首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments have explored the possible relationships between the flagellar surface motility of chlamydomonas, visualized as translocation of polystyrene beads by paralyzed (pf) mutants (Bloodgood, 1977, J. Cell Biol. 15:983-989), and the capacity of gametic flagella to participate in the mating reaction. While vegetative and gametic flagella bind beads with equal efficiencies and are capable of transporting them along entire flagellar lengths, beads on vegetative flagella are primarily associated with the proximal half of the flagella whereas those of gametic flagella exhibit no such preference. This difference may relate to the "tipping" response of gametes during sexual flagellar agglutination (Goodenough and Jurivich, 1978, J. Cell Biol. 79:680-693). Colchicine, vinblastine, chymotrypsin, cytochalasins B and D, and anti-β-tubulin antiserum are all able to inhibit the binding of beads to the flagellar suface. Trysin digestion and an antiserum directed against whole chlamydomonas flagella have no effect on the ability of flagella to bind beads, but the beads remain immobile. These results suggest that at least two flagellar activities participate in surface motility: (a) bead binding, which may involve a tubulin-like component at the flagellar surface; and (b) bead translocation, which may depend on a second component (e.g. an ATPase) of the flagellar surface. Surface motility is shown to be distinct from gametic adhesiveness per se, but it may participate in concentrating dispersed agglutinins, in driving them toward the flagellar tips, and/or in generating a signal-to-fuse from the flagellar tips to the cell body. Directly supporting these concepts is the observation that bound beads remain immobilized at the flagellar tips during the "tip-locking" stage of pf x pf matings, and the observation that bound ligands such as antibody fail to be tipped by trypsinized flagella.  相似文献   

2.
The swimming pattern of bacteria with single polar flagella has usually been described as "run and reverse". We observed the swimming traces of monotrichously flagellated Vibrio alginolyticus cells and examined the relationship between the swimming pattern and the sense of progress. Swimming in regions other than a solid surface was confirmed to be linear run and reverse. Near a solid surface, the traces consisted of "run and arc"; the cells were found to curve sharply during backward swimming, while they progressed linearly during forward swimming. The "run and arc" swimming pattern may play an important role in the chemotaxis strategy of marine bacteria at solid surfaces.  相似文献   

3.
Mixing associated with "stretch-and-fold" convective flow patterns has recently been demonstrated to play a potentially important role in aerosol transport and deposition deep in the lung (J. P. Butler and A. Tsuda. J. Appl. Physiol. 83: 800-809, 1997), but the origin of this potent mechanism is not well characterized. In this study we hypothesized that even a small degree of asynchrony in otherwise reversible alveolar wall motion is sufficient to cause flow irreversibility and stretch-and-fold convective mixing. We tested this hypothesis using a large-scale acinar model consisting of a T-shaped junction of three short, straight, square ducts. The model was filled with silicone oil, and alveolar wall motion was simulated by pistons in two of the ducts. The pistons were driven to generate a low-Reynolds-number cyclic flow with a small amount of asynchrony in boundary motion adjusted to match the degree of geometric (as distinguished from pressure-volume) hysteresis found in rabbit lungs (H. Miki, J. P. Butler, R. A. Rogers, and J. Lehr. J. Appl. Physiol. 75: 1630-1636, 1993). Tracer dye was introduced into the system, and its motion was monitored. The results showed that even a slight asynchrony in boundary motion leads to flow irreversibility with complicated swirling tracer patterns. Importantly, the kinematic irreversibility resulted in stretching of the tracer with narrowing of the separation between adjacent tracer lines, and when the cycle-by-cycle narrowing of lateral distance reached the slowly growing diffusion distance of the tracer, mixing abruptly took place. This coupling of evolving convective flow patterns with diffusion is the essence of the stretch-and-fold mechanism. We conclude that even a small degree of boundary asynchrony can give rise to stretch-and-fold convective mixing, thereby leading to transport and deposition of fine and ultrafine aerosol particles deep in the lung.  相似文献   

4.
5.
Motile bacteria usually rely on external apparatus like flagella for swimming or pili for twitching. By contrast, gliding bacteria do not rely on obvious surface appendages to move on solid surfaces. Flavobacterium johnsoniae and other bacteria in the Bacteroidetes phylum use adhesins whose movement on the cell surface supports motility. In F. johnsoniae, secretion and helicoidal motion of the main adhesin SprB are intimately linked and depend on the type IX secretion system (T9SS). Both processes necessitate the proton motive force (PMF), which is thought to fuel a molecular motor that comprises the GldL and GldM cytoplasmic membrane proteins. Here, we show that F. johnsoniae gliding motility is powered by the pH gradient component of the PMF. We further delineate the interaction network between the GldLM transmembrane helices (TMHs) and show that conserved glutamate residues in GldL TMH2 are essential for gliding motility, although having distinct roles in SprB secretion and motion. We then demonstrate that the PMF and GldL trigger conformational changes in the GldM periplasmic domain. We finally show that multiple GldLM complexes are distributed in the membrane, suggesting that a network of motors may be present to move SprB along a helical path on the cell surface. Altogether, our results provide evidence that GldL and GldM assemble dynamic membrane channels that use the proton gradient to power both T9SS-dependent secretion of SprB and its motion at the cell surface.

Motile bacteria usually rely on external apparatus like flagella or pili, but gliding bacteria do not rely on obvious surface appendages for their movement. This study shows that bacteria in the phylum Bacteroidetes use proton-dependent motors to power protein secretion and gliding motility.  相似文献   

6.
Certain bacteria, such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), use multiple flagella often concentrated at one end of their bodies to induce locomotion. Each flagellum is formed in a left-handed helix and has a motor at the base that rotates the flagellum in a corkscrew motion.We present a computational model of the flagellar motion and their hydrodynamic interaction. The model is based on the equations of Stokes flow to describe the fluid motion. The elasticity of the flagella is modeled with a network of elastic springs while the motor is represented by a torque at the base of each flagellum. The fluid velocity due to the forces is described by regularized Stokeslets and the velocity due to the torques by the associated regularized rotlets. Their expressions are derived. The model is used to analyze the swimming motion of a single flagellum and of a group of three flagella in close proximity to one another. When all flagellar motors rotate counterclockwise, the hydrodynamic interaction can lead to bundling. We present an analysis of the flow surrounding the flagella. When at least one of the motors changes its direction of rotation, the same initial conditions lead to a tumbling behavior characterized by the separation of the flagella, changes in their orientation, and no net swimming motion. The analysis of the flow provides some intuition for these processes.  相似文献   

7.
The behavior of collections of oceanic bacteria is controlled by metabolic (chemotaxis) and physical (fluid motion) processes. Some sulfur-oxidizing bacteria, such as Thiovulum majus, unite these two processes via a material interface produced by the bacteria and upon which the bacteria are transiently attached. This interface, termed a bacterial veil, is formed by exo-polymeric substances (EPS) produced by the bacteria. By adhering to the veil while continuing to rotate their flagella, the bacteria are able to exert force on the fluid surroundings. This behavior induces a fluid flow that, in turn, causes the bacteria to aggregate leading to the formation of a physical pattern in the veil. These striking patterns are very similar in flavor to the classic convection instability observed when a shallow fluid is heated from below. However, the physics are very different since the flow around the veil is mediated by the bacteria and affects the bacterial densities.  相似文献   

8.
In the blue crab Callinectes sapidus, injection with the bacterial pathogen Vibrio campbellii causes a decrease in oxygen consumption. Histological and physiological evidence suggests that the physical obstruction of hemolymph flow through the gill vasculature, caused by aggregations of bacteria and hemocytes, underlies the decrease in aerobic function associated with bacterial infection. We sought to elucidate the bacterial properties sufficient to induce a decrease in circulating hemocytes (hemocytopenia) as an indicator for the initiation of hemocyte aggregation and subsequent impairment of respiration. Lipopolysaccharide (LPS), the primary component of the gram-negative bacterial cell wall, is known to interact with crustacean hemocytes. Purified LPS was covalently bound to the surfaces of polystyrene beads resembling bacteria in size. Injection of these "LPS beads" caused a decrease in circulating hemocytes comparable to that seen with V. campbellii injection, while beads alone failed to do so. These data suggest that in general, gram-negative bacteria could stimulate hemocytopenia. To test this hypothesis, crabs were injected with different bacteria--seven gram-negative and one gram-positive species--and their effects on circulating hemocytes were assessed. With one exception, all gram-negative strains caused decreases in circulating hemocytes, suggesting an important role for LPS in the induction of this response. However, LPS is not necessary to provoke the immune response given that Bacillus coral, a gram-positive species that lacks LPS, caused a decrease in circulating hemocytes. These results suggest that a wide range of bacteria could impair metabolism in C. sapidus.  相似文献   

9.
The movement of the 2 flagella of Oxyrrhis marina was examined with respect to their individual waveforms and the swimming behavior of the organism. The longitudinal flagella propagated helicoidal waves whose amplitude decreased toward the tip of th flagellum. Their beat frequencies were 50-60 Hz. The transverse flagella beat helicoidally within a furrow. Sudden changes in the direction of the cell trajectories were generated by transient arrests of the longitudinal flagellum beat, which were accompanied by a switch from the backward orientation to a forward one. This sweeping motion generated the rotation of the cell body. Ca2+ ions highly stimulated the frequencies of this arrest response, which compared to the "walking-stick" behavior of sea urchin spermatozoa. Isolated flagella were ATA-reactivated after detergent treatment. They exhibited 2 types of motion within the same experimental conditions. A progressive helicoidal motion was generated upon longitudinal flagellum reactivation, whereas a rolling motion with little progression characterized transverse flagellum reactivation. The differences in motile behavior reflect regulations of flagellar movement which were not destroyed by the isolation procedure and may be indicative of regulation by accessory structures.  相似文献   

10.
Monoclonal antibodies to Pseudomonas putida Paw340 cells were produced. In an enzyme-linked immunosorbent assay (ELISA) against whole bacterial cells, a hybridoma cell line termed MLV1 produced a monoclonal antibody that reacted with P. putida Paw340 but showed no cross-reaction with 100 medical isolates and 150 aquatic isolates. By ELISA, immunogold electron microscopy, and Western blot (immunoblot) analysis, MLV1 antibody was found to react with purified bacterial flagella. The surfaces of magnetic polystyrene beads were coated with MLV1 antibody. By mixing MLV1 antibody-coated beads with lake water samples containing the target P. putida host, bead-cell complexes which could be recovered by attraction towards a magnet were formed. Prevention of nonspecific attachment of cells to the beads required the incorporation of detergents in the isolation protocol. These detergents affected colony-forming ability; however, the cells remained intact for direct detection. When reisolated by standard cultural methods, approximately 20% of the initial target population was recovered. Since the beads and bead-cell complexes were recovered in a magnetic field, target bacteria were separated from other lake water organisms and from particulate material which was not attracted towards the magnet and were thereby enriched. This method may now provide a useful system for recovering recombinant bacteria selectively from environmental samples.  相似文献   

11.
Laser-Induced Heating in Optical Traps   总被引:4,自引:2,他引:2       下载免费PDF全文
In an optical tweezers experiment intense laser light is tightly focused to intensities of MW/cm2 in order to apply forces to submicron particles or to measure mechanical properties of macromolecules. It is important to quantify potentially harmful or misleading heating effects due to the high light intensities in biophysical experiments. We present a model that incorporates the geometry of the experiment in a physically correct manner, including heat generation by light absorption in the neighborhood of the focus, balanced by outward heat flow, and heat sinking by the glass surfaces of the sample chamber. This is in contrast to the earlier simple models assuming heat generation in the trapped particle only. We find that in the most common experimental circumstances, using micron-sized polystyrene or silica beads, absorption of the laser light in the solvent around the trapped particle, not in the particle itself, is the most important contribution to heating. To validate our model we measured the spectrum of the Brownian motion of trapped beads in water and in glycerol as a function of the trapping laser intensity. Heating both increases the thermal motion of the bead and decreases the viscosity of the medium. We measured that the temperature in the focus increased by 34.2 ± 0.1 K/W with 1064-nm laser light for 2200-nm-diameter polystyrene beads in glycerol, 43.8 ± 2.2 K/W for 840-nm polystyrene beads in glycerol, 41.1 ± 0.7 K/W for 502-nm polystyrene beads in glycerol, and 7.7 ± 1.2 K/W for 500-nm silica beads and 8.1 ± 2.1 K/W for 444-nm silica beads in water. Furthermore, we observed that in glycerol the heating effect increased when the bead was trapped further away from the cover glass/glycerol interface as predicted by the model. We show that even though the heating effect in water is rather small it can have non-negligible effects on trap calibration in typical biophysical experimental circumstances and should be taken into consideration when laser powers of more than 100 mW are used.  相似文献   

12.
Mouse monoclonal anti-Fas (CD95) antibody clone CH-11 has been widely used in research on apoptosis. CH-11 has the ability to bind to Fas protein on cell surface and induce apoptosis. Here, we used polystyrene beads coated with CH-11 to investigate the role of lipid rafts in Fas-mediated apoptosis in SKW6.4 cells. Unexpectedly, by treatment of the cells with CH-11-coated beads Fas protein was detached from cell surface and transferred to the surface of CH-11-coated beads. Western blot analysis showed that Fas protein containing both extracellular and intracellular domains was attached to the beads. Fas protein was not transferred from the cells to the surface of the beads coated with other anti-Fas antibodies or Fas ligand. Similar phenomenon was observed in Jurkat T cells. Furthermore, CH-11-induced apoptosis was suppressed by pretreatment with CH-11-coated beads in Jurkat cells. These results suggest that CH-11 might possess distinct properties on Fas protein compared with other anti-Fas antibodies or Fas ligand, and also suggest that caution should be needed to use polystyrene beads coated with antibodies such as CH-11.Key words: Fas, CD95, CH-11, apoptosis, Fas ligand, polystyrene beads.  相似文献   

13.
Serratia marcescens exists in two cell forms and displays two kinds of motility depending on the type of growth surface encountered (L. Alberti and R. M. Harshey, J. Bacteriol. 172:4322-4328, 1990). In liquid medium, the bacteria are short rods with few flagella and show classical swimming behavior. Upon growth on a solid surface (0.7 to 0.85% agar), they differentiate into elongated, multinucleate, copiously flagellated forms that swarm over the agar surface. The flagella of swimmer and swarmer cells are composed of the same flagellin protein. We show in this study that disruption of hag, the gene encoding flagellin, abolishes both swimming and swarming motility. We have used transposon mini-Mu lac kan to isolate mutants of S. marcescens defective in both kinds of motility. Of the 155 mutants obtained, all Fla- mutants (lacking flagella) and Mot- mutants (paralyzed flagella) were defective for both swimming and swarming, as expected. All Che- mutants (chemotaxis defective) were also defective for swarming, suggesting that an intact chemotaxis system is essential for swarming. About one-third of the mutants were specifically affected only in swarming. Of this class, a large majority showed active "swarming motility" when viewed through the microscope (analogous to the active "swimming motility" of Che- mutants) but failed to show significant movement away from the site of initial inoculation on a macroscopic scale. These results suggest that bacteria swarming on a solid surface require many genes in addition to those required for chemotaxis and flagellar function, which extend the swarming movement outward. We also show in this study that nonflagellate S. marcescens is capable of spreading rapidly on low-agar media.  相似文献   

14.
A microfluidic device in polydimethylsiloxane (PDMS) consisting of an eight lines micro-injection array integrated in a base flow channel has been realized. The device is assembled from multiple PDMS parts, which have been moulded using notably micromachined masters in SU-8 photoresist. In contact with a planar substrate, up to eight independent laminar flow lines with cross-sections of 100 x 200 microm(2) can be generated. Dedicated for the application of pharmaceutical compounds to electrogenic cells in vitro, this device was tested with a neuronal cell line, Mz1-cells. These were cultured on lines of laminin deposited onto polystyrene substrates by microcontact printing. We were able to inject into this culture multiple lines of coloured PBS in parallel to the orientation of cellular growth. No mixing between the individual flow lines did occur.  相似文献   

15.
Pseudomonas aeruginosa, an important opportunistic pathogen of man, exploits numerous factors for initial attachment to the host, an event required to establish bacterial infection. In this paper, we rigorously explore the role of two major bacterial adhesins, type IV pili (Tfp) and flagella, in bacterial adherence to distinct host receptors at the apical (AP) and basolateral (BL) surfaces of polarized lung epithelial cells and induction of subsequent host signaling and pathogenic events. Using an isogenic mutant of P. aeruginosa that lacks flagella or utilizing beads coated with purified Tfp, we establish that Tfp are necessary and sufficient for maximal binding to host N-glycans at the AP surface of polarized epithelium. In contrast, experiments utilizing a P. aeruginosa isogenic mutant that lacks Tfp or using beads coated with purified flagella demonstrate that flagella are necessary and sufficient for maximal binding to heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPGs) at the BL surface of polarized epithelium. Using two different cell-free systems, we demonstrate that Tfp-coated beads show highest binding affinity to complex N-glycan chains coated onto plastic plates and preferentially aggregate with beads coated with N-glycans, but not with single sugars or HS. In contrast, flagella-coated beads bind to or aggregate preferentially with HS or HSPGs, but demonstrate little binding to N-glycans. We further show that Tfp-mediated binding to host N-glycans results in activation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway and bacterial entry at the AP surface. At the BL surface, flagella-mediated binding to HS activates the epidermal growth factor receptor (EGFR), adaptor protein Shc, and PI3K/Akt, and induces bacterial entry. Remarkably, flagella-coated beads alone can activate EGFR and Shc. Together, this work provides new insights into the intricate interactions between P. aeruginosa and lung epithelium that may be potentially useful in the development of novel treatments for P. aeruginosa infections.  相似文献   

16.
The flagellate Caduceia versatilis in the gut of the termite Cryptotermes cavifrons reportedly propels itself not by its own flagella but solely by the flagella of ectosymbiotic bacteria. Previous microscopic observations have revealed that the motility symbionts are flagellated rods partially embedded in the host cell surface and that, together with a fusiform type of ectosymbiotic bacteria without flagella, they cover almost the entire surface. To identify these ectosymbionts, we conducted 16S rRNA clone analyses of bacteria physically associated with the Caduceia cells. Two phylotypes were found to predominate in the clone library and were phylogenetically affiliated with the "Synergistes" phylum and the order Bacteroidales in the Bacteroidetes phylum. Probes specifically targeting 16S rRNAs of the respective phylotypes were designed, and fluorescence in situ hybridization (FISH) was performed. As a result, the "Synergistes" phylotype was identified as the motility symbiont; the Bacteroidales phylotype was the fusiform ectobiont. The "Synergistes" phylotype was a member of a cluster comprising exclusively uncultured clones from the guts of various termite species. Interestingly, four other phylotypes in this cluster, including the one sharing 95% sequence identity with the motility symbiont, were identified as nonectosymbiotic, or free-living, gut bacteria by FISH. We thus suggest that the motility ectosymbiont has evolved from a free-living gut bacterium within this termite-specific cluster. Based on these molecular and previous morphological data, we here propose a novel genus and species, "Candidatus Tammella caduceiae," for this unique motility ectosymbiont of Caducaia versatilis.  相似文献   

17.
A parallel-plate flow chamber was used to measure the attachment and detachment rates of Escherichia coli to a glass surface at various fluid velocities. The effect of flagella on adhesion was investigated by performing experiments with several E. coli strains: AW405 (motile); HCB136 (nonmotile mutant with paralyzed flagella); and HCB137 (nonmotile mutant without flagella). We compared the total attachment rates and the fraction of bacteria retained on the surface to determine how the presence and movement of the flagella influence transport to the surface and adhesion strength in this dynamic system. At the lower fluid velocities, there was no significant difference in the total attachment rates for the three bacterial strains; nonmotile strains settled at a rate that was of the same order of magnitude as the diffusion rate of the motile strain. At the highest fluid velocity, the effect of settling was minimized to better illustrate the importance of motility, and the attachment rates of both nonmotile strains were approximately five times slower than that of the motile bacteria. Thus, different processes controlled the attachment rate depending on the parameter regime in which the experiment was performed. The fractions of motile bacteria retained on the glass surface increased with increasing velocity, whereas the opposite trend was found for the nonmotile strains. This suggests that the rotation of the flagella enables cells to detach from the surface (at the lower fluid velocities) and strengthens adhesion (at higher fluid velocities), whereas nonmotile cells detach as a result of shear. There was no significant difference in the initial attachment rates of the two nonmotile species, which suggests that merely the presence of flagella was not important in this stage of biofilm development.  相似文献   

18.
We have found that early in infection of the intracellular pathogen Listeria monocytogenes in Madin-Darby canine kidney epithelial cells expressing actin conjugated to green fluorescent protein, F-actin rapidly assembles (approximately 25 s) and disassembles (approximately 30 s) around the bacteria, a phenomenon we call flashing. L. monocytogenes strains unable to perform actin-based motility or unable to escape the phagosome were capable of flashing, suggesting that the actin assembly occurs on the phagosome membrane. Cycles of actin assembly and disassembly could occur repeatedly on the same phagosome. Indirect immunofluorescence showed that most bacteria were fully internalized when flashing occurred, suggesting that actin flashing does not represent phagocytosis. Escherichia coli expressing invA, a gene product from Yersinia pseudotuberculosis that mediates cellular invasion, also induced flashing. Furthermore, polystyrene beads coated with E-cadherin or transferrin also induced flashing after internalization. This suggests that flashing occurs downstream of several distinct molecular entry mechanisms and may be a general consequence of internalization of large objects by epithelial cells.  相似文献   

19.
BACKGROUND: We previously reported a new optical configuration, in which both the side scatter and the fluorescence are collected using the index-guided, total internal reflection of a flow stream in air (the flow-stream waveguide). METHODS: Using a mixture of 0.202-microm and 0.093-microm diameter polystyrene beads, we have characterized the side scatter (SSC) sensitivity of a custom-built flow cytometer (miniFlo) which incorporates a flow-stream waveguide. RESULTS: The SSC-triggered SSC signal of 0.093-microm polystyrene beads in water was almost baseline resolved from the background. We also measured the SSC-triggered SSC signal of the same beads in water on our FACScan, which is a commercial unit with the conventional optical arrangement that uses a custom imaging objective to collect light from a sheath flow cuvette in perpendicular direction-the signal from 0.093-microm beads was not resolved from the background. CONCLUSIONS: The SSC sensitivity of miniFlo is one of the best reported in the literature. Cytometry 37:160-163, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

20.
R. A. Bloodgood 《Protoplasma》1981,106(3-4):183-192
Summary Flagella are generally recognized as organelles of motility responsible for the ability ofChlamydomonas to swim through its environment. However, the same flagella are also responsible for an alternative form of whole cell locomotion, termed gliding. Use of paralyzed flagella mutants demonstrates that gliding is independent of axonemal bend propagation. Gliding motility results from an interaction of the flagellar surface with a solid substrate. Gliding is characterized by bidirectional movements at 1.6±0.3 m/second and occurs when the cell is in a characteristic gliding configuration, where the two flagella are oriented at 180° to one another. A variety of observations suggest that the leading flagellum is responsible for the force transduction resulting in cell locomotion, although both flagella have the capacity to function as the active flagellum. The characteristics of gliding motility have been compared with theChlamydomonas flagellar surface motility phenomenon defined as surface translocation of polystyrene microspheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号