首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Braun M 《Planta》1996,199(3):443-450
Centrifugal accelerations of 50-250 g were applied to rhizoids of Chara globularis Thuill. at stimulation angles (alpha) of 5-90 degrees between the acceleration vector and the rhizoid axis. After the start of centrifugation, the statoliths were pressed asymmetrically onto the centrifugal flank of the apical cell wall. In contrast to the well-known bending (by bowing) under 1 g, the rhizoids responded in two distinct phases. Following an initial phase of sharp bending (by bulging), which is similar to the negatively gravitropic response of Chara protonemata, rhizoids stopped bending and, in the second phase, grew straight in directions clearly deviating from the direction of acceleration. These response angles (beta) between the axis of the bent part of the rhizoid and the acceleration vector were strictly correlated with the g-level of acceleration. The higher the acceleration the greater was beta. Except for the sharp bending, the shape and growth rate of the centrifuged rhizoids were not different from those of gravistimulated control rhizoids at 1 g. These results indicate that gravitropic bending of rhizoids during enhanced accelerations (5 degrees < or = alpha < or = 90 degrees) is caused not only by subapical differential flank growth, as it is the case at 1 g, but also by also by the centripetal displacement of the growth centre as was recently discussed for the negative gravitropism of Chara protonemata. A hypothesis for cytoskeletally mediated polar growth is presented based on data from positive gravitropic bending of Chara rhizoids at 1 g and from the anomalous gravitropic bending of rhizoids compared with the negatively gravitropic bending of Chara protonemata. The data obtained are also relevant to a general understanding of graviperception in higher-plant organs.  相似文献   

2.
Leitz G  Schnepf E  Greulich KO 《Planta》1995,197(2):278-288
Infrared laser traps (optical tweezers) were used to micromanipulate statoliths in gravity-sensing rhizoids of the green alga Chara vulgaris Vail. We were able to hold and move statoliths with high accuracy and to observe directly the effects of statolith position on cell growth in horizontally positioned rhizoids. The first step in gravitropism, namely the physical action of gravity on statoliths, can be simulated by optical tweezers. The direct laser microirradiation of the rhizoid apex did not cause any visible damage to the cells. Through lateral positioning of statoliths a differential growth of the opposite flank of the cell wall could be induced, corresponding to bending growth in gravitropism. The acropetal displacement of the statolith complex into the extreme apex of the rhizoid caused a temporary decrease in cell growth rate. The rhizoids regained normal growth after remigration of the statoliths to their initial position 10–30 m basal to the rhizoid apex. During basipetal displacement of statoliths, cell growth continued and the statoliths remigrated towards the rhizoid tip after release from the optical trap. The resistance to statolith displacement increased towards the nucleus. The basipetal displacement of the whole complex of statoliths for a long distance (>100 m) caused an increase in cell diameter and a subsequent regaining of normal growth after the statoliths reappeared in the rhizoid apex. We conclude that the statolith displacement interferes with the mechanism of tip growth, i.e. with the transport of Golgi vesicles, either directly by mechanically blocking their flow and/or, indirectly, by disturbing the actomyosin system. In the presence of the actin inhibitor cytochalasin B the optical forces required for acropetal and basipetal displacement of statoliths were significantly reduced to a similar level. The lateral displacement of statoliths was not changed by cytochalasin B. The results indicate: (i) the viscous resistance to optical displacement of statoliths depends mainly on actin, (ii) the lateral displacement of statoliths is not impeded by actin filaments, (iii) the axially directed actin-mediated forces against optical displacement of statoliths (for a distance of 10 m) are stronger in the basipetal than in the acropetal direction, (iv) the forces acting on single statoliths by axially oriented actin filaments are estimated to be in the range of 11–110 pN for acropetal and of 18–180 pN for basipetal statolith displacements.Abbreviation CB cytochalasin B This work was supported by the Bundesminister für Forschung und Technologie, and by Fonds der Chemischen Industrie. We thank Professor Dr. A. Sievers (Botanisches Institut, Universität Bonn, Germany) for helpful discussions.  相似文献   

3.
Hodick D 《Planta》1994,195(1):43-49
The unicellular protonema of Chara fragilis Desv. was investigated in order to establish a reaction chain for negative gravitropism in tip-growing cells. The time course of gravitropic bending after stimulation at angles of 45 degrees or 90 degrees showed three distinct phases of graviresponse. During the first hour after onset of stimulation a strong upward shift of the tip took place. This initial response was followed by an interval of almost straight growth. Complete reorientation was achieved in a third phase with very low bending rates. Gravitropic reorientation could be completely abolished by basipetal centrifugation of the cells, which lastingly removed conspicuous dark organelles from the protonema tip, thus identifying them as statoliths. Within minutes after onset of gravistimulation most or all statoliths were transported acropetally from their resting position 20-100 micrometers from the cell apex to the lower side of the apical dome. This transport is actin-dependent since it could be inhibited with cytochalasin B. Within minutes after arrival of the statoliths, the apical dome flattened on its lower side and bulged on the upper one. After this massive initial response the statoliths remained firmly sedimented, but the distance between this sedimented complex and the cell vertex increased from 7 micrometers to 22 micrometers during the first hour of stimulation and bending rates sharply declined. From this it is concluded that only statoliths inside the apical dome convey information about the spatial orientation of the cell in the gravitropic reaction chain. After inversion of the protonema the statoliths transiently arranged into a disk-shaped complex about 8 micrometers above the vertex. When this statolith complex tilted towards one side of the apical dome, growth was shifted in the opposite direction and bending started. It is argued that the statoliths intruding into the apical dome may displace a growth-organizing structure from its symmetrical position in the apex and may thus cause bending by bulging. In the positively gravitropic Chara rhizoids only a more stable anchorage of the growth-organizing structure is required. As a consequence, sedimented statoliths cannot dislocate this structure from the vertex. Instead they obstruct a symmetrical distribution of cell-wall-forming vesicles around the structure and thus cause bending by bowing.  相似文献   

4.
D. Hodick  A. Sievers 《Protoplasma》1998,204(3-4):145-154
Summary The relationship between the position of the statoliths and the direction and rate of tip growth in negatively gravitropic protonemata ofChara globularis was studied with a centrifuge video microscope. Cells placed perpendicularly to the acceleration vector (stimulation angle 90 °) showed a gradual reduction of the gravitropic curvature with increasing accelerations from 1g to 8g despite complete sedimentation of all statoliths on the centrifugal cell flank. It is argued that the increased weight of the statoliths in hypergravity impairs their acropetal transport which is induced when the cell axis deviates from the normal upright orientation. When the statoliths were centrifuged deep into the apical dome at 6g and a stimulation angle of 170 ° the gravitropic curvature after 1 h was identical to that determined for the same cells at 1g and the same stimulation angle. This indicates that gravitropism in Chara protonemata is either independent of the pressure exerted by the statoliths on an underlying structure or is already saturated at 1g. When the statoliths were moved along the apical cell wall at 8g and the stimulation angle was gradually increased from 170 ° to 220 ° the gravitropic curvature reverted sharply when the cluster of statoliths passed over the cell pole. This experiment supports the hypothesis that in Chara protonemata asymmetrically distributed statoliths inside the apical dome displace the Spitzenkörper and thus the centre of growth, resulting in gravitropic bending. In contrast to the positively gravitropic Chara rhizoids, no modifications either in the transport of statoliths during basipetal acceleration (6g, stimulation angle 0 °, 5 h) or in the subsequent gravitropic response could be detected in the protonemata. The different effects of centrifugation on the positioning of statoliths in Chara protonemata and rhizoids indicate subtle differences in the function of the cytoskeleton in both types of cells.Dedicated to Prof. Dr. Zygmunt Hejnowicz on the occasion of his 70th birthday  相似文献   

5.
Horizontally positioned Chara rhizoids continue growth without gravitropic bending when the statoliths are removed from the apex by basipetal centrifugation. The transport of statoliths in centrifuged rhizoids is bidirectional: 50–60 % of the statoliths are re-transported on a straight course to the apex at velocities from 1 to 14 μm . min?1 increasing towards the rhizoid tip. The centrifuged statoliths which are located closest to the nucleus are basipetally transported and caught up in the cytoplasmic streaming of the cell. Those statoliths which are located near the apical side of the nucleus are transported either apically or basally. A de-novo-formation of statoliths was not observed. After retransport to the apex some statoliths transiently sediment, a process which can induce a local inhibition of cell wall growth. The rhizoid bends again gravitropically only if a few statoliths finally sediment in the apex; the more statoliths that sediment in the apex the shorter the radius of bending becomes. The transport of statoliths is mediated by actin filaments which form a network of thin filaments in the apical and subapical zone of the rhizoid, and thicker parallel bundles in the basal zone where cytoplasmic streaming occurs. Both subpopulations of actin filaments overlap in the nucleus zone.  相似文献   

6.
Summary In the initial phase of the geotropical reaction of the Chara rhizoid the growth difference postulated by Sievers (1967c) between the physically upper, slightly subapical flank and the lower one is demonstrated. In horizontal exposure the growth of the extreme cell apex is continued, while the growth of the lower flank is inhibited and that of the upper one is promoted. In the end phase the cell apex shows a damped oscillation until it finally reaches the vertical growth direction. The statoliths follow the oscillating growth of the cell tip from one flank to the opposite one until they are statistically equally redistributed in their normal position.—In vertical exposure under reduced turgor pressure the statoliths fall down into the extreme cell apex, where they inhibit the growth of this part of the cell wall, while the subapical wall grows transversally.—It is concluded that the statoliths inhibit the growth of the cell wall area which they cover.—The physical phase of the reaction chain, the susception, is the gravity-induced downward displacement of the statoliths. The physiological phase starts with the diversion of the acropetal transport of the Golgi vesicles to the upper part of the cell, which is caused by the block of statoliths (perception). The greater rate of vesicle incorporation into the upper flank in comparison to the lower one causes the subapical growth difference which results in the curvature (reaction).—In the case of the Chara rhizoid Golgi- and statolith-apparatus function as a self-regulating cellular system.

Herrn Prof. Dr. Dr. h. c. Kurt Mothes zum 70. Geburtstag.  相似文献   

7.
轮藻假根中的平衡石在回转器水平回转时的运动   总被引:3,自引:0,他引:3  
利用回转器重现了在TEXUS火箭抛物线飞行的微重力实验中轮藻假根内平衡石和假根基部方向的运动。在快速回转器上回转15min时,假根中的平衡石复合体中心离假根顶端的距离比在原来沿重力方向生长的假根中的距离增加了60%。细胞松弛素D的实验证实平衡石的这种运动是和肌动蛋白丝相关,而且在重力场中作用于平衡石的向基力也是肌动蛋白丝产生的。因此回转器和细胞松弛素D的实验证实了在地球上,平衡石的位置取决于作用方  相似文献   

8.
利用回转器重现了在TEXUS火箭抛物线飞行的微重力实验中轮藻假根内平衡石向假根基部方向的运动。在快速回转器上回转15 min时,假根中的平衡石复合体中心离假根顶端的距离比在原来沿重力方向生长的假根中的距离增加了60%。细胞松弛素D的实验证实平衡石的这种运动是和肌动蛋白丝相关,而且在重力场中作用于平衡石的向基力也是肌动蛋白丝产生的。因此回转器和细胞松弛素D的实验证实了在地球上,平衡石的位置取决于作用方向相反的重力和肌动蛋白丝作用力的动态平衡的假说。然后在快速回转器上,平衡石中心在一个新的位置上维持了30 min左右的稳定,也就是出现了一个新的动态平衡状态。这一新的状态是在原先的向着假根顶端的重力和向着假根基部的肌动蛋白丝作用力的平衡在回转器上被打破后再经约有15 min时达到的。更进一步的快速回转器实验还展示了可能因平衡石位置的这一变化而启动的肌动蛋白丝的再组织和由此产生的平衡石向假根顶端方向再转运的过程。快速和慢速回转器实验在这里的结果有差异,推测是和回转器上颗粒的振幅随回转器转速的增加而减小有关。加之,轮藻假根的单细胞性质,因此在假根处于回转轴上时,快速回转器是更适合这项模拟失重的研究。总之,在失重条件下平衡石和肌动蛋白丝的关系是可以利用回转器来研究的。  相似文献   

9.
To characterize cellular fluidity and mechanical processes, we determined the viscous properties of the cytoplasm of Chara contraria rhizoids in vivo by injecting and displacing superparamagnetic particles. After injection and a 24-h recovery period, the particles were moved to different positions within the rhizoid by an external magnet. The system was calibrated with solutions of known viscosities. The viscosity was determined based on the velocity at which individual beads moved toward the external magnet. The viscosity of the cytoplasm varied with direction of measurement (i.e., was highly anisotropic) and also varied between sites. The highest viscosity was observed near the endogenous statoliths (139 mP·s parallel and 78 mP·s perpendicular to the rhizoid axis). Depolymerization of actin filaments with latrunculin B reduced the viscosity significantly except around the nucleus but did not change the overall viscosity pattern. Microtubule depolymerization with oryzalin reduced viscosity especially between the nucleus and the statolith zone. The data indicate that F-actin but not microtubules affects statolith sedimentation and that cytoplasmic viscosity may be important for the gravisensing system.  相似文献   

10.
J Z Kiss 《Plant physiology》1994,105(3):937-940
In contrast to higher plants, Chara rhizoids have single membrane-bound compartments that appear to function as statoliths. Rhizoids were generated by germinating zygotes of Chara in either soil water (SW) medium or artificial pond water (APW) medium. Differential-interference-contrast microscopy demonstrated that rhizoids form SW-grown plants typically contain 50 to 60 statoliths per cell, whereas rhizoids from APW-grown plants contain 5 to 10 statoliths per cell. Rhizoids from SW are more responsive to gravity than rhizoids from APW because (a) SW rhizoids were oriented to gravity during vertical growth, whereas APW rhizoids were relatively disoriented, and (b) curvature of SW rhizoids was 3 to 4 times greater throughout the time course of curvature. The growth rate of APW rhizoids was significantly greater than that of SW-grown rhizoids. This latter result suggests that APW rhizoids are not limited in their ability for gravitropic curvature by growth and that these rhizoids are impaired in the early stages of gravitropism (i.e. gravity perception). Plants grown in APW appeared to be healthy because of their growth rate and the vigorous cytoplasmic streaming observed in the rhizoids. This study is comparable to earlier studies of gravitropism in starch-deficient mutants of higher plants and provides support for the role of statoliths in gravity perception.  相似文献   

11.
Braun M  Sievers A 《Protoplasma》1993,174(1-2):50-61
Summary The actin cytoskeleton is involved in the positioning of statoliths in tip growingChara rhizoids. The balance between the acropetally acting gravity force and the basipetally acting net out-come of cytoskeletal force results in the dynamically stable position of the statoliths 10–30 m above the cell tip. A change of the direction and/or the amount of one of these forces in a vertically growing rhizoid results in a dislocation of statoliths. Centrifugation was used as a tool to study the characteristics of the interaction between statoliths and microfilaments (MFs). Acropetal and basipetal accelerations up to 6.5 g were applied with the newly constructed slow-rotating-centrifuge-microscope (NIZEMI). Higher accelerations were applied by means of a conventional centrifuge, namely acropetally 10–200 g and basipetally 10–70 g. During acropetal accelerations (1.4–6 g), statoliths were displaced to a new stable position nearer to the cell vertex (12–6.5 m distance to the apical cell wall, respectively), but they did not sediment on the apical cell wall. The original position of the statoliths was reestablished within 30 s after centrifugation. Sedimentation of statoliths and reduction of the growth rates of the rhizoids were observed during acropetal accelerations higher than 50 g. When not only the amount but also the direction of the acceleration were changed in comparison to the natural condition, i.e., during basipetal accelerations (1.0–6.5 g), statoliths were displaced into the subapical zone (up to 90 m distance to the apical cell wall); after 15–20 min the retransport of statoliths to the apex against the direction of acceleration started. Finally, the natural position in the tip was reestablished against the direction of continuous centrifugation. Retransport was observed during accelerations up to 70 g. Under the 1 g condition that followed the retransported statoliths showed an up to 5-fold increase in sedimentation time onto the lateral cell wall when placed horizontally. During basipetal centrifugations 70 g all statoliths entered the basal vacuolar part of the rhizoid where they were cotransported in the streaming cytoplasm. It is concluded that the MF system is able to adapt to higher mass accelerations and that the MF system of the polarly growing rhizoid is polarly organized.Abbreviations g gravitational acceleration (9.81 m/s2) - MF microfilament - NIZEMI Niedergeschwindigkeits-Zentrifugen-Mikroskop (slow-rotating-centrifuge-microscope)  相似文献   

12.
In contrast to higher plants, the alga Chara has rhizoids with single membrane-bound compartments that function as statoliths in gravity perception. Previous work has demonstrated that these statoliths contain barium sulfate crystals. In this study, we show that statoliths in Chara rhizoids react with a Coomassie Brilliant Blue cytochemical stain for proteins. While statoliths did not react with silver methenamine carbohydrate cytochemistry, the monoclonal antibody CCRC-M2, which is against a carbohydrate (sycamore-maple rhamnogalacturonan I), labeled the statolith compartment. These results demonstrate that in addition to barium sulfate, statoliths in Chara rhizoids have an organic matrix that consists of protein and carbohydrate moieties. Since the statoliths were silver methenamine negative, the carbohydrate in this compartment could be a 3-linked polysaccharide. CCRC-M2 also labeled Golgi cisternae, Golgi-associated vesicles, apical vesicles, and cell walls in the rhizoids. The specificity of CCRC-M2 immunolabeling was verified by several control experiments, including the demonstration that labeling was abolished when the antibody was preabsorbed with its antigen. Since in this and a previous study (John Z. Kiss and L. Andrew Staehelin, American Journal of Botany 80: 273-282, 1993) antibodies against higher plant carbohydrates crossreacted with cell walls of Chara in a specific manner, Characean algae may be a useful model system in biochemical and molecular studies of cell walls.  相似文献   

13.
Sievers A  Kruse S  Kuo-Huang LL  Wendt M 《Planta》1989,179(2):275-278
Microfilaments have been demonstrated in rhizoids of Chara fragilis Desvaux by labelling of actin with rhodamine-conjugated phalloidin. Each rhizoid contains thick microfilament-bundles arranged longitudinally in the basal region. In the subapical and apical regions, much thinner bundles exist which contact the statoliths and encircle them in the form of a dense envelope. In root statocytes from Lepidium sativum L. the presence of an actin network is indicated by the fact that application of cytochalasin B (25 g·ml-1 for 4 h) results in an approximately threefold increase in the rate of statolith (amyloplast) sedimentation relative to controls. It is concluded that in gravity-perceiving plant cells statoliths may trigger the transduction mechanism via actin filaments.Abbreviation CB cytochalasin B - ER endoplasmic reticulum - MF microfilament  相似文献   

14.
Auxin greatly influences plant cell elongation, particularly in the organs of shoots but also in roots. Earlier reports are limited to organ and/or cell growth connected with a mosaic type of cell elongation. The present paper describes auxin sensitivity of polarly growing rhizoid cells of Chara globularis Thuill. where auxin-dependent growth could be observed in two different ways: (1) Auxin had no effect when applied to intact Chara explants with developed thizoids, but decapitated explants reacted to auxin with optimal growth at 1 μ M indole-3-acetic-acid (IAA). (2) N-I-Naphthylphthalamic acid (NPA) at 10 and 100 μ M caused a strong inhibition in rhizoid growth of intact Chara explants. Auxin applied at the same time abolished this inhibition but, due to lack of plant material, endogenous IAA content could not be measured. Chara explants pre-fed with 1-[14C] IAA from a 3.5 μ M solution for 8 h, then washed and transferred for 11 h to auxin free solution containing 0, 10 or 100 μ M NPA, showed an effect of NPA upon IAA accumulation. Therefore, NPA may inhibit auxin secretion in Chara , 100. Our data are in agreement with earlier results on auxin regulated cell elongation and H-secretion, and show that auxin secretion may also be an essential step in endogenous regulation of polar growth in Chara rhizoids.  相似文献   

15.
Markus Braun  Peter Richter 《Planta》1999,209(4):414-423
The localization of cytoplasmic free calcium and a dihydropyridine (DHP) receptor, a putative calcium channel, was recorded during the opposite graviresponses of tip-growing Chara rhizoids and Chara protonemata by using the calcium indicator Calcium Crimson and a fluorescently labeled dihydropyridine (FL-DHP). In upward (negatively gravitropically) growing protonemata and downward (positively gravitropically) growing rhizoids, a steep Ca2+ gradient and DHP receptors were found to be symmetrically localized in the tip. However, the localization of the Ca2+ gradient and DHP receptors differed considerably during the gravitropic responses upon horizontal positioning of the two cell types. During the graviresponse of rhizoids, a continuous bowing downward by differential flank growth, the Ca2+ gradient and DHP receptors remained symmetrically localized in the tip at the centre of growth. However, after tilting protonemata into a horizontal position, there was a drastic displacement of the Ca2+ gradient and FL-DHP to the upper flank of the apical dome. This displacement occurred after the apical intrusion and sedimentation of the statoliths but clearly before the change in the growth direction became evident. In protonemata, the reorientation of the growth direction started with the appearence of a bulge on that site of the upper flank which was predicted by the asymmetrically displaced Ca2+ gradient. With the upward shift of the cell tip, which is suggested to result from a statolith-induced displacement of the growth centre, the Ca2+ gradient and DHP receptors became symmetrically relocalized in the apical dome. No major asymmetrical rearrangement was observed during the following phase of gravitropic curvature which is characterized by slower rates of bending. Labeling with FL-DHP was completely inhibited by a non-fluorescently labeled dihydropyridine. From these results it is suggested that FL-DHP labels calcium channels in rhizoids and protonemata. In rhizoids, positive gravitropic curvature is caused by differential growth limited to the opposite subapical flanks of the apical dome, a process which does not involve displacement of the growth centre, the calcium gradient or calcium channels. In protonemata, however, it is proposed that a statolith-induced asymmetrical relocalization of calcium channels and the Ca2+ gradient precedes, and might mediate, the rearrangement of the centre of growth, most likely by the displacement of the Spitzenk?rper, to the upper flank, which results in the negative gravitropic reorientation of the growth direction. Received: 13 February 1999 / Accepted: 25 June 1999  相似文献   

16.
In-vivo differential interference contrast microscopy was used to detect individual Golgi vesicles and a new structure in the tip of fast-growing rhizoids of Chara fragilis Desvaux. This structure is a spherical clear zone which is free of Golgi vesicles, has a diameter of 5 m and is positioned in the center of the apical Golgi-vesicle accumulation (Spitzenkörper). After glutaraldehyde fixation and osmium tetroxide-potassium ferricyanide staining of the rhizoid, followed by serial sectioning and three-dimensional reconstruction, the spherical zone shows a tight accumulation of anastomosing endoplasmic reticulum (ER) membranes. The ER membranes radiate from this aggregate towards the apical plasmalemma and to the membranes of the statolith compartments. Upon gravistimulation the ER aggregate changes its position according to the new growth direction, indicating its participation in growth determination. After treatment of the rhizoid with cytochalasin B or phalloidin the ER aggregate disappears and the statoliths sediment. It is concluded that the integrity of the ER aggregate is actin-dependent and that it is related to the polar organisation of the gravitropically growing cell tip.Abbreviations CB cytochalasin B - DIC differential interference contrast microscopy - DMSO dimethyl sulfoxide - ER endoplasmic reticulum  相似文献   

17.
Summary Previous videomicroscopy ofChara rhizoids during parabolic flights of rockets showed that the weightless statoliths moved basipetally. A hypothesis was offered that the removal of gravity force disturbed the initial balance between this force and the basipetally acting forces generated in a dynamic interaction of statoliths with microfilaments (MFs). The prediction of this hypothesis that the statoliths would not be displaced basipetally during the microgravity phase (MG-phase) after disorganizing the MFs was tested by videomicroscopy of a rhizoid treated with cytochalasin D (CD) immediately before the flight. The prediction was fully supported by the flight experiment. Additionally, by chemical fixation of many rhizoids at the end of the MG-phase it was shown that all rhizoids treated with CD before the flight had statoliths at the same location, i.e., sedimented on the apical cell wall, while all untreated rhizoids had statoliths considerably displaced basipetally from their normal position. Thus, a dynamical interaction involving shearing forces between MFs and statoliths appears highly probable.Abbreviations CD cytochalasin D - g gravitational acceleration - MF microfilament - MG-phase microgravity phase - TEXUS technological experiments under reduced gravity Dedicated to Hilton H. Mollenhauer on the occasion of his retirement  相似文献   

18.
Hejnowicz Z  Sievers A 《Protoplasma》1981,108(1-2):117-137
Summary The behavior of statoliths in rhizoids differently oriented with respect to the gravity vector indicates that there are cytoskeleton elements which exert forces on the statoliths, mostly in the longitudinal directions. Compared to the sum of the forces acting on a statolith, the gravitational force is a relatively small component,i.e., less than 1/5 of the cytoskeleton force. The balance is disturbed by displacing the rhizoid from the normal vertical orientation. It is also reversibly disturbed by cytochalasin B such that some statoliths move against the gravity force. Phalloidin stabilizes the position of the statoliths against cytochalasin B. We infer that microfilaments are involved in controlling the position of statoliths, and that there is a considerable tension on these microfilaments. The vibration frequency of the microfilaments corresponding to this tension is in the ultrasonic range.Visiting Professor on a grant from Deutsche Forschungsgemeinschaft.  相似文献   

19.
Growth and phototropic bending in Boergesenia rhizoid   总被引:1,自引:0,他引:1  
The rhizoid of Boergesenia forbesii. a coenocytic green alga,exhibited typical tip growth. The growth stopped at temperatureslower than 15?C and was promoted by red light but inhibitedby blue light (430 nm). The rhizoid showed negative phototropicbending caused by blue light, and the mode of bending was the"bulging" type. The dioptric effect was not involved in thisnegative phototropism. The phototropicbending process was modifiedgreatly by temperature. At low temperature (18?C), bending didnot occur but the phototropic effect could be accumulated andstored. The accumulated effect appeared as a bending in thedark when the temperature was raisedto 25?C. This accumulatedphototropic effect, designated "stored bending", attenuatedat a half-life of 1.5 hr at 18?C in the dark. (Received February 24, 1979; )  相似文献   

20.
The changes in length on the two opposite sides of etiolated radish (Raphanus sativus) hypocotyls prior to, and following gravitropic stimulation, were measured using an infrared-imaging system. It was observed that the growth suppression on the upper side began first at least 10 min after the onset of gravitropic stimulation, and after 30 min the acceleration in growth on the lower side started. The gravitropic curvature was steadily induced from 10 min. When radish hypocotyls were switched from a vertical to horizontal position for different durations and then replaced to the vertical position, the growth suppression on the gravity-stimulated (upper) side was observed in all cases, but the acceleration in growth on the opposite (lower) side appeared only in continuously gravity-stimulated seedlings, although it occurred later than the growth suppression on the upper side. These results suggest that the suppression in growth on the upper side of the hypocotyls is a direct effect of gravitropic stimulation, but not the acceleration on the lower side. When 4-methylthio-3-butenyl isothiocyanate (4-MTBI), which has an inhibitory activity against radish hypocotyl growth, was applied on the one side of radish hypocotyls and then the 4-MTBI-applied side or opposite side was placed in a horizontal position, the former showed greater bending than the control, suggesting that the growth suppression on the upper side is enhanced and maintained with MTBI application there. In the latter case, the seedlings showed less bending than the control, suggesting a decrease in growth on the lower side with MTBI application. All the results suggest that gravitropism of radish hypocotyls may be caused by an increase in growth-inhibiting substance(s) induced with gravitropic stimulation in the upper side, inducing growth inhibition there.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号