首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
More effective control of membrane biofouling in membrane bioreactors (MBRs) lies in the fundamental understanding of the pioneer microorganisms responsible for surface colonization that leads to biofilm formation. In this study, the composition of the planktonic and sessile microbial communities inhabiting four laboratory-scale MBR systems were compared using amplified ribosomal DNA restriction analysis (ARDRA) and 16S ribosomal DNA gene sequencing. The ARDRA results suggest that the microbial communities on membrane surfaces could be very different from the ones in the suspended biomass. Phylogenetic analysis based on the 16S rRNA gene sequences provided a list of bacteria that might be the pioneers of surface colonization on microfiltration membranes. The results further suggested that research on the mechanisms of cell attachment in such an engineering environment could be critical for future development of appropriate biofouling control strategies.  相似文献   

2.
In this study, 2,4‐dinitrophenol (DNP), a typical chemical uncoupler, was employed to investigate the possible roles of ATP and autoinducer‐2 (AI‐2) of suspended microorganisms in attachment onto nylon membrane and glass slide surfaces. Results showed that DNP could disrupt ATP synthesis, subsequently led to a reduced production of AI‐2 which is a common signaling molecule for cellular communication. Attachment of suspended microorganisms exposed to DNP was significantly suppressed as compared to microorganisms without contact with DNP. These suggest that an energized state of suspended microorganisms would favor microbial attachment to both nylon membrane and glass slide surfaces. The extent of microbial attachment was found to be positively related to the AI‐2 content of microorganisms. This study offers insights into the control of biofouling by preventing initial microbial attachment through inhibition of energy metabolism. Biotechnol. Bioeng. 2010;107: 31–36. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
Biofilms contribute to hygiene problems in the food industry and in the medical field. Biofilms are diverse and due to the development of special phenotypes, biofilm organisms are not as susceptible to biocides as planktonic microorganisms. Biofilms may be prevented by regular disinfection. Since the attachment of microbes to surfaces and the development of biofilm phenotypes is a very fast process, it is, however, almost impossible, to prevent biofilm formation completely. The removal and killing of established biofilms requires harsh treatments, mostly using oxidising biocides. Depending on the nature of the biofilms, different biocides may be useful and the best biocide for a specific biofilm still has to be determined under practical conditions. Another approach is the prevention of biofilm formation by selection of materials that do not support the attachment of microorganisms. Some materials like glass and stainless steel show less biofilm formation than others. The ranking of materials, however, depends on the conditions, under which they are tested. A novel approach is biofilm inhibition by supplementation of systems with nutrients, to inhibit attachment. First results on inhibition of biofouling in reversed osmosis systems are presented.  相似文献   

4.
The presence of microorganisms on material surfaces can have a profound effect on materials performance. Surface-associated microbial growth, i.e. a biofilm, is known to instigate biofouling. The presence of biofilms may promote interfacial physico-chemical reactions that are not favored under abiotic conditions. In the case of metallic materials, undesirable changes in material properties due to a biofilm (or a biofouling layer) are referred to as biocorrosion or microbially influenced corrosion (MIC). Biofouling and biocorrosion occur in aquatic and terrestrial habitats varying in nutrient content, temperature, pressure and pH. Interfacial chemistry in such systems reflects a wide variety of physiological activities carried out by diverse microbial populations thriving within biofilms. Biocorrosion can be viewed as a consequence of coupled biological and abiotic electron-transfer reactions, i.e. redox reactions of metals, enabled by microbial ecology. Microbially produced extracellular polymeric substances (EPS), which comprise different macromolecules, mediate initial cell adhesion to the material surface and constitute a biofilm matrix. Despite their unquestionable importance in biofilm development, the extent to which EPS contribute to biocorrosion is not well-understood. This review offers a current perspective on material/microbe interactions pertinent to biocorrosion and biofouling, with EPS as a focal point, while emphasizing the role atomic force spectroscopy and mass spectrometry techniques can play in elucidating such interactions.  相似文献   

5.
6.
Biofouling remains a key challenge for membrane-based water treatment systems. This study investigated the dispersal potential of the nitric oxide (NO) donor compound, PROLI NONOate, on single- and mixed-species biofilms formed by bacteria isolated from industrial membrane bioreactor and reverse osmosis (RO) membranes. The potential of PROLI NONOate to control RO membrane biofouling was also examined. Confocal microscopy revealed that PROLI NONOate exposure induced biofilm dispersal in all but two of the bacteria tested and successfully dispersed mixed-species biofilms. The addition of 40 μM PROLI NONOate at 24-h intervals to a laboratory-scale RO system led to a 92% reduction in the rate of biofouling (pressure rise over a given period) by a bacterial community cultured from an industrial RO membrane. Confocal microscopy and extracellular polymeric substances (EPS) extraction revealed that PROLI NONOate treatment led to a 48% reduction in polysaccharides, a 66% reduction in proteins, and a 29% reduction in microbial cells compared to the untreated control. A reduction in biofilm surface coverage (59% compared to 98%, treated compared to control) and average thickness (20 μm compared to 26 μm, treated compared to control) was also observed. The addition of PROLI NONOate led to a 22% increase in the time required for the RO module to reach its maximum transmembrane pressure (TMP), further indicating that NO treatment delayed fouling. Pyrosequencing analysis revealed that the NO treatment did not significantly alter the microbial community composition of the membrane biofilm. These results present strong evidence for the application of PROLI NONOate for prevention of RO biofouling.  相似文献   

7.
Abstract

This study determined economic non-destructive methods to assess biofouling in point of use reverse osmosis (RO) membrane treatment systems. Three parallel household RO membrane units were operated under controlled feed water conditions to promote biofouling, inorganic fouling and a combination of both. Operational and biological parameters were monitored throughout the systems’ lifespan. Membrane autopsies assessed the degree and type of fouling. Statistical models determined statistically relevant parameters for fouling types that were validated with membrane autopsies. Permeate flow rates decreased differently with biofouling vs inorganic fouling. Large increases in permeate conductivity were noted in membranes suffering from biofouling and not in inorganically fouled membranes. The concentration of cell clumps from detached biofilm in the retentate increased in membranes experiencing biofouling and no increase was seen for inorganically fouled membranes. A combination of these methods could be used to conveniently assess the types of fouling experienced by RO systems.  相似文献   

8.
Exploring novel biological anti-quorum sensing (QS) agents to control membrane biofouling is of great worth in order to allow sustainable performance of membrane bioreactors (MBRs) for wastewater treatment. In recent studies, QS inhibitors have provided evidence of alternative route to control membrane biofouling. This study investigated the role of Piper betle extract (PBE) as an anti-QS agent to mitigate membrane biofouling. Results demonstrated the occurrence of the N-acyl-homoserine-lactone (AHL) autoinducers (AIs), correlate QS activity and membrane biofouling mitigation. The AIs production in bioreactor was confirmed using an indicator strain Agrobacterium tumefaciens (NTL4) harboring plasmid pZLR4. Moreover, three different AHLs were found in biocake using thin layer chromatographic analysis. An increase in extracellular polymeric substances (EPS) and transmembrane pressure (TMP) was observed with AHL activity of the biocake during continuous MBR operation, which shows that membrane biofouling was in close relationship with QS activity. PBE was verified to mitigate membrane biofouling via inhibiting AIs production. SEM analysis further confirmed the effect of PBE on EPS and biofilm formation. These results exhibited that PBE could be a novel agent to target AIs for mitigation of membrane biofouling. Further work can be carried out to purify the active compound of Piper betle extract to target the QS to mitigate membrane biofouling.  相似文献   

9.
Biofouling, the combined effect of microorganism and biopolymer accumulation, significantly reduces the process efficiency of membrane bioreactors (MBRs). Here, four biofilm components, alpha-polysaccharides, beta-polysaccharides, proteins and microorganisms, were quantified in MBRs. The biomass of each component was positively correlated with the transmembrane pressure increase in MBRs. Proteins were the most abundant biopolymer in biofilms and showed the fastest rate of increase. The spatial distribution and co-localization analysis of the biofouling components indicated at least 60% of the extracellular polysaccharide (EPS) components were associated with the microbial cells when the transmembrane pressure (TMP) entered the jump phase, suggesting that the EPS components were either secreted by the biofilm cells or that the deposition of these components facilitated biofilm formation. It is suggested that biofilm formation and the accumulation of EPS are intrinsically coupled, resulting in biofouling and loss of system performance. Therefore, strategies that control biofilm formation on membranes may result in a significant improvement of MBR performance.  相似文献   

10.
Oxidized halogen antimicrobials, such as hypochlorous and hypobromous acids, have been used extensively for microbial control in industrial systems. Recent discoveries have shown that acylated homoserine lactone cell-to-cell signaling molecules are important for biofilm formation in Pseudomonas aeruginosa, suggesting that biofouling can be controlled by interfering with bacterial cell-to-cell communication. This study was conducted to investigate the potential for oxidized halogens to react with acylated homoserine lactone-based signaling molecules. Acylated homoserine lactones containing a 3-oxo group were found to rapidly react with oxidized halogens, while acylated homoserine lactones lacking the 3-oxo functionality did not react. The Chromobacterium violaceum CV026 bioassay was used to determine the effects of such reactions on acylated homoserine lactone activity. The results demonstrated that 3-oxo acyl homoserine lactone activity was rapidly lost upon exposure to oxidized halogens; however, acylated homoserine lactones lacking the 3-oxo group retained activity. Experiments with the marine alga Laminaria digitata demonstrated that natural haloperoxidase systems are capable of mediating the deactivation of acylated homoserine lactones. This may illustrate a natural defense mechanism to prevent biofouling on the surface of this marine alga. The Chromobacterium violaceum activity assay illustrates that reactions between 3-oxo acylated homoserine lactone molecules and oxidized halogens do occur despite the presence of biofilm components at much greater concentrations. This work suggests that oxidized halogens may control biofilm not only via a cidal mechanism, but also by possibly interfering with 3-oxo acylated homoserine lactone-based cell signaling.  相似文献   

11.
A novel strategy to control membrane bioreactor (MBR) biofouling using the nitric oxide (NO) donor compound PROLI NONOate was examined. When the biofilm was pre‐established on membranes at transmembrane pressure (TMP) of 88–90 kPa, backwashing of the membrane module with 80 μM PROLI NONOate for 45 min once daily for 37 days reduced the fouling resistance (Rf) by 56%. Similarly, a daily, 1 h exposure of the membrane to 80 μM PROLI NONOate from the commencement of MBR operation for 85 days resulted in reduction of the TMP and Rf by 32.3% and 28.2%. The microbial community in the control MBR was observed to change from days 71 to 85, which correlates with the rapid TMP increase. Interestingly, NO‐treated biofilms at 85 days had a higher similarity with the control biofilms at 71 days relative to the control biofilms at 85 days, indicating that the NO treatment delayed the development of biofilm bacterial community. Despite this difference, sequence analysis indicated that NO treatment did not result in a significant shift in the dominant fouling species. Confocal microscopy revealed that the biomass of biopolymers and microorganisms in biofilms were all reduced on the PROLI NONOate‐treated membranes, where there were reductions of 37.7% for proteins and 66.7% for microbial cells, which correlates with the reduction in TMP. These results suggest that NO treatment could be a promising strategy to control biofouling in MBRs.  相似文献   

12.
Mun S  Baek Y  Kim C  Lee YW  Yoon J 《Biofouling》2012,28(6):627-633
Physical cleaning and/or chemical cleaning have been generally used to control biofouling in the reverse osmosis (RO) process. However, conventional membrane cleaning methods to control biofouling are limited due to the generation of by-products and the potential for damage to the RO membranes. In this study, supercritical carbon dioxide (SC CO(2)) treatment, an environmentally friendly technique, was introduced to control biofouling in the RO process. SC CO(2) (100 bar at 35°C) treatment was performed after biofouling was induced on a commercial RO membrane using Pseudomonas aeruginosa PA01 GFP as a model bacterial strain. P. aeruginosa PA01 GFP biofilm cells were reduced on the RO membrane by >8 log within 30 min, and the permeate flux was sufficiently recovered in a laboratory-scale RO membrane system without any significant damage to the RO membrane. These results suggest that SC CO(2) treatment is a promising alternative membrane cleaning technique for biofouling in the RO process.  相似文献   

13.
Both water consumption and discharge in industrial water systems are currently minimised. The circulation of such water results in concentration of dissolved and suspended substances, promoting the growth of waterborne microbes, biofouling and subsequent macrofouling of the system and concomitant microbially induced corrosion.A number of reviews have been published on the mechanisms of microbially induced corrosion and the organisms involved. The subject of biofilm formation has also been well covered in the literature. A lack of information on the community structure and physiology is, however, apparent. Many advances have, nevertheless, been made in biofouling control. Probably the most important is the shift in emphasis from planktonic bacterial monitoring to sessile bacterial monitoring. This led to the introduction of a variety of different sessile monitoring techniques. Much experience has since been obtained on the use and limitations of these techniques and, to date, one of the main problem areas remaining is the monitoring of biofouling.Research has also indicated the problem of microbial resistance to nonoxidising biocides. This has suggested that some of these compounds may be mutagens. From an environmental point of view, it has become very important to verify this. This has also indicated the need to develop biocides which do not induce resistance in micro-organisms, and to investigate whether oxidising biocides are also capable of inducing resistance in micro-organisms. Recent studies have indicated that biofilm ecosystems respond to stress (i.e. biocides) in ways similar to macro-ecosystems. Generally, there is a decline in species diversity and a selection of more tolerant isolates.These developments have placed the spotlight on alternative technologies, like biodispersants, which have shown potential as biofouling control agents, and which should be investigated further. Physical control measures are currently still limited to pigging, although a number of other technologies show promise. Although fluid dynamics and their effect on biofouling control programmes have been well reported in the literature, it remains an aspect which is neglected by industry in terms of practical applications.  相似文献   

14.
Microbial biofilms facilitate adhesion in biofouling invertebrates   总被引:1,自引:0,他引:1  
Much interest has focused on the role of microbial layers--biofilms--in stimulating attachment of invertebrates and algae to submerged marine surfaces. We investigated the influence of biofilms on the adhesion strength of settling invertebrates. Larvae of four species of biofouling invertebrate were allowed to attach to test surfaces that were either clean or coated with a natural biofilm. Measuring larval removal under precisely controlled flow forces, we found that biofilms significantly increased adhesion strength in the ascidian Phallusia nigra, the polychaete tubeworm Hydroides elegans, and the barnacle Balanus amphitrite at one or more developmental stages. Attachment strength in a fourth species, the bryozoan Bugula neritina, was neither facilitated nor inhibited by the presence of a biofilm. These results suggest that adhesive strength and perhaps composition may vary across different invertebrate taxa at various recruitment stages, and mark a new path of inquiry for biofouling research.  相似文献   

15.
Oxidized halogen antimicrobials, such as hypochlorous and hypobromous acids, have been used extensively for microbial control in industrial systems. Recent discoveries have shown that acylated homoserine lactone cell-to-cell signaling molecules are important for biofilm formation in Pseudomonas aeruginosa, suggesting that biofouling can be controlled by interfering with bacterial cell-to-cell communication. This study was conducted to investigate the potential for oxidized halogens to react with acylated homoserine lactone-based signaling molecules. Acylated homoserine lactones containing a 3-oxo group were found to rapidly react with oxidized halogens, while acylated homoserine lactones lacking the 3-oxo functionality did not react. The Chromobacterium violaceum CV026 bioassay was used to determine the effects of such reactions on acylated homoserine lactone activity. The results demonstrated that 3-oxo acyl homoserine lactone activity was rapidly lost upon exposure to oxidized halogens; however, acylated homoserine lactones lacking the 3-oxo group retained activity. Experiments with the marine alga Laminaria digitata demonstrated that natural haloperoxidase systems are capable of mediating the deactivation of acylated homoserine lactones. This may illustrate a natural defense mechanism to prevent biofouling on the surface of this marine alga. The Chromobacterium violaceum activity assay illustrates that reactions between 3-oxo acylated homoserine lactone molecules and oxidized halogens do occur despite the presence of biofilm components at much greater concentrations. This work suggests that oxidized halogens may control biofilm not only via a cidal mechanism, but also by possibly interfering with 3-oxo acylated homoserine lactone-based cell signaling.  相似文献   

16.
Zheng Xue  Huijie Lu 《Biofouling》2014,30(7):813-821
Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community.  相似文献   

17.
Physical cleaning and/or chemical cleaning have been generally used to control biofouling in the reverse osmosis (RO) process. However, conventional membrane cleaning methods to control biofouling are limited due to the generation of by-products and the potential for damage to the RO membranes. In this study, supercritical carbon dioxide (SC CO2) treatment, an environmentally friendly technique, was introduced to control biofouling in the RO process. SC CO2 (100 bar at 35°C) treatment was performed after biofouling was induced on a commercial RO membrane using Pseudomonas aeruginosa PA01 GFP as a model bacterial strain. P. aeruginosa PA01 GFP biofilm cells were reduced on the RO membrane by >8 log within 30 min, and the permeate flux was sufficiently recovered in a laboratory-scale RO membrane system without any significant damage to the RO membrane. These results suggest that SC CO2 treatment is a promising alternative membrane cleaning technique for biofouling in the RO process.  相似文献   

18.
基于Lux型群体感应系统的生物被膜调控在污水处理中的研究备受关注,群体感应系统的干预包括正向强化和负向削弱两类。群体感应系统的正向强化作用可提高生物膜法污水处理中的挂膜速度,提高污水处理效率,促进活性污泥中胞外聚合物(Extracellular polymeric substance,EPS)和可溶性微生物产物(Soluble microbial products,SMP)的生成,提高生物被膜的产量;群体感应的负向削弱作用可以降解生物被膜形成过程中所需要的信号分子,切断生物被膜形成的基因表达过程,有效抑制MBR膜表面生物被膜的形成,防止膜污染。对信号分子酰基高丝氨酸内酯(N-acyl homoserine lactone,AHLs)的结构和作用机理的进一步研究、群体感应淬灭菌的固定化技术与应用、多种防治膜污染方法的协同效果验证及群体感应干预在更多污水处理领域的应用可行性是该领域要研究的几个重要方向。  相似文献   

19.
This study was conducted to investigate the development and extracellular polymeric substances (EPS) distribution in biofouling layer and biofouling effect on permeate quality. The experimental results suggested that formation of biofouling layer was started by the attachment of polysaccharides and formed a biogel like layer on top of membrane surface (adhesive attachment). It further induced the attachment of protein, polysaccharides and bioparticles, and formed cake layer (cohesive attachment). As evidenced in SEM photos and permeates quality, the formed biofouling layer had changed the properties of membrane surface such as the pore and porosity, and hence produce the better permeates quality. A great enhancement of rejection performance occurred at the early filtration period, and followed by a slight enhancement in rejection throughout the entire filtration. This enhancement of rejection performance by biofouling layer can be mathematically expressed by the logarithm function with the degree of membrane fouling.  相似文献   

20.
Quorum sensing gives rise to biofilm formation on the membrane surface, which in turn causes a loss of water permeability in membrane bioreactors (MBRs) for wastewater treatment. Enzymatic quorum quenching was reported to successfully inhibit the formation of biofilm in MBRs through the decomposition of signal molecules, N-acyl homoserine lactones (AHLs). The aim of this study was to elucidate the mechanisms of quorum quenching in more detail in terms of microbial population dynamics and proteomics. Microbial communities in MBRs with and without a quorum quenching enzyme (acylase) were analyzed using pyrosequencing and compared with each other. In the quorum quenching MBR, the rate of transmembrane pressure (TMP) rise-up was delayed substantially, and the proportion of quorum sensing bacteria with AHL-like autoinducers (such as Enterobacter, Pseudomonas, and Acinetobacter) also decreased in the entire microbial community of mature biofilm in comparison to that in the control MBR. These factors were attributed to the lower production of extracellular polymeric substances (EPS), which are known to play a key role in the formation of biofilm. Proteomic analysis using the Enterobacter cancerogenus strain ATCC 35316 demonstrates the possible depression of protein expression related to microbial attachments to solid surfaces (outer membrane protein, flagellin) and the agglomeration of microorganisms (ATP synthase beta subunit) with the enzymatic quorum quenching. It has been argued that changes in the microbial population, EPS and proteins via enzymatic quorum quenching could inhibit the formation of biofilm, resulting in less biofouling in the quorum quenching MBR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号