首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The goal of this report was to determine if the region of the LAT gene that is colinear with ICP34.5 (kb 6.2 to 7.1 of LAT) is involved in spontaneous reactivation of herpes simplex virus type 1. We inserted one copy of the ICP34.5 gene into the unique long region of a herpes simplex virus type 1 (strain McKrae) mutant lacking both copies of ICP34.5 (one in each viral long repeat) and the corresponding 917-nucleotide colinear portion of LAT (kb 6.2 to 7.1). Rabbits were ocularly infected with this mutant, and spontaneous reactivation relative to that for the wild-type virus and the original mutant was measured. As we previously reported, the original ICP34.5-deleted virus (d34.5) was significantly impaired for spontaneous reactivation and virulence (G. C. Perng, R. L. Thompson, N. M. Sawtell, W. E. Taylor, S. M. Slanina, H. Ghiasi, R. Kaiwar, A. B. Nesburn, and S. L. Wechsler, J. Virol. 69:3033-3041, 1995). In contrast, we report here that restoration of one copy of ICP34.5 at a distant location completely restored the wild-type level of in vivo spontaneous reactivation, despite retention of the deletion in LAT (spontaneous reactivation rate = 0.3 to 1.4% for the ICP34.5 deletion mutant, 7.7 to 19.6% for the wild type, and 9 to 16.1% for virus with one copy of ICP34.5). Thus, the 917-nucleotide region of LAT from kb 6.2 to 7.1 was not involved in the LAT function required for wild-type spontaneous reactivation. We also found that restoration of a single ICP34.5 gene in a novel location did not restore wild-type virulence (rabbit death rate = 0% [0 of 15] for the original ICP34.5 deletion mutant, 8% [2 of 24] for the single-copy IPC34.5 virus, and 52% [14 of 27] for wild-type virus; P < 0.001 for one versus two copies of ICP34.5). It is likely that either two gene doses of ICP34.5 or its location in the long repeat is essential for full functionality of ICP34.5's virulence function. Furthermore, the ability of the single-copy ICP34.5 virus to reactivate at wild-type levels despite being significantly less virulent than wild-type virus separates the spontaneous reactivation phenotype from the virulence phenotype.  相似文献   

2.
3.
In a recent report, the neurovirulence of herpes simplex virus type 1 (HSV-1) was mapped to the ICP34.5 gene (J. Chou, E. R. Kern, R. J. Whitley, and B. Roizman, Science 250:1262-1266, 1990). In this report, specific mutations within ICP34.5 were constructed in HSV-1 strain 17syn+ to determine the effects of these mutations in a fully neurovirulent isolate. It was found that termination of the ICP34.5 gene after the N-terminal 30 amino acids resulted in a mutant, 17termA, which was 25- to 90-fold reduced in neurovirulence. This reduction of neurovirulence was associated with restricted replication of the mutant virus in mouse brain. The reduced replication phenotype was also evident in the trigeminal and dorsal root ganglia following inoculation at the periphery. 17termA was capable of replicating with wild-type kinetics in mouse footpads, and therefore the restriction seen in neural tissues was not due to a generalized replication defect in mouse cells. Significantly, replication of the mutant was also restricted in the mouse cornea in vivo and in confluent primary mouse embryo cells and mouse 10T1/2 cells in vitro. However, 17termA replicated with much greater efficiency in subconfluent mouse embryo cells, suggesting that the physiological state of the cell may be an important factor for productive replication of this mutant. Restoration of the ICP34.5 gene to the mutant resulted in a virus which displayed wild-type neurovirulence and replication kinetics in all cells and tissues tested.  相似文献   

4.
In animal models of herpes simplex virus type 1 (HSV-1) infection, ICP34.5-null viruses are avirulent and also fail to grow in a variety of cultured cells due to their inability to prevent RNA-dependent protein kinase (PKR)-mediated inhibition of protein synthesis. We show here that the inability of ICP34.5 mutants to grow in vitro is due specifically to the accumulation of phosphorylated eIF2 alpha. Mutations suppressing the in vitro phenotype of ICP34.5-null mutants have been described which map to the unique short region of the HSV-1 genome, resulting in dysregulated expression of the US11 gene. Despite the inability of the suppressor mutation to suppress the avirulent phenotype of the ICP34.5-null parental virus following intracranial inoculation, the suppressor mutation enhanced virus growth in the cornea, trigeminal ganglia, and periocular skin following corneal infection compared to that with the ICP34.5-null virus. The phosphorylation state of eIF2 alpha following in vitro infection with the suppressor virus was examined to determine if in vivo differences could be attributed to differential regulation of eIF2 alpha phosphorylation. The suppressor virus prevented accumulation of phosphorylated eIF2 alpha, while the wild-type virus substantially reduced eIF2 alpha phosphorylation levels. These data suggest that US11 functions as a PKR antagonist in vivo, although its activity may be modulated by tissue-specific differences in translation regulation.  相似文献   

5.
The herpes simplex virus type 1 (HSV-1) neurovirulence gene encoding ICP34.5 controls the autophagy pathway. HSV-1 strains lacking ICP34.5 are attenuated in growth and pathogenesis in animal models and in primary cultured cells. While this growth defect has been attributed to the inability of an ICP34.5-null virus to counteract the induction of translational arrest through the PKR antiviral pathway, the role of autophagy in the regulation of HSV-1 replication is unknown. Here we show that HSV-1 infection induces autophagy in primary murine embryonic fibroblasts and that autophagosome formation is increased to a greater extent following infection with an ICP34.5-deficient virus. Elimination of the autophagic pathway did not significantly alter the replication of wild-type HSV-1 or ICP34.5 mutants. The phosphorylation state of eIF2alpha and viral protein accumulation were unchanged in HSV-1-infected cells unable to undergo autophagy. These data show that while ICP34.5 regulates autophagy, it is the prevention of translational arrest by ICP34.5 rather than its control of autophagy that is the pivotal determinant of efficient HSV-1 replication in primary cell culture.  相似文献   

6.
The herpes simplex virus type 1 (HSV-1) ICP34.5 gene is a neurovirulence gene in mice. In addition, some ICP34.5 mutants have been reported to have a reduced efficiency of induced reactivation as measured by in vitro explantation of latently infected mouse ganglia. However, since spontaneous reactivation is almost nonexistent in mice, nothing has been reported on the effect of ICP34.5 mutants on spontaneous reactivation in vivo. To examine this, we have deleted both copies of the ICP34.5 neurovirulence gene from a strain of HSV-1 (McKrae) that has a high spontaneous reactivation rate in rabbits and used this mutant to infect rabbit eyes. All rabbits infected with the ICP34.5 mutant virus (d34.5) survived, even at challenge doses greater than 4 x 10(7) PFU per eye. In contrast, a 200-fold-lower challenge dose of 2 x 10(5) PFU per eye was lethal for approximately 50% of rabbits infected with either the wild-type McKrae parental virus or a rescued ICP34.5 mutant in which both copies of the ICP34.5 gene were restored. In mice, the 50% lethal dose of the ICP34.5 mutant was over 10(6) PFU, compared with a value of less than 10 PFU for the rescued virus. The ICP34.5 mutant was restricted for replication in rabbit and mouse eyes and mouse trigeminal ganglia in vivo. The spontaneous reactivation rate in rabbits for the mutant was 1.4% as determined by culturing tear films for the presence of reactivated virus. This was more than 10-fold lower than the spontaneous reactivation rate determined for the rescued virus (19.6%) and was highly significant (P < 0.0001, Fisher exact test). Southern analysis confirmed that the reactivated virus retained both copies of the ICP34.5 deletion. Thus, this report demonstrates that (i) the ICP34.5 gene, known to be a neurovirulence gene in mice, is also important for virulence in rabbits and (ii) in vivo spontaneous reactivation of HSV-1 in the rabbit ocular model, although reduced, can occur in the absence of the ICP34.5 gene.  相似文献   

7.
Varicella-zoster virus (VZV) ORF29 encodes the viral single-stranded DNA binding protein and is expressed during latency in human ganglia. We constructed an ORF29 deletion mutant virus and showed that the virus could replicate only in cells expressing ORF29. An ORF29-repaired virus, in which ORF29 was driven by a cytomegalovirus promoter, grew to peak titers similar to those seen with the parental virus. The level of ORF29 protein in cells infected with the repaired virus was greater than that seen with parental virus. Infection of cells with either the ORF29 deletion or repaired virus resulted in similar levels of VZV immediate-early proteins but reduced levels of glycoprotein E compared to those observed with parental virus. Cotton rats infected with the ORF29 deletion mutant had a markedly reduced frequency of latent infection in dorsal root ganglia compared with those infected with parental virus (P < 0.00001). In contrast, infection of animals with the ORF29 deletion mutant resulted in a frequency of ganglionic infection at 3 days similar to that seen with the parental virus. Animals infected with the ORF29-repaired virus, which overexpresses ORF29, also had a reduced frequency of latent infection compared with those infected with parental virus (P = 0.0044). These studies indicate that regulation of ORF29 at appropriate levels is critical for VZV latency in a rodent model.  相似文献   

8.
9.
10.
Relative to wild-type herpes simplex virus type 1 (HSV-1), ICP0-null mutant viruses reactivate inefficiently from explanted, latently infected mouse trigeminal ganglia (TG), indicating that ICP0 is not essential for reactivation but plays a central role in enhancing the efficiency of reactivation. The validity of these findings has been questioned, however, because the replication of ICP0-null mutants is impaired in animal models during the establishment of latency, such that fewer mutant genomes than wild-type genomes are present in latently infected mouse TG. Therefore, the reduced number of mutant viral genomes available to reactivate, rather than mutations in the ICP0 gene per se, may be responsible for the reduced reactivation efficiency of ICP0-null mutants. We have recently demonstrated that optimization of the size of the ICP0 mutant virus inoculum and transient immunosuppression of mutant-infected mice with cyclophosphamide can be used to establish wild-type levels of ICP0-null mutant genomes in latently infected TG (W. P. Halford and P. A. Schaffer, J. Virol. 74:5957-5967, 2000). Using this procedure to equalize mutant and wild-type genome numbers, the goal of the present study was to determine if, relative to wild-type virus, the absence of ICP0 function in two ICP0-null mutants, n212 and 7134, affects reactivation efficiency from (i) explants of latently infected TG and (ii) primary cultures of latently infected TG cells. Although equivalent numbers of viral genomes were present in TG of mice latently infected with either wild-type or mutant viruses, reactivation of n212 and 7134 from heat-stressed TG explants was inefficient (31 and 37% reactivation, respectively) relative to reactivation of wild-type virus (KOS) (95%). Similarly, n212 and 7134 reactivated inefficiently from primary cultures of dissociated TG cells plated directly after removal from the mouse (7 and 4% reactivation, respectively), relative to KOS (60% reactivation). The efficiency and kinetics of reactivation of KOS, n212, and 7134 from cultured TG cells (treated with acyclovir to facilitate the establishment of latency) in response to heat stress or superinfection with a nonreplicating HSV-1 ICP4(-) mutant, n12, were compared. Whereas heat stress induced reactivation of KOS from 69% of latently infected TG cell cultures, reactivation of n212 and 7134 was detected in only 1 and 7% of cultures, respectively. In contrast, superinfection with the ICP4(-) virus, which expresses high levels of ICP0, resulted in the production of infectious virus in nearly 100% of cultures latently infected with KOS, n212, or 7134 within 72 h. Thus, although latent mutant viral genome loads were equivalent to that of wild-type virus, in the absence of ICP0, n212 and 7134 reactivated inefficiently from latently infected TG cells during culture establishment and following heat stress. Collectively, these findings demonstrate that ICP0 is required to induce efficient reactivation of HSV-1 from neuronal latency.  相似文献   

11.
12.
13.
14.
In cells infected with the herpes simplex virus 1 (HSV-1) recombinant R3616 lacking both copies of the γ134.5 gene, the double-stranded protein kinase R (PKR) is activated, eIF-2α is phosphorylated, and protein synthesis is shut off. Although PKR is also activated in cells infected with the wild-type virus, the product of the γ134.5 gene, infected-cell protein 34.5 (ICP34.5), binds protein phosphatase 1α and redirects it to dephosphorylate eIF-2α, thus enabling sustained protein synthesis. Serial passage in human cells of a mutant lacking the γ134.5 gene yields second-site, compensatory mutants lacking various domains of the α47 gene situated next to the US11 gene (I. Mohr and Y. Gluzman, EMBO J. 15:4759–4766, 1996). We report the construction of two recombinant viruses: R5103, lacking the γ134.5, US8, -9, -10, and -11, and α47 (US12) genes; and R5104, derived from R5103 and carrying a chimeric DNA fragment containing the US10 gene and the promoter of the α47 gene fused to the coding domain of the US11 gene. R5104 exhibited a protein synthesis profile similar to that of wild-type virus, whereas protein synthesis was shut off in cells infected with R5103 virus. Studies on the wild-type parent and mutant viruses showed the following: (i) PKR was activated in cells infected with parent or mutant virus but not in mock-infected cells, consistent with earlier studies; (ii) lysates of R3616, R5103, and R5104 virus-infected cells lacked the phosphatase activity specific for eIF-2α characteristic of wild-type virus-infected cells; and (iii) lysates of R3616 and R5103, which lacked the second-site compensatory mutation, contained an activity which phosphorylated eIF-2α in vitro, whereas lysates of mock-infected cells or cells infected with HSV-1(F) or R5104 did not phosphorylate eIF-2α. We conclude that in contrast to wild-type virus-infected cells, which preclude the shutoff of protein synthesis by causing rapid dephosphorylation of eIF-2α, in cells infected with γ134.5 virus carrying the compensatory mutation, eIF-2α is not phosphorylated. The activity made apparent by the second-site mutation may represent a more ancient mechanism evolved to preclude the shutoff of protein synthesis.  相似文献   

15.
16.
Earlier studies have shown that wild-type infected-cell protein 0 (ICP0), a key herpes simplex virus regulatory protein, translocates from the nucleus to the cytoplasm of human embryonic lung (HEL) fibroblasts within several hours after infection (Y. Kawaguchi, R. Bruni, and B. Roizman, J. Virol. 71:1019-1024, 1997). Translocation of ICP0 was also observed in cells infected with the d120 mutant, in which both copies of the gene encoding ICP4, the major regulatory protein, had been deleted (V. Galvan, R. Brandimarti, J. Munger, and B. Roizman, J. Virol. 74:1931-1938, 2000). Furthermore, a mutant (R7914) carrying the D199A substitution in ICP0 does not bind or stabilize cyclin D3 and is retained in the nucleus (C. Van Sant, P. Lopez, S. J. Advani, and B. Roizman, J. Virol. 75:1888-1898, 2001). Studies designed to elucidate the requirements for the translocation of ICP0 between cellular compartments revealed the following. (i) Translocation of ICP0 to the cytoplasm in productive infection maps to the D199 amino acid, inasmuch as wild-type ICP0 delivered in trans to cells infected with an ICP0 null mutant was translocated to the cytoplasm whereas the D199A-substituted mutant ICP0 was not. (ii) Translocation of wild-type ICP0 requires a function expressed late in infection, inasmuch as phosphonoacetate blocked the translocation of ICP0 in wild-type virus-infected cells but not in d120 mutant-infected cells. Moreover, whereas in d120 mutant-infected cells ICP0 was translocated rapidly from the cytoplasm to the nucleus at approximately 5 h after infection, the translocation of ICP0 in wild-type virus-infected cells extended from 5 to at least 9 h after infection. (iii) In wild-type virus-infected cells, the MG132 proteasomal inhibitor blocked the translocation of ICP0 to the cytoplasm early in infection, but when added late in infection, it caused ICP0 to be relocated back to the nucleus from the cytoplasm. (iv) MG132 blocked the translocation of ICP0 in d120 mutant-infected cells early in infection but had no effect on the ICP0 aggregated in vesicle-like structures late in infection. However, in d120 mutant-infected cells treated with MG132 at late times, proteasomes formed a shell-like structure around the aggregated ICP0. These structures were not seen in wild-type virus or R7914 mutant-infected cells. The results indicate the following. (i) In the absence of beta or gamma protein synthesis, ICP0 dynamically associates with proteasomes and is translocated to the cytoplasm. (ii) In cells productively infected beyond alpha gene expression, ICP0 is retained in the nucleus until after the onset of viral DNA synthesis and the synthesis of gamma2 proteins. (iii) Late in infection, ICP0 is actively sequestered in the cytoplasm by a process mediated by proteasomes, inasmuch as interference with proteasomal function causes rapid relocation of ICP0 to the nucleus.  相似文献   

17.
18.
Plesiomonas shigelloides is a Gram-negative bacterium associated with waterborne infections, which is common in tropical and subtropical habitats. Contrary to the unified antigenic classification of P. shigelloides, data concerning the structure and activity of their lipopolysaccharides (LPS and endotoxin) are limited. This study completes the structural investigation of phenol- and water-soluble fractions of P. shigelloides O74 (strain CNCTC 144/92) LPS with the emphasis on lipid A heterogeneity, describing the entire molecule and some of its biological in vitro activities. Structures of the lipid A and the affinity-purified decasaccharide obtained by de-N,O-acylation of P. shigelloides O74 LPS were elucidated by chemical analysis combined with electrospray ionization multiple-stage mass spectrometry (ESI-MS(n)), MALDI-TOF MS, and NMR spectroscopy. Lipid A of P. shigelloides O74 is heterogeneous, and three major forms have been identified. They all were asymmetric, phosphorylated, and hexaacylated, showing different acylation patterns. The beta-GlcpN4P-(1-->6)-alpha-GlcpN1P disaccharide was substituted with the primary fatty acids: (R)-3-hydroxytetradecanoic acid [14:0(3-OH)] at N-2 and N-2' and (R)-3-hydroxydodecanoic acid [12:0(3-OH)] at O-3 and O-3'. The heterogeneity among the three forms (I-III) of P. shigelloides O74 lipid A was attributed to the substitution of the acyl residues at N-2' and O-3' with the secondary acyls: (I) cis-9-hexadecenoic acid (9c-16:1) at N-2' and 12:0 at O-3', (II) 14:0 at N-2' and 12:0 at O-3', and (III) 12:0 at N-2' and 12:0 at O-3'. The pro-inflammatory cytokine-inducing activities of P. shigelloides O74 LPS were similar to those of Escherichia coli O55 LPS.  相似文献   

19.
A reverse genetic system was recently established for the coronavirus mouse hepatitis virus strain A59 (MHV-A59), in which cDNA fragments of the RNA genome are assembled in vitro into a full-length genome cDNA, followed by electroporation of in vitro-transcribed genome RNA into cells with recovery of viable virus. The "in vitro-assembled" wild-type MHV-A59 virus (icMHV-A59) demonstrated replication identical to laboratory strains of MHV-A59 in tissue culture; however, icMHV-A59 was avirulent following intracranial inoculation of C57BL/6 mice. Sequencing of the cloned genome cDNA fragments identified two single-nucleotide mutations in cloned genome fragment F, encoding a Tyr6398His substitution in open reading frame (ORF) 1b p59-nsp14 and a Leu94Pro substitution in the ORF 2a 30-kDa protein. The mutations were repaired individually and together in recombinant viruses, all of which demonstrated wild-type replication in tissue culture. Following intracranial inoculation of mice, the viruses encoding Tyr6398His/Leu94Pro substitutions and the Tyr6398His substitution alone demonstrated log10 50% lethal dose (LD50) values too great to be measured. The Leu94Pro mutant virus had reduced but measurable log10 LD5), and the "corrected" Tyr6398/Leu94 virus had a log10 LD50 identical to wild-type MHV-A59. The experiments have defined residues in ORF 1b and ORF 2a that attenuate virus replication and virulence in mice but do not affect in vitro replication. The results suggest that these proteins serve roles in pathogenesis or virus survival in vivo distinct from functions in virus replication. The study also demonstrates the usefulness of the reverse genetic system to confirm the role of residues or proteins in coronavirus replication and pathogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号