首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
GTP is required for iron-sulfur cluster biogenesis in mitochondria   总被引:1,自引:0,他引:1  
Iron-sulfur (Fe-S) cluster biogenesis in mitochondria is an essential process and is conserved from yeast to humans. Several proteins with Fe-S cluster cofactors reside in mitochondria, including aconitase [4Fe-4S] and ferredoxin [2Fe-2S]. We found that mitochondria isolated from wild-type yeast contain a pool of apoaconitase and machinery capable of forming new clusters and inserting them into this endogenous apoprotein pool. These observations allowed us to develop assays to assess the role of nucleotides (GTP and ATP) in cluster biogenesis in mitochondria. We show that Fe-S cluster biogenesis in isolated mitochondria is enhanced by the addition of GTP and ATP. Hydrolysis of both GTP and ATP is necessary, and the addition of ATP cannot circumvent processes that require GTP hydrolysis. Both in vivo and in vitro experiments suggest that GTP must enter into the matrix to exert its effects on cluster biogenesis. Upon import into isolated mitochondria, purified apoferredoxin can also be used as a substrate by the Fe-S cluster machinery in a GTP-dependent manner. GTP is likely required for a common step involved in the cluster biogenesis of aconitase and ferredoxin. To our knowledge this is the first report demonstrating a role of GTP in mitochondrial Fe-S cluster biogenesis.  相似文献   

3.
In Saccharomyces cerevisiae, the mitochondrial inner membrane readily allows transport of cytosolic NAD(+), but not NADPH, to the matrix. Pos5p is the only known NADH kinase in the mitochondrial matrix. The enzyme phosphorylates NADH to NADPH and is the major source of NADPH in the matrix. The importance of mitochondrial NADPH for cellular physiology is underscored by the phenotypes of the Δpos5 mutant, characterized by oxidative stress sensitivity and iron-sulfur (Fe-S) cluster deficiency. Fe-S clusters are essential cofactors of proteins such as aconitase [4Fe-4S] and ferredoxin [2Fe-2S] in mitochondria. Intact mitochondria isolated from wild-type yeast can synthesize these clusters and insert them into the corresponding apoproteins. Here, we show that this process of Fe-S cluster biogenesis in wild-type mitochondria is greatly stimulated and kinetically favored by the addition of NAD(+) or NADH in a dose-dependent manner, probably via transport into mitochondria and subsequent conversion into NADPH. Unlike wild-type mitochondria, Δpos5 mitochondria cannot efficiently synthesize Fe-S clusters on endogenous aconitase or imported ferredoxin, although cluster biogenesis in isolated Δpos5 mitochondria is restored to a significant extent by a small amount of imported Pos5p. Interestingly, Fe-S cluster biogenesis in wild-type mitochondria is further enhanced by overexpression of Pos5p. The effects of Pos5p on Fe-S cluster generation in mitochondria indicate that one or more steps in the biosynthetic process require NADPH. The role of mitochondrial NADPH in Fe-S cluster biogenesis appears to be distinct from its function in anti-oxidant defense.  相似文献   

4.
The biosynthesis of iron-sulfur clusters is a highly regulated process involving several proteins. Among them, so-called scaffold proteins play pivotal roles in both the assembly and delivery of iron-sulfur clusters. Here, we report the identification of two chloroplast-localized NifU-like proteins, AtCnfU-V and AtCnfU-IVb, from Arabidopsis (Arabidopsis thaliana) with high sequence similarity to a cyanobacterial NifU-like protein that was proposed to serve as a molecular scaffold. AtCnfU-V is constitutively expressed in several tissues of Arabidopsis, whereas the expression of AtCnfU-IVb is prominent in the aerial parts. Mutant Arabidopsis lacking AtCnfU-V exhibited a dwarf phenotype with faint pale-green leaves and had drastically impaired photosystem I accumulation. Chloroplasts in the mutants also showed a decrease in both the amount of ferredoxin, a major electron carrier of the stroma that contains a [2Fe-2S] cluster, and in the in vitro activity of iron-sulfur cluster insertion into apo-ferredoxin. When expressed in Escherichia coli cells, AtCnfU-V formed a homodimer carrying a [2Fe-2S]-like cluster, and this cluster could be transferred to apo-ferredoxin in vitro to form holo-ferredoxin. We propose that AtCnfU has an important function as a molecular scaffold for iron-sulfur cluster biosynthesis in chloroplasts and thereby is required for biogenesis of ferredoxin and photosystem I.  相似文献   

5.
An extremely thermostable [4Fe-4S] ferredoxin was isolated under anaerobic conditions from a hyperthermophilic archaeon Thermococcus profundus, and the ferredoxin gene was cloned and sequenced. The nucleotide sequence of the ferredoxin gene shows the ferredoxin to comprise 62 amino acid residues with a sequence similar to those of many bacterial and archaeal 4Fe (3Fe) ferredoxins. The unusual Fe-S cluster type, which was identified in the resonance Raman and EPR spectra, has three cysteines and one aspartate as the cluster ligands, as in the Pyrococcus furiosus 4Fe ferredoxin. Under aerobic conditions, a ferredoxin was purified that contains a [3Fe-4S] cluster as the major Fe-S cluster and a small amount of the [4Fe-4S] cluster. Its N-terminal amino acid sequence is the same as that of the anaerobically-purified ferredoxin up to the 26th residue. These results indicate that the 4Fe ferredoxin was degraded to 3Fe ferredoxin during aerobic purification. The aerobically-purified ferredoxin was reversibly converted back to the [4Fe-4S] ferredoxin by the addition of ferrous ions under reducing conditions. The anaerobically-purified [4Fe-4S] ferredoxin is quite stable; little degradtion was observed over 20 h at 100 degrees C, while the half-life of the aerobically-purified ferredoxin is 10 h at 100 degrees C. Both the anaerobically- and aerobically-purified ferredoxins were found to function as electron acceptors for the pyruvate-ferredoxin oxidoreductase purified from the same archaeon.  相似文献   

6.
Rapid and quantitative reductive coupling of two [2Fe-2S]2+ clusters to form a single [4Fe-4S]2+ cluster on the homodimeric IscU Fe-S cluster scaffold protein has been demonstrated by UV-visible absorption, M?ssbauer, and resonance Raman spectroscopies, using dithionite as the electron donor. Partial reductive coupling was also observed using reduced Isc ferredoxin, which raises the possibility that Isc ferredoxin is the physiological reductant. The results suggest that reductive coupling of adjacent [2Fe-2S]2+ clusters assembled on IscU provides a general mechanism for the final step in the biosynthesis of [4Fe-4S]2+ clusters. The [4Fe-4S]2+ center on IscU can be reduced to a S = 1/2[4Fe-4S]+ cluster (g parallel = 2.06 and g perpendicular = 1.92), but the low midpoint potential (< -570 mV) and instability of the reduced cluster argue against any physiological relevance for the reduced cluster. On exposure to O2, the [4Fe-4S]2+ cluster on IscU degrades via a semistable [2Fe-2S]2+ cluster with properties analogous to those of the [2Fe-2S]2+ center in [2Fe-2S]2+ IscU. It is suggested that the ability of IscU to accommodate either [2Fe-2S]2+ or [4Fe-4S]2+ clusters in response to cellular redox status and/or oxygen levels may provide an effective way to populate appropriately cluster-loaded forms of IscU for maturation of different types of [Fe-S] proteins.  相似文献   

7.
Azotobacter vinelandii (4Fe-4S)2 ferredoxin I (Fd I) is an electron transfer protein with Mr equals 14,500 and Eo equals -420 mv. It exhibits and EPR signal of g equals 2.01 in its isolated form. This resonance is almost identical with the signal that originates from a "super-oxidized" state of the 4Fe-4S cluster of potassium ferricyanide-treated Clostridium ferredoxin. A cluster that exhibits this EPR signal at g equals 2.01 is in the same formal oxidation state as the cluster in oxidized Chromatium High-Potential-Iron-Protein (HiPIP). On photoreduction of Fd I with spinach chloroplast fragments, the resonance at g equals 2.01 vanishes and no EPR signal is observed. This EPR behavior is analogous to that of reduced HiPIP, which also fails to exhibit an EPR spectrum. These characteristics suggest that a cluster in A. vinelandii Fd I functions between the same pair of states on reduction as does the cluster in HiPIP, but with a midpoint reduction potential of -420 mv in contrast to the value of +350 mv characteristic of HiPIP. Quantitative EPR and stoichoimetry studies showed that only one 4Fe-4S cluster in this (4Fe-4S)2 ferredoxin is reduced. Oxidation of Fd I with potassium ferricyanide results in the uptake of 1 electron/mol as determined by quantitative EPR spectroscopy. This indicates that a cluster in Fd I shows no electron paramagnetic resonance in the isolated form of the protein accepts an electron on oxidation, as indicated by the EPR spectrum, and becomes paramagnetic. The EPR behavior of this oxidizable cluster indicates that it also functions between the same pair of oxidation states as does the Fe-S cluster in HiPIP. The midpoint reduction potential of this cluster is approximately +340 mv. A. vinelandii Fd I is the first example of an iron-sulfur protein which contains both a high potential cluster (approximately +340 mv) and a low potential cluster (-420 mv). Both Fe-S clusters appear to function between the same pair of oxidation states as the single Fe-S cluster in Chromatium HiPIP, although the midpoint reduction potentials of the two clusters are approximately 760 mv different.  相似文献   

8.
9.
During the purification of recombinant Bacillus thermoproteolyticus ferredoxin (BtFd) from Escherichia coli, we have noted that some Fe-S proteins were produced in relatively small amounts compared to the originally identified BtFd carrying a [4Fe-4S] cluster. These variants could be purified into three Fe-S protein components (designated as V-I, V-II, and V-III) by standard chromatography procedures. UV-vis and EPR spectroscopic analyses indicated that each of these variants accommodates a [3Fe-4S] cluster. From mass spectrometric and protein sequence analyses together with native and SDS gel electrophoresis, we established that V-I and V-II contain the polypeptide of BtFd associated with acyl carrier protein (ACP) and with coenzyme A (CoA), respectively, and that V-III is a BtFd dimer linked by a disulfide bond. The crystal structure of the BtFd-CoA complex (V-II) determined at 1.6 A resolution revealed that each of the four complexes in the crystallographic asymmetric unit possesses a [3Fe-4S] cluster that is coordinated by Cys(11), Cys(17), and Cys(61). The polypeptide chain of each complex is superimposable onto that of the original [4Fe-4S] BtFd except for the segment containing Cys(14), the fourth ligand to the [4Fe-4S] cluster of BtFd. In the variant molecules, the side chain of Cys(14) is rotated away to the molecular surface, forming a disulfide bond with the terminal sulfhydryl group of CoA. This covalent modification may have occurred in vivo, thereby preventing the assembly of the [4Fe-4S] cluster as observed previously for Desulfovibrio gigas ferredoxin. Possibilities concerning how the variant molecules are formed in the cell are discussed.  相似文献   

10.
Kakuta Y  Horio T  Takahashi Y  Fukuyama K 《Biochemistry》2001,40(37):11007-11012
Escherichia coli ferredoxin (Fdx) is an adrenodoxin-type [2Fe-2S] ferredoxin. Recent genetic analyses show that it has an essential role in the maturation of various iron-sulfur (Fe-S) proteins. Fdx probably functions as a component of the complex machinery responsible for the biogenesis of Fe-S clusters. Its crystal structure was determined by the multiple-wavelength anomalous dispersion method using the iron atoms in the [2Fe-2S] cluster of the protein and then refined to R and R(free) values of 0.255 and 0.278, respectively, at 1.7 A resolution. The structure of Fdx is similar to the structures of bovine adrenodoxin (Adx) and Pseudomonas putida putidaredoxin (Pdx) whose respective root-mean-square deviations of the corresponding Calpha atoms are 1.8 and 2.2 A. This analysis also revealed the structure of the C-terminal residues protruding into the solvent, which is missing in Adx and Pdx. The [2Fe-2S] cluster is located at the edge of the molecule and bonds with the Sgamma atoms of Cys42, Cys48, Cys51, and Cys87. Electrostatic potential analysis showed that the surface of Fdx has two negatively charged areas separated by a hydrophobic lane. One is conserved on the surface of Adx which is an area of interaction with adrenodoxin reductase. Cys46 is located on the molecular surface in the vicinity of the [2Fe-2S] cluster, an indication that it may be involved in Fe-S cluster formation.  相似文献   

11.
Iron-sulfur (Fe-S) clusters are essential cofactors, and mitochondria contain several Fe-S proteins, including the [4Fe-4S] protein aconitase and the [2Fe-2S] protein ferredoxin. Fe-S cluster assembly of these proteins occurs within mitochondria. Although considerable data exist for yeast mitochondria, this biosynthetic process has never been directly demonstrated in mammalian mitochondria. Using [35S]cysteine as the source of sulfur, here we show that mitochondria isolated from Cath.A-derived cells, a murine neuronal cell line, can synthesize and insert new Fe-35S clusters into aconitase and ferredoxins. The process requires GTP, NADH, ATP, and iron, and hydrolysis of both GTP and ATP is necessary. Importantly, we have identified the 35S-labeled persulfide on the NFS1 cysteine desulfurase as a genuine intermediate en route to Fe-S cluster synthesis. In physiological settings, the persulfide sulfur is released from NFS1 and transferred to a scaffold protein, where it combines with iron to form an Fe-S cluster intermediate. We found that the release of persulfide sulfur from NFS1 requires iron, showing that the use of iron and sulfur for the synthesis of Fe-S cluster intermediates is a highly coordinated process. The release of persulfide sulfur also requires GTP and NADH, probably mediated by a GTPase and a reductase, respectively. ATP, a cofactor for a multifunctional Hsp70 chaperone, is not required at this step. The experimental system described here may help to define the biochemical basis of diseases that are associated with impaired Fe-S cluster biogenesis in mitochondria, such as Friedreich ataxia.  相似文献   

12.
Glutaredoxins (Grxs) are small oxidoreductases that reduce disulphide bonds or protein-glutathione mixed disulphides. More than 30 distinct grx genes are expressed in higher plants, but little is currently known concerning their functional diversity. This study presents biochemical and spectroscopic evidence for incorporation of a [2Fe-2S] cluster in two heterologously expressed chloroplastic Grxs, GrxS14 and GrxS16, and in vitro cysteine desulphurase-mediated assembly of an identical [2Fe-2S] cluster in apo-GrxS14. These Grxs possess the same monothiol CGFS active site as yeast Grx5 and both were able to complement a yeast grx5 mutant defective in Fe-S cluster assembly. In vitro kinetic studies monitored by CD spectroscopy indicate that [2Fe-2S] clusters on GrxS14 are rapidly and quantitatively transferred to apo chloroplast ferredoxin. These data demonstrate that chloroplast CGFS Grxs have the potential to function as scaffold proteins for the assembly of [2Fe-2S] clusters that can be transferred intact to physiologically relevant acceptor proteins. Alternatively, they may function in the storage and/or delivery of preformed Fe-S clusters or in the regulation of the chloroplastic Fe-S cluster assembly machinery.  相似文献   

13.
Zeng J  Huang X  Liu Y  Liu J  Qiu G 《Current microbiology》2007,55(6):518-523
The [2Fe-2S] cluster containing ferredoxin has attracted much attention in recent years. Genetic analyses show that it has an essential role in the maturation of various iron–sulfur (Fe-S) proteins and functions as a component of the complex machinery responsible for the biogenesis of Fe-S clusters. The gene of ferredoxin from A. ferrooxidans ATCC 23270 was cloned, successfully expressed in Escherichia coli, and purified by one-step affinity chromatography to homogeneity. The MALDI-TOF MS and spectra results of the recombinant protein confirmed that the iron–sulfur cluster was correctly inserted into the active site of the protein. Site-directed mutagenesis results revealed that Cys42, Cys48, Cys51, and Cys87 were ligating with the [Fe2S2] cluster of the protein.  相似文献   

14.
15.
We have used site-directed mutagenesis to obtain two variants of Azotobacter vinelandii ferredoxin I (AvFdI), whose x-ray structures are now available. In the C20A protein, a ligand to the [4Fe-4S] cluster was removed whereas in the C24A mutant a free cysteine next to that cluster was removed. Like native FdI, both mutants contain one [4Fe-4S] cluster and one [3Fe-4S] cluster. The structure of C24A is very similar to that of native FdI, while the structure of C20A is rearranged in the region of the [4Fe-4S] cluster to allow it to use the free Cys-24 as a replacement ligand. Here we compare the properties of the native, C20A, and C24A proteins. Although all three proteins are O2 stable in vitro, the C20A protein is much less stable toward proteolysis than the other two in vivo. Spectroscopic results show that all three proteins exhibit the same general redox behavior during O2-oxidation and dithionite reduction. Electrochemical data show that the [3Fe-4S] clusters in all three proteins have the same pH-dependent reduction potentials (-425 mV versus SHE, pH 7.8), whereas the [4Fe-4S] cluster potentials vary over a approximately 150 mV range from -600 mV (C24A) to -647 mV (native) to -746 mV (C20A). Despite this variation in potential both the C20A and C24A proteins appear to be functional in vivo. Native FdI reacts with three equivalents of Fe(CN)3-(6) to form a paramagnetic species previously proposed to be a cysteinyl-disulfide radical. Neither the C20A nor the C24A variant undergoes this reaction, strongly suggesting that it involves the free Cys-24.  相似文献   

16.
17.
We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study oxidized and reduced forms of the [4Fe-4S] cluster in the D14C variant ferredoxin from Pyrococcus furiosus (Pf D14C Fd). To assist the normal-mode assignments, we conducted NRVS with D14C ferredoxin samples with (36)S substituted into the [4Fe-4S] cluster bridging sulfide positions, and a model compound without ligand side chains, (Ph(4)P)(2)[Fe(4)S(4)Cl(4)]. Several distinct regions of NRVS intensity are identified, ranging from "protein" and torsional modes below 100 cm(-1), through bending and breathing modes near 150 cm(-1), to strong bands from Fe-S stretching modes between 250 and ~400 cm(-1). The oxidized ferredoxin samples were also investigated by resonance Raman (RR) spectroscopy. We found good agreement between NRVS and RR frequencies, but because of different selection rules, the intensities vary dramatically between the two types of spectra. The (57)Fe partial vibrational densities of states for the oxidized samples were interpreted by normal-mode analysis with optimization of Urey-Bradley force fields for local models of the [4Fe-4S] clusters. Full protein model calculations were also conducted using a supplemented CHARMM force field, and these calculations revealed low-frequency modes that may be relevant to electron transfer with Pf Fd partners. Density functional theory (DFT) calculations complemented these empirical analyses, and DFT was used to estimate the reorganization energy associated with the [Fe(4)S(4)](2+/+) redox cycle. Overall, the NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins.  相似文献   

18.
Interconversion of iron regulatory protein 1 (IRP1) with cytosolic aconitase (c-aconitase) occurs via assembly/disassembly of a [4Fe-4S] cluster. Recent evidence implicates oxidants in cluster disassembly. We investigated H(2)O(2)-initiated Fe-S cluster disassembly in c-aconitase expressed in Saccharomyces cerevisiae. A signal for [3Fe-4S] c-aconitase was detected by whole-cell EPR of aerobically grown, aco1 yeast expressing wild-type IRP1 or a S138A-IRP1 mutant (IRP1(S138A)), providing the first direct evidence of a 3Fe intermediate in vivo. Exposure of yeast to H(2)O(2) increased this 3Fe c-aconitase signal up to 5-fold, coincident with inhibition of c-aconitase activity. Untreated yeast expressing IRP1(S138D) or IRP1(S138E), which mimic phosphorylated IRP1, failed to give a 3Fe signal. H(2)O(2) produced a weak 3Fe signal in yeast expressing IRP1(S138D). Yeast expressing IRP1(S138D) or IRP1(S138E) were the most sensitive to inhibition of aconitase-dependent growth by H(2)O(2) and were more responsive to changes in media iron status. Ferricyanide oxidation of anaerobically reconstituted c-aconitase yielded a strong 3Fe EPR signal with wild-type and S138A c-aconitases. Only a weak 3Fe signal was obtained with S138D c-aconitase, and no signal was obtained with S138E c-aconitase. This, paired with loss of c-aconitase activity, strongly argues that the Fe-S clusters of these phosphomimetic c-aconitase mutants undergo more complete disassembly upon oxidation. Our results demonstrate that 3Fe c-aconitase is an intermediate in H(2)O(2)-initiated Fe-S cluster disassembly in vivo and suggest that cluster assembly/disassembly in IRP1 is a dynamic process in aerobically growing yeast. Further, our results support the view that phosphorylation of IRP1 can modulate its response to iron through effects on Fe-S cluster stability and turnover.  相似文献   

19.
Ferredoxin:thioredoxin reductase (FTR) is a key regulatory enzyme of oxygenic photosynthetic cells involved in the reductive regulation of important target enzymes. It catalyzes the two-electron reduction of the disulfide of thioredoxins with electrons from ferredoxin involving a 4Fe-4S cluster and an adjacent active-site disulfide. We replaced Cys-57, Cys-87, and His-86 in the active site of Synechocystis FTR by site-directed mutagenesis and studied the properties of the mutated proteins. Mutation of either of the active-site cysteines yields inactive enzymes, which have different spectral properties, indicating a reduced Fe-S cluster when the inaccessible Cys-87 is replaced and an oxidized cluster when the accessible Cys-57 is replaced. The oxidized cluster in the latter mutant can be reversibly reduced with dithionite showing that it is functional. The C57S mutant is a very stable protein, whereas the C87A mutant is more labile because of the missing interaction with the cluster. The replacement of His-86 greatly reduces its catalytic activity supporting the proposal that His-86 increases the nucleophilicity of the neighboring cysteine. Ferredoxin forms non-covalent complexes with wild type (WT) and mutant FTRs, which are stable except with the C87A mutant. WT and mutant FTRs form stable covalent heteroduplexes with active-site modified thioredoxins. In particular, heteroduplexes formed with WT FTR represent interesting one-electron-reduced reaction intermediates, which can be split by reduction of the Fe-S cluster. Heteroduplexes form non-covalent complexes with ferredoxin demonstrating the ability of FTR to simultaneously dock thioredoxin and ferredoxin, which is in accord with the proposed reaction mechanism and the structural analyses.  相似文献   

20.
Sirohaem is a cofactor of nitrite and sulfite reductases, essential for assimilation of nitrogen and sulfur. Sirohaem is synthesized from the central tetrapyrrole intermediate uroporphyrinogen III by methylation, oxidation and ferrochelation reactions. In Arabidopsis thaliana, the ferrochelation step is catalysed by sirohydrochlorin ferrochelatase (SirB), which, unlike its counterparts in bacteria, contains an [Fe-S] cluster. We determined the cluster to be a [4Fe-4S] type, which quickly oxidizes to a [2Fe-2S] form in the presence of oxygen. We also identified the cluster ligands as four conserved cysteine residues located at the C-terminus. A fifth conserved cysteine residue, Cys(135), is not involved in ligating the cluster directly, but influences the oxygen-sensitivity of the [4Fe-4S] form, and possibly the affinity for the substrate metal. Substitution mutants of the enzyme lacking the Fe-S cluster or Cys(135) retain the same specific activity in vitro and dimeric quaternary structure as the wild-type enzyme. The mutant variants also rescue a defined Escherichia coli sirohaem-deficient mutant. However, the mutant enzymes cannot complement Arabidopsis plants with a null AtSirB mutation, which exhibits post-germination arrest. These observations suggest an important physiological role for the Fe-S cluster in Planta, highlighting the close association of iron, sulfur and tetrapyrrole metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号