporary C. jejuni /C. coli isolates from chicken excreta. Electron microscopy demonstrated that the phage possessed icosahedral heads and rigid contractile tails. Pulsed-field gel electrophoresis revealed the bacteriophage genomes to be double stranded DNA in the range of 140 kb in size and the restriction enzyme patterns of the DNAs indicate they are genetically related members of the Myoviridae family. This study showed that Campylobacter bacteriophage could easily be isolated from free-range chickens and form part of their normal microbiological biota of environmentally exposed birds.  相似文献   

3.
Wild European Starlings ( Sturnus vulgaris ) shed Campylobacter at high rates, suggesting that they may be a source of human and farm animal infection. A survey of Campylobacter shedding of 957 wild starlings was undertaken by culture of faecal specimens and genetic analysis of the campylobacters isolated: shedding rates were 30.6% for Campylobacter jejuni , 0.6% for C. coli and 6.3% for C. lari. Genotyping by multilocus sequence typing (MLST) and antigen sequence typing established that these bacteria were distinct from poultry or human disease isolates with the ST-177 and ST-682 clonal complexes possibly representing starling-adapted genotypes. There was seasonal variation in both shedding rate and genotypic diversity, both exhibiting a maximum during the late spring/early summer. Host age also affected Campylobacter shedding, which was higher in younger birds, and turnover was rapid with no evidence of cross-immunity among Campylobacter species or genotypes. In nestlings, C. jejuni shedding was evident from 9 days of age but siblings were not readily co-infected. The dynamics of Campylobacter infection of starlings differed from that observed in commercial poultry and consequently there was no evidence that wild starlings represent a major source of Campylobacter infections of food animals or humans.  相似文献   

4.
A longitudinal study of bacteriophages and their hosts was carried out at a broiler house that had been identified as having a population of Campylobacter-specific bacteriophages. Cloacal and excreta samples were collected from three successive broiler flocks reared in the same barn. Campylobacter jejuni was isolated from each flock, whereas bacteriophages could be isolated from flocks 1 and 2 but were not isolated from flock 3. The bacteriophages isolated from flocks 1 and 2 were closely related to each other in terms of host range, morphology, genome size, and genetic content. All Campylobacter isolates from flock 1 were genotypically indistinguishable by pulsed-field gel electrophoresis (PFGE). PFGE and multilocus sequence typing indicated that this C. jejuni type was maintained from flock 1 to flock 2 but was largely superseded by three genetically distinct C. jejuni types insensitive to the resident bacteriophages. All isolates from the third batch of birds were insensitive to bacteriophages and genotypically distinct. These results are significant because this is the first study of an environmental population of C. jejuni bacteriophages and their influence on the Campylobacter populations of broiler house chickens. The role of developing bacteriophage resistance was investigated as this is a possible obstacle to the use of bacteriophage therapy to reduce the numbers of campylobacters in chickens. In this broiler house succession was largely due to incursion of new genotypes rather than to de novo development of resistance.  相似文献   

5.
Wild geese are a potential source of Campylobacter infection for humans and farm animals and have been implicated in at least two large waterborne disease outbreaks. There have been few investigations into the population biology of Campylobacter in geese, carriage rates are reported to vary (0 to 100%), and no genetic characterization of isolates has been performed. Fecal samples collected from wild geese in Oxfordshire, United Kingdom, were culture positive for C. jejuni (50.2%) and C. coli (0.3%). The C. jejuni (n = 166) isolates were characterized by using multilocus sequence typing and were compared with isolates collected from free-range broiler chickens and wild starlings sampled at the same location. A total of 38 STs, six clonal complexes, and 23 flaA SVR nucleotide STs were identified. The ST-21 and ST-45 complexes (5.4% of isolates) were the only complexes to be identified among isolates from the geese and the other bird species sampled in the same location. These clonal complexes were also identified among human disease isolates collected in the same health care region. The results indicate that large numbers of wild geese carry Campylobacter; however, there was limited mixing of Campylobacter populations among the different sources examined, and the host source could be predicted with high probability from the allelic profile of a C. jejuni isolate. In conclusion, genotypes of C. jejuni isolated from geese are highly host specific, and a comparison with isolates from Oxfordshire cases of human disease revealed that while geese cannot be excluded as a source of infection for humans and farm animals, their contribution is likely to be minor.  相似文献   

6.
This study aimed to identify the sources and routes of transmission of Campylobacter in intensively reared poultry farms in the Republic of Ireland. Breeder flocks and their corresponding broilers housed in three growing facilities were screened for the presence of Campylobacter species from November 2006 through September 2007. All breeder flocks tested positive for Campylobacter species (with C. jejuni and C. coli being identified). Similarly, all broiler flocks also tested positive for Campylobacter by the end of the rearing period. Faecal and environmental samples were analyzed at regular intervals throughout the rearing period of each broiler flock. Campylobacter was not detected in the disinfected house, or in one-day old broiler chicks. Campylobacter jejuni was isolated from environmental samples including air, water puddles, adjacent broiler flocks and soil. A representative subset of isolates from each farm was selected for further characterization using flaA-SVR sub-typing and multi-locus sequence typing (MLST) to determine if same-species isolates from different sources were indistinguishable or not. Results obtained suggest that no evidence of vertical transmission existed and that adequate cleaning/disinfection of broiler houses contributed to the prevention of carryover and cross-contamination. Nonetheless, the environment appears to be a potential source of Campylobacter. The population structure of Campylobacter isolates from broiler farms in Southern Ireland was diverse and weakly clonal.  相似文献   

7.
Campylobacters and Campylobacter-specific bacteriophages were isolated and enumerated during the rearing cycle of free-range (56 days) and organic chickens (73 days) at 3-day intervals from hatching until slaughter. In both flocks Campylobacter jejuni was the initial colonizer but Campylobacter coli was detected more frequently from 5 weeks of age. The diversity of the Campylobacter isolates was examined by pulsed-field gel electrophoresis of SmaI-digested genomic DNA and antimicrobial resistance typing. Bacteriophages were isolated from 51% (19 of 37 birds) of Campylobacter-positive organic birds (log10 2.5 to log10 5.7 PFU/g of cecal contents). The bacteriophages were all typical group III Campylobacter bacteriophages in terms of genomic size but could be characterized in terms of their host range and placed into five different groups. In contrast to the organic birds, anti-Campylobacter activity (bacteriocin-like) was observed in 26% (10 of 38 birds) of Campylobacter-positive free-range birds, and only one bacteriophage was isolated. Appearance of either bacteriophages or anti-Campylobacter activity was associated with changes in the levels of colonization and the predominant genotypes and species isolated. The frequency and potential influence of naturally occurring bacteriophages and/or inhibitory substances on the diversity and fluctuations of populations of campylobacters have not previously been reported in either free-range or organic chickens.  相似文献   

8.
Detection and survival of Campylobacter in chicken eggs   总被引:8,自引:0,他引:8  
AIMS: Campylobacter jejuni, a food-borne human pathogen, is widespread in poultry; however, the sources of infection and modes of transmission of this organism on chicken farms are not well understood. The objective of this study was to determine if vertical transmission of C. jejuni occurs via eggs. METHODS AND RESULTS: Using a temperature differential method, it was shown that Campylobacter had limited ability to penetrate the eggshell. When C. jejuni was directly inoculated into the egg yolk and the eggs were stored at 18 degrees C, the organism was able to survive for up to 14 days. However, viability of C. jejuni was dramatically shortened when injected into the albumen or the air sac. When freshly laid eggs from Campylobacter-inoculated specific pathogen-free (SPF) layers were tested, C. jejuni-contamination was detected in three of 65 pooled whole eggs (5-10 eggs in each pool) via culture and PCR. However, the organism was not detected from any of the 800 eggs (80 pools), collected from the same SPF flock, but kept at 18 degrees C for 7 days before testing. Likewise, Campylobacter was not recovered from any of 500 fresh eggs obtained from commercial broiler-breeder flocks that were actively shedding Campylobacter in faeces. Also, none of the 1000 eggs from broiler breeders obtained from a commercial hatchery were positive for Campylobacter. CONCLUSIONS: These results suggest that vertical transmission of C. jejuni through the egg is probably a rare event and does not play a major role in the introduction of Campylobacter to chicken flocks. SIGNIFICANCE AND IMPACT OF THE STUDY: Control of Campylobacter transmission to chicken flocks should focus on sources of infection that are not related to eggs.  相似文献   

9.
Broiler flocks are frequently infected with Campylobacter jejuni. The origin of the infection is still unclear. The question of whether colonization of flocks results from transmission of C. jejuni from breeder flocks to progeny (vertical transmission) or from environmental sources (horizontal transmission) remains to be answered. Therefore, in this study samples were taken from successive broiler flocks in two broiler houses (house A on farm A and house B1 on farm B) as well as from the environment of the houses. All C. jejuni isolates were typed by using the Penner serotyping system, and part of the isolates from farm B were typed by using a randomly amplified polymorphic DNA-typing system. In poultry house A, C. jejuni was isolated from the first flock but not from subsequent flocks. In poultry house B1, C. jejuni strains of the same Penner serotypes and exhibiting identical DNA profiles were isolated from successive flocks. Infection of the flocks from a common source via horizontal pathways is suspected, while a vertical route of infection is not likely to exist. Application of measures to control horizontal transmission of C. jejuni on farm B was successful.  相似文献   

10.
Campylobacter jejuni and Campylobacter-specific bacteriophage were enumerated from broiler chicken ceca selected from 90 United Kingdom flocks (n = 205). C. jejuni counts in the presence of bacteriophage (mean log(10) 5.1 CFU/g) were associated with a significant (P < 0.001) reduction compared to samples with Campylobacter alone (mean log(10) 6.9 CFU/g).  相似文献   

11.
Broiler flocks are frequently infected with Campylobacter jejuni. The origin of the infection is still unclear. The question of whether colonization of flocks results from transmission of C. jejuni from breeder flocks to progeny (vertical transmission) or from environmental sources (horizontal transmission) remains to be answered. Therefore, in this study samples were taken from successive broiler flocks in two broiler houses (house A on farm A and house B1 on farm B) as well as from the environment of the houses. All C. jejuni isolates were typed by using the Penner serotyping system, and part of the isolates from farm B were typed by using a randomly amplified polymorphic DNA-typing system. In poultry house A, C. jejuni was isolated from the first flock but not from subsequent flocks. In poultry house B1, C. jejuni strains of the same Penner serotypes and exhibiting identical DNA profiles were isolated from successive flocks. Infection of the flocks from a common source via horizontal pathways is suspected, while a vertical route of infection is not likely to exist. Application of measures to control horizontal transmission of C. jejuni on farm B was successful.  相似文献   

12.
Campylobacter jejuni is a major cause of diarrheal disease and food-borne gastroenteritis. The main reservoir of C. jejuni in poultry is the cecum, with an estimated content of 6 to 8 log10 CFU/g. If a flock is infected with C. jejuni, the majority of the birds in that flock will harbor the bacterium. Diagnostics at the flock level could thus be an important control point. The aim of the work presented here was to develop a complete quantitative PCR-based detection assay for C. jejuni obtained directly from cecal contents and fecal samples. We applied an approach in which the same paramagnetic beads were used both for cell isolation and for DNA purification. This integrated approach enabled both fully automated and quantitative sample preparation and a DNA extraction method. We developed a complete quantitative diagnostic assay through the combination of the sample preparation approach and real-time 5'-nuclease PCR. The assay was evaluated both by spiking the samples with C. jejuni and through the detection of C. jejuni in naturally colonized chickens. Detection limits between 2 and 25 CFU per PCR and a quantitative range of >4 log10 were obtained for spiked fecal and cecal samples. Thirty-one different poultry flocks were screened for naturally colonized chickens. A total of 262 (204 fecal and 58 cecal) samples were analyzed. Nineteen of the flocks were Campylobacter positive, whereas 12 were negative. Two of the flocks contained Campylobacter species other than C. jejuni. There was a large difference in the C. jejuni content, ranging from 4 to 8 log10 CFU/g of fecal or cecal material, for the different flocks tested. Some issues that have not yet promoted much attention are the prequantitative differences in the ability of C. jejuni to colonize poultry and the importance of these differences for causing human disease through food contamination. Understanding the colonization kinetics in poultry is therefore of great importance for controlling human infections by this bacterium.  相似文献   

13.
Poultry are considered the major reservoir for Campylobacter jejuni, a leading bacterial cause of human food-borne diarrhea. To understand the ecology of C. jejuni and develop strategies to control C. jejuni infection in the animal reservoir, we initiated studies to examine the potential role of anti-Campylobacter maternal antibodies in protecting young broiler chickens from infection by C. jejuni. Using an enzyme-linked immunosorbent assay (ELISA), the prevalence of anti-C. jejuni antibodies in breeder chickens, egg yolks, and broilers from multiple flocks of different farms were examined. High levels of antibodies to the organism were detected in serum samples of breeder chickens and in egg yolk contents. To determine the dynamics of anti-Campylobacter maternal antibody transferred from yolks to hatchlings, serum samples collected from five broiler flocks at weekly intervals from 1 to 28 or 42 days of age were also examined by ELISA. Sera from the 1-day and 7-day-old chicks showed high titers of antibodies to C. jejuni. Thereafter, antibody titers decreased substantially and were not detected during the third and fourth weeks of age. The disappearance of anti-Campylobacter maternal antibodies during 3 to 4 weeks of age coincides with the appearance of C. jejuni infections observed in many broiler chicken flocks. As shown by immunoblotting, the maternally derived antibodies recognized multiple membrane proteins of C. jejuni ranging from 19 to 107 kDa. Moreover, in vitro serum bactericidal assays showed that anti-Campylobacter maternal antibodies were active in antibody-dependent complement-mediated killing of C. jejuni. Together, these results highlight the widespread presence of functional anti-Campylobacter antibodies in the poultry production system and provide a strong rationale for further investigation of the potential role of anti-C. jejuni maternal antibodies in protecting young chickens from infection by C. jejuni.  相似文献   

14.
Campylobacter isolates from diverse samples within broiler production and processing environments were typed by using flaA short variable region DNA sequence analysis. Sixteen flocks from four different farms representing two broiler producers in Arkansas and California were analyzed. Fourteen of the flocks (87.5%) were Campylobacter-positive; two remained negative throughout the 6-week rearing period. In general, multiple clones were present within a flock. Additionally, clones found within a flock were also present on the final product, although the diversity of Campylobacter spp. on the final product appeared to be reduced relative to that observed within the flock. Comparison of clones between flocks on the same farm revealed that some clones of Campylobacter persisted in multiple flocks. Furthermore, some clones were identified across the two farms that were under the same management. In two sampling periods, environmental isolates were positive for Campylobacter prior to flock shedding. Environmental samples associated with five additional flocks were positive for Campylobacter concomitantly with recovery of Campylobacter from the birds. Analysis of the environmental isolates that were positive prior to flock shedding demonstrated that in some instances the environmental isolates possessed genotypes identical to those of isolates originating from the flock, while in other cases the environmental isolates possessed genotypes that were distantly related to isolates obtained from the flock. Analyses of environmental isolates that tested positive concurrently with the positive isolates from the flocks demonstrated varied results; in some instances the environmental isolates possessed genotypes identical to those of isolates originating from the flock, while in other cases the environmental isolates possessed genotypes that were distantly related to isolates obtained from the flock. These data suggest that the external environment may contribute to Campylobacter contamination during poultry production and processing. However, environmental contamination with Campylobacter does not appear to be the sole contributing factor.  相似文献   

15.
Campylobacter successfully colonizes broiler chickens, but little is known about the longer term natural history of colonization, since most flocks are slaughtered at an immature age. In this study, the prevalence and genetic diversity of Campylobacter colonizing a single free-range broiler breeder flock was investigated over the course of a year. The age of the flock was the most important factor in determining both the prevalence and diversity of Campylobacter over time. There was no correlation with season, temperature, the amount of rain and sunshine, or the dynamics of colonization amongst geographically and temporally matched broiler flocks. The higher prevalence rates coincided with the age at which broiler chickens are typically slaughtered, but then in the absence of bio-security or other intervention methods, and despite changes in flock management, the prevalence fell to significantly lower levels for the remainder of the study. The genetic diversity of Campylobacter increased as the flock aged, implying that genotypes were accumulated within the flock and may persist for a long time. A better understanding of the ecology of Campylobacter within commercial chicken flocks will allow the design of more effective farm-based interventions.  相似文献   

16.
A major bottleneck in understanding zoonotic pathogens has been the analysis of pathogen co-infection dynamics. We have addressed this challenge using a novel direct sequencing approach for pathogen quantification in mixed infections. The major zoonotic food-borne pathogen Campylobacter jejuni, with an important reservoir in the gastrointestinal (GI) tract of chickens, was used as a model. We investigated the co-colonisation dynamics of seven C. jejuni strains in a chicken GI infection trial. The seven strains were isolated from an epidemiological study showing multiple strain infections at the farm level. We analysed time-series data, following the Campylobacter colonisation, as well as the dominant background flora of chickens. Data were collected from the infection at day 16 until the last sampling point at day 36. Chickens with two different background floras were studied, mature (treated with Broilact, which is a product consisting of bacteria from the intestinal flora of healthy hens) and spontaneous. The two treatments resulted in completely different background floras, yet similar Campylobacter colonisation patterns were detected in both groups. This suggests that it is the chicken host and not the background flora that is important in determining the Campylobacter colonisation pattern. Our results showed that mainly two of the seven C. jejuni strains dominated the Campylobacter flora in the chickens, with a shift of the dominating strain during the infection period. We propose a model in which multiple C. jejuni strains can colonise a single host, with the dominant strains being replaced as a consequence of strain-specific immune responses. This model represents a new understanding of C. jejuni epidemiology, with future implications for the development of novel intervention strategies.  相似文献   

17.
Aim:  To estimate the prevalence of thermotolerant Campylobacter spp. in commercially reared partridges ( Perdix perdix ) in southern Italy.
Methods and Results:  Cloacal swabs of partridges ( n  =   240), equally distributed between male and female birds, from a game bird farm located in the Southern Italy were examined for the prevalence of thermotolerant Campylobacter spp. The samples were processed in order to detect thermotolerant Campylobacter spp. by culture methods. The positive samples were then confirmed by multiplex polymerase chain reaction. Thermotolerant Campylobacter spp. were isolated from 118 (49·2%) of the 240 cloacal swabs examined. As proved by PCR, 100% of the strains were identified as Campylobacter coli (118/118), and 15 (12·7%) out of the 118 positive samples were also positive for Campylobacter jejuni . In contrast, Campylobacter lari was not identified. Adult partridges showed a significantly higher prevalence ( P  <   0·05) than younger ones.
Conclusion:  These results reinforce the assumption that game birds may be considered as potential carriers of Campylobacter spp. for human being and other animal species.
Significance and Impact of the Study:  Although an earlier 1986 publication described the prevalence of Campylobacter coli in commercially reared partridges, this is the first report to confirm the species of Campylobacter using a PCR test.  相似文献   

18.
Geographical and seasonal variation in the incidence and prevalence of Campylobacter jejuni and C. coli in housed broiler flocks reared in Great Britain in 2004 to 2006 was investigated in this study. Ceca (30) from 797 flocks, not subject to prior partial depopulation and reared on 211 farms, were examined individually for the presence of Campylobacter spp. The best-fitting climatic factors explained approximately 46% of the prevalence of Campylobacter-colonized flocks at slaughter and consisted of a combination of temperature at slaughter, number of sunshine hours in placement month, and millimeters of rainfall in placement month. Positive flocks were more likely to be slaughtered between June and November than during the rest of the year and to be reared in northern Great Britain than in central or southern Great Britain. C. jejuni was identified in approximately 90% of flocks, and C. coli was present in 10% of flocks. The most common clonal complexes identified in 226 isolates typed by multilocus sequence typing (MLST) were ST-45, ST-21, ST-574, ST-443, and ST-828. Flocks slaughtered at the same time were more likely to have similar complexes, and ST-45 had a seasonal pattern, with the highest prevalence in June, and was also more likely to be present in flocks reared in northern Great Britain.  相似文献   

19.
Eight of 16 conventional broiler-chicken flocks examined contained Campylobacter. All isolates were identified as C. jejuni except from 1 flock were C. coli was isolated. One herd consisting of 6 different houses where Campylobacter regularly has been isolated was continuously examined. It was not possible to isolate Campylobacter from newly hatched chickens or from environmental samples and cloacal swabs during the 2 first weeks of growth.  相似文献   

20.
In many industrialized countries, the incidence of campylobacteriosis exceeds that of salmonellosis. Campylobacter bacteria are transmitted to humans mainly in food, especially poultry meat products. Total prevention of Campylobacter colonization in broiler flocks is the best way to reduce (or eliminate) the contamination of poultry products. The aim of this study was to establish the sources and routes of contamination of broilers at the farm level. Molecular typing methods (DNA macrorestriction pulsed-field gel electrophoresis and analysis of gene polymorphism by PCR-restriction fragment length polymorphism) were used to characterize isolates collected from seven broiler farms. The relative genomic diversity of Campylobacter coli and Campylobacter jejuni was determined. Analysis of the similarity among 116 defined genotypes was used to determine clusters within the two species. Furthermore, evidence of recombination suggested that there were genomic rearrangements within the Campylobacter populations. Recovery of related clusters from different broiler farms showed that some Campylobacter strains might be specifically adapted to poultry. Analysis of the Campylobacter cluster distribution on three broiler farms showed that soil in the area around the poultry house was a potential source of Campylobacter contamination. The broilers were infected by Campylobacter spp. between days 15 and 36 during rearing, and the type of contamination changed during the rearing period. A study of the effect of sanitary barriers showed that the chickens stayed Campylobacter spp. free until they had access to the open area. They were then rapidly colonized by the Campylobacter strains isolated from the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号