首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene flow in genetically modified wheat   总被引:1,自引:0,他引:1  
Understanding gene flow in genetically modified (GM) crops is critical to answering questions regarding risk-assessment and the coexistence of GM and non-GM crops. In two field experiments, we tested whether rates of cross-pollination differed between GM and non-GM lines of the predominantly self-pollinating wheat Triticum aestivum. In the first experiment, outcrossing was studied within the field by planting "phytometers" of one line into stands of another line. In the second experiment, outcrossing was studied over distances of 0.5-2.5 m from a central patch of pollen donors to adjacent patches of pollen recipients. Cross-pollination and outcrossing was detected when offspring of a pollen recipient without a particular transgene contained this transgene in heterozygous condition. The GM lines had been produced from the varieties Bobwhite or Frisal and contained Pm3b or chitinase/glucanase transgenes, respectively, in homozygous condition. These transgenes increase plant resistance against pathogenic fungi. Although the overall outcrossing rate in the first experiment was only 3.4%, Bobwhite GM lines containing the Pm3b transgene were six times more likely than non-GM control lines to produce outcrossed offspring. There was additional variation in outcrossing rate among the four GM-lines, presumably due to the different transgene insertion events. Among the pollen donors, the Frisal GM line expressing a chitinase transgene caused more outcrossing than the GM line expressing both a chitinase and a glucanase transgene. In the second experiment, outcrossing after cross-pollination declined from 0.7-0.03% over the test distances of 0.5-2.5 m. Our results suggest that pollen-mediated gene flow between GM and non-GM wheat might only be a concern if it occurs within fields, e.g. due to seed contamination. Methodologically our study demonstrates that outcrossing rates between transgenic and other lines within crops can be assessed using a phytometer approach and that gene-flow distances can be efficiently estimated with population-level PCR analyses.  相似文献   

2.
Duc C  Nentwig W  Lindfeld A 《PloS one》2011,6(10):e25014
The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community.  相似文献   

3.

Background

The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM) plants.

Methods and Findings

We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results.The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control.

Conclusions

Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology.  相似文献   

4.
Rong J  Song Z  Su J  Xia H  Lu BR  Wang F 《The New phytologist》2005,168(3):559-566
Crop-to-crop transgene flow will affect seed purity of non-GM rice varieties, leading to unwanted consequences. To assess the maximum probability of transgene outflow in rice (Oryza sativa), gene flow experiments were conducted with three cultivation patterns with different mixed-planting proportions of adjacent GM and non-GM rice at two sites in Fujian and Hainan Provinces of China. Three GM rice lines containing two insect-resistance genes (Bt/CpTI) and their non-GM counterparts were used in the experiments to allow natural hybridization to occur. A hygromycin resistance gene was used as a selective marker for identifying hybrids. Based on the examination of > 645 700 geminated seeds, the result showed low frequencies (0.05-0.79%) of transgene flow from GM to non-GM rice at close spacing, although with significant variation among mixed-planting proportions. It is concluded that rice transgene flow will occur at a very low frequency (< 1.0%), even if the GM rice is planted at close spacing with non-GM rice, and high densities of GM rice cultivated in the neighborhood of non-GM rice will increase the probability of outcrossing with the non-GM rice.  相似文献   

5.
With a continued increase in the range of transgenes, and plantspecies for which genetic modification is possible, this reviewattempts to bring together some of the factors that will influencethe eventual fate of transgenes in the environment, and theeffects that such a dispersal may have. The review is developedfrom papers presented at the SEB Swansea meeting (April, 1994). Using experiments with GM (genetically modified) plants, andmarkers in non-GM plants, as well as observations on naturaland crop populations, it is possible to predict isolation distancesrequired for limiting the unintentional release from GM crops,and the probable fate of both GM pollen and seed if it is releasedbeyond the GM plot. Knowledge of wild relatives of crop plants,and ecological mechanisms can also give insights into the possibleeffects of different transgenes on native plants, and otheragricultural crops. A large number of limited scale releasesof GM plants have now taken place from which we can gain informationon the performance of GM crops in an agricultural environment,and the stability of the GM phenotype. All this information,can help to form a sound basis for regulations on the releaseof GM plants, an assessment of the need for, and scope of monitoring,and the best way in which to use GM crops. Key words: Transgenic releases, genetically-modified plants, molecular ecology, transgene stability  相似文献   

6.
Transgenics from several forest tree species, carrying a number of commercially important recombinant genes, have been produced, and are undergoing confined field trials in a number of countries. However, there are questions and issues regarding stability of transgene expression and transgene dispersal that need to be addressed in long-lived forest trees. Variation in transgene expression is not uncommon in the primary transformants in plants, and is undesirable as it requires screening a large number of transformants in order to select transgenic lines with acceptable levels of transgene expression. Therefore, the current focus of plant transformation is toward fine tuning of transgene expression and stability in the transgenic forest trees. Although a number of studies have reported a relatively stable transgene expression for several target traits, including herbicide resistance, insect resistance, and lignin modification, there was also some unintended transgene instability in the genetically modified (GM) forest trees. Transgene dispersal from GM trees to feral forest populations and their containment remain important biological and regulatory issues facing commercial release of GM trees. Containment of transgenes must be in place to effectively prevent escape of transgenic pollen, seed, and vegetative propagules in economically important GM forest trees before their commercialization. Therefore, it is important to devise innovative technologies in genetic engineering that lead to genetically stable transgenic trees not only for qualitative traits (herbicide resistance, insect resistance), but also for quantitative traits (accelerated growth, increased height, increased wood density), and also prevent escape of transgenes in the forest trees.  相似文献   

7.
A major challenge for future genetically modified (GM) crops is to prevent undesired gene flow of transgenes to plant material intended for another use. Recombinase-mediated auto excision of transgenes directed by a tightly controlled microspore-specific promoter allows efficient removal of either the selectable marker gene or of all introduced transgenes during microsporogenesis. This way, transgene removal becomes an integral part of the biology of pollen maturation, not requiring any external stimulus such as chemical induction by spraying. We here show the feasibility of engineering transgenic plants to produce pollen devoid of any transgene. Highly efficient excision of transgenes from tobacco pollen was achieved with a potential failure rate of at most two out of 16 800 seeds (0.024%). No evidence for either premature activation or absence of activation of the recombinase system was observed under stress conditions in the laboratory. This approach can prevent adventitious presence of transgenes in non-GM crops or related wild species by gene flow. Such biological containment may help the deployment and management of coexistence practices to support consumer choice and will promote clean molecular farming for the production of high-value compounds in plants.  相似文献   

8.
Cao S  He X  Xu W  Luo Y  Yuan Y  Liu P  Cao B  Shi H  Huang K 《IUBMB life》2012,64(3):242-250
Bacillus thuringiensis rice is facing commercialization as the main food source in the near future. The unintended effects of genetically modified (GM) organisms are the most important barriers to their promotion. We aimed to establish a new in vivo evaluation model for genetically modified foods by using metabonomics and bacterial profile approaches. T1c-19 rice flour or its transgenic parent MH63 was used at 70% wt/wt to produce diets that were fed to rats for ~ 90 days. Urine metabolite changes were detected using (1)H NMR. Denaturing gradient gel electrophoresis and real-time polymerase chain reaction (RT-PCR) were used to detect the bacterial profiles between the two groups. The metabonomics was analyzed for metabolite changes in rat urine, when compared with the non-GM rice group, where rats were fed a GM rice diet. Several metabolites correlated with rat age and sex but not with GM rice diet. Significant biological differences were not identified between the GM rice diet and the non-GM rice diet. The bacteria related to rat urine metabolites were also discussed. The results from metabonomics and bacterial profile analyses were comparable with the results attained using the traditional method. Because metabonomics and bacterial profiling offer noninvasive, dynamic approaches for monitoring food safety, they provide a novel process for assessing the safety of GM foods.  相似文献   

9.
Genetic modification using gene transfer (GM) is still controversial when applied to plant breeding at least in Europe. One major concern is how GM affects other genes and thus the metabolism of the plant. In this study, 225 genetically modified lines of the ornamental plant Gerbera hybrida and 42 non-GM gerbera varieties were used to investigate changes in secondary metabolism. The cytotoxicity of GM and non-GM gerbera extracts was evaluated on human cell lines derived from lung, liver, and intestinal tissues. The results indicate that the safety profile for GM gerbera lines is similar to the viability pattern for non-GM varieties-none of the extracts were toxic. In addition, metabolic fingerprints of gerbera extracts were identified using thin-layer chromatography and analysed by principal component analysis (PCA), the nearest neighbour classifier, and Fligner-Killeen test. No new compounds unique to GM lines were observed. With PCA, no separation between GM gerbera lines and varieties could be demonstrated. In the nearest neighbour classifier, 54% of the samples found the expected neighbour based on the gene constructs used for transformation. With Fligner-Killeen test, we studied if the amounts of compounds vary more in GM gerberas than in varieties. In most cases, there were no statistically significant differences between the varieties and GM lines or there was more variation among the non-GM varieties than in the GM lines. The variance of a single compound was significantly larger in transgenic gerbera lines than in varieties and of three compounds in non-GM varieties.  相似文献   

10.
Pons E  Navarro A  Ollitrault P  Peña L 《PloS one》2011,6(10):e25810

Background/Objective

Despite potential benefits granted by genetically modified (GM) fruit trees, their release and commercialization raises concerns about their potential environmental impact, and the transfer via pollen of transgenes to cross-compatible cultivars is deemed to be the greatest source for environmental exposure. Information compiled from field trials on GM trees is essential to propose measures to minimize the transgene dispersal. We have conducted a field trial of seven consecutive years to investigate the maximum frequency of pollen-mediated crop-to-crop transgene flow in a citrus orchard, and its relation to the genetic, phenological and environmental factors involved.

Methodology/Principal Findings

Three different citrus genotypes carrying the uidA (GUS) tracer marker gene (pollen donors) and a non-GM self-incompatible contiguous citrus genotype (recipient) were used in conditions allowing natural entomophilous pollination to occur. The examination of 603 to 2990 seeds per year showed unexpectedly low frequencies (0.17–2.86%) of transgene flow. Paternity analyses of the progeny of subsets of recipient plants using 10 microsatellite (SSR) loci demonstrated a higher mating competence of trees from another non-GM pollen source population that greatly limited the mating chance of the contiguous cross-compatible and flowering-synchronized transgenic pollen source. This mating superiority could be explained by a much higher pollen competition capacity of the non-GM genotypes, as was confirmed through mixed-hand pollinations.

Conclusions/Significance

Pollen competition strongly contributed to transgene confinement. Based on this finding, suitable isolation measures are proposed for the first time to prevent transgene outflow between contiguous plantings of citrus types that may be extendible to other entomophilous transgenic fruit tree species.  相似文献   

11.
The aim was to investigate transgenerational effects of feeding genetically modified (GM) maize expressing a truncated form of Bacillus thuringiensis Cry1Ab protein (Bt maize) to sows and their offspring on maternal and offspring intestinal microbiota. Sows were assigned to either non-GM or GM maize dietary treatments during gestation and lactation. At weaning, offspring were assigned within sow treatment to non-GM or GM maize diets for 115 days, as follows: (i) non-GM maize-fed sow/non-GM maize-fed offspring (non-GM/non-GM), (ii) non-GM maize-fed sow/GM maize-fed offspring (non-GM/GM), (iii) GM maize-fed sow/non-GM maize-fed offspring (GM/non-GM), and (iv) GM maize-fed sow/GM maize-fed offspring (GM/GM). Offspring of GM maize-fed sows had higher counts of fecal total anaerobes and Enterobacteriaceae at days 70 and 100 postweaning, respectively. At day 115 postweaning, GM/non-GM offspring had lower ileal Enterobacteriaceae counts than non-GM/non-GM or GM/GM offspring and lower ileal total anaerobes than pigs on the other treatments. GM maize-fed offspring also had higher ileal total anaerobe counts than non-GM maize-fed offspring, and cecal total anaerobes were lower in non-GM/GM and GM/non-GM offspring than in those from the non-GM/non-GM treatment. The only differences observed for major bacterial phyla using 16S rRNA gene sequencing were that fecal Proteobacteria were less abundant in GM maize-fed sows prior to farrowing and in offspring at weaning, with fecal Firmicutes more abundant in offspring. While other differences occurred, they were not observed consistently in offspring, were mostly encountered for low-abundance, low-frequency bacterial taxa, and were not associated with pathology. Therefore, their biological relevance is questionable. This confirms the lack of adverse effects of GM maize on the intestinal microbiota of pigs, even following transgenerational consumption.  相似文献   

12.
The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF.  相似文献   

13.
Aims Many resistance genes against fungal pathogens show costs of resistance. Genetically modified (GM) plants that differ in only one or a few resistance genes from control plants present ideal systems for measuring these costs in the absence of pathogens.Methods To assess the ecological relevance of costs of pathogen resistance, we grew individual plants of four transgenic spring wheat lines in a field trial with three pathogen levels and varied the genetic diversity of the crop.Important findings We found that two lines with a Pm3b transgene were more resistant to powdery mildew than their sister lines of the variety Bobwhite, whereas lines with chitinase (A9) or chitinase and glucanase (A13) transgenes were not more resistant than their mother variety Frisal. Nevertheless, in the absence of the pathogen, both the GM lines of Bobwhite as well as those of Frisal performed significantly worse than their controls, i.e. Pm3b #1 and Pm3b #2 had 39% or 53% and A9 and A13 had 14% or 23% lower yields. In the presence of the pathogen, all GM lines except Pm3b #2 could increase their yields and other fitness-related traits, reaching the performance levels of the control lines. Line Pm3b #2 seemed to have lost its phenotypic plasticity and had low performance in all environments. This may have been caused by very high transgene expression. No synergistic effects of mixing different GM lines with each other were detected. This might have been due to high transgene expression or the similarity between the lines regarding their resistance genes. We conclude that costs of resistance can be high for transgenic plants with constitutive transgene expression and that this can occur even in cases where the non-transgenic control lines are already relatively resistant, such as in our variety Frisal. Transgenic plants could only compete with conventional varieties in environments with high pathogen pressure. Furthermore, the large variability among the GM lines, which may be due to unpredictable transgene expression, suggests that case-by-case assessments are necessary to evaluate costs of resistance.  相似文献   

14.
15.
Substantial equivalence is a critical concept for biosafety assessment of genetically modified (GM) crops. To investigate substantial equivalence among carotenoid-biofortified GM rice and five conventional rice cultivars having common white (three) and red (two) grain colors, profiles of 52 polar metabolites were analyzed using gas chromatography time-of-flight mass spectrometry. The results were compared to evaluate the differences among GM and non-GM rice cultivars using principal components analysis. The GM rice is more comparable to its non-transgenic counterpart rice variety according to the closer co-separation than for other cultivars tested. This suggests that profiling of unintended polar metabolites could be a useful tool to reveal substantial equivalence of GM rice.  相似文献   

16.
Numerous genetically modified (GM) crops expressing proteins for insect resistance have been commercialized following extensive testing demonstrating that the foods obtained from them are as safe as that obtained from their corresponding non-GM varieties. In this paper, we report the outcome of safety studies conducted on a newly developed insect-resistant GM rice expressing the cry2A* gene by a subchronic oral toxicity study on rats. GM rice and non-GM rice were incorporated into the diet at levels of 30, 50, and 70 % (w/w), No treatment-related adverse or toxic effects were observed based on an examination of the daily clinical signs, body weight, food consumption, hematology, serum biochemistry, and organ weight or based on gross and histopathological examination. These results demonstrate that the GM rice with cry2A* gene is as safe for food as conventional non-GM rice.  相似文献   

17.
Exploitation of molecular profiling techniques for GM food safety assessment   总被引:12,自引:0,他引:12  
Several strategies have been developed to identify unintended alterations in the composition of genetically modified (GM) food crops that may occur as a result of the genetic modification process. These include comparative chemical analysis of single compounds in GM food crops and their conventional non-GM counterparts, and profiling methods such as DNA/RNA microarray technologies, proteomics and metabolite profiling. The potential of profiling methods is obvious, but further exploration of specificity, sensitivity and validation is needed. Moreover, the successful application of profiling techniques to the safety evaluation of GM foods will require linked databases to be built that contain information on variations in profiles associated with differences in developmental stages and environmental conditions.  相似文献   

18.
Rising global populations have amplified food scarcity across the world and ushered in the development of genetically modified (GM) crops to overcome these challenges. Cultivation of major crops such as corn and soy has favoured GM crops over conventional varieties to meet crop production and resilience needs. Modern GM crops containing small interference RNA molecules and antibiotic resistance genes have become increasingly common in the United States. However, the use of these crops remains controversial due to the uncertainty regarding the unintended release of its genetic material into the environment and possible downstream effects on human and environmental health. DNA or RNA transgenes may be exuded from crop tissues during cultivation or released during plant decomposition and adsorbed by soil. This can contribute to the persistence and bioavailability in soil or water environment and possible uptake by soil microbial communities and further passing of this information to neighbouring bacteria, disrupting microbial ecosystem services such as nutrient cycling and soil fertility. In this review, transgene mechanisms of action, uses in crops, and knowledge regarding their environmental fate and impact to microbes are evaluated. This aims to encapsulate the current knowledge and promote further research regarding unintended effects transgenes may cause.  相似文献   

19.
Outcrosses from genetically modified (GM) to conventional crops by pollen-mediated gene flow (PMGF) are a concern when growing GM crops close to non-GM fields. This also applies to the experimental releases of GM plants in field trials. Therefore, biosafety measures such as isolation distances and surveying of PMGF are required by the regulatory authorities in Switzerland. For two and three years, respectively, we monitored crop-to-crop PMGF from GM wheat field trials in two locations in Switzerland. The pollen donors were two GM spring wheat lines with enhanced fungal resistance and a herbicide tolerance as a selection marker. Seeds from the experimental plots were sampled to test the detection method for outcrosses. Two outcrosses were found adjacent to a transgenic plot within the experimental area. For the survey of PMGF, pollen receptor plots of the conventional wheat variety Frisal used for transformation were planted in the border crop and around the experimental field up to a distance of 200 m. Although the environmental conditions were favorable and the donor and receptor plots flowered at the same time, only three outcrosses were found in approximately 185,000 tested seedlings from seeds collected outside the experimental area. All three hybrids were found in the border crop surrounding the experimental area, but none outside the field. We conclude that a pollen barrier (border crop) and an additional isolation distance of 5 m is a sufficient measure to reduce PMGF from a GM wheat field trial to cleistogamous varieties in commercial fields below a level that can be detected.  相似文献   

20.
Kalinina O  Zeller SL  Schmid B 《PloS one》2011,6(11):e28091
Genetically modified (GM) plants offer an ideal model system to study the influence of single genes that confer constitutive resistance to pathogens on the ecological behaviour of plants. We used phytometers to study competitive interactions between GM lines of spring wheat Triticum aestivum carrying such genes and control lines. We hypothesized that competitive performance of GM lines would be reduced due to enhanced transgene expression under pathogen levels typically encountered in the field. The transgenes pm3b from wheat (resistance against powdery mildew Blumeria graminis) or chitinase and glucanase genes from barley (resistance against fungi in general) were introduced with the ubiquitin promoter from maize (pm3b and chitinase genes) or the actin promoter from rice (glucanase gene). Phytometers of 15 transgenic and non-transgenic wheat lines were transplanted as seedlings into plots sown with the same 15 lines as competitive environments and subject to two soil nutrient levels. Pm3b lines had reduced mildew incidence compared with control lines. Chitinase and chitinase/glucanase lines showed the same high resistance to mildew as their control in low-nutrient treatment and slightly lower mildew rates than the control in high-nutrient environment. Pm3b lines were weaker competitors than control lines. This resulted in reduced yield and seed number. The Pm3b line with the highest transgene expression had 53.2% lower yield than the control whereas the Pm3b line which segregated in resistance and had higher mildew rates showed only minor costs under competition. The line expressing both chitinase and glucanase genes also showed reduced yield and seed number under competition compared with its control. Our results suggest that single transgenes conferring constitutive resistance to pathogens can have ecological costs and can weaken plant competitiveness even in the presence of the pathogen. The magnitude of these costs appears related to the degree of expression of the transgenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号