首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Du J  Xiao K  Huang Y  Li H  Tan H  Cao L  Lu Y  Zhou S 《Antonie van Leeuwenhoek》2011,100(3):317-331
This study was conducted to characterize the diversity of microbial communities in marine sediments of the South China Sea by means of 16S rRNA gene clone libraries. The results revealed that the sediment samples collected in summer harboured a more diverse microbial community than that collected in winter, Deltaproteobacteria dominated 16S rRNA gene clone libraries from both seasons, followed by Gammaproteobacteria, Acidobacteria, Nitrospirae, Planctomycetes, Firmicutes. Archaea phylotypes were also found. The majority of clone sequences shared greatest similarity to uncultured organisms, mainly from hydrothermal sediments and cold seep sediments. In addition, the sedimentary microbial communities in the coastal sea appears to be much more diverse than that of the open sea. A spatial pattern in the sediment samples was observed that the sediment samples collected from the coastal sea and the open sea clustered separately, a novel microbial community dominated the open sea. The data indicate that changes in environmental conditions are accompanied by significant variations in diversity of microbial communities at the South China Sea.  相似文献   

2.
We investigated the phylogenetic diversity and metabolic capabilities of members of the phylum Planctomycetes in the anaerobic, sulfide-saturated sediments of a mesophilic spring (Zodletone Spring) in southwestern Oklahoma. Culture-independent analyses of 16S rRNA gene sequences generated using Planctomycetes-biased primer pairs suggested that an extremely diverse community of Planctomycetes is present at the spring. Although sequences that are phylogenetically affiliated with cultured heterotrophic Planctomycetes were identified, the majority of the sequences belonged to several globally distributed, as-yet-uncultured Planctomycetes lineages. Using complex organic media (aqueous extracts of the spring sediments and rumen fluid), we isolated two novel strains that belonged to the Pirellula-Rhodopirellula-Blastopirellula clade within the Planctomycetes. The two strains had identical 16S rRNA gene sequences, and their closest relatives were isolates from Kiel Fjord (Germany), Keauhou Beach (HI), a marine aquarium, and tissues of marine organisms (Aplysina sp. sponges and postlarvae of the giant tiger prawn Penaeus monodon). The closest recognized cultured relative of strain Zi62 was Blastopirellula marina (93.9% sequence similarity). Detailed characterization of strain Zi62 revealed its ability to reduce elemental sulfur to sulfide under anaerobic conditions, as well as its ability to produce acids from sugars; both characteristics may potentially allow strain Zi62 to survive and grow in the anaerobic, sulfide- and sulfur-rich environment at the spring source. Overall, this work indicates that anaerobic metabolic abilities are widely distributed among all major Planctomycetes lineages and suggests carbohydrate fermentation and sulfur reduction as possible mechanisms employed by heterotrophic Planctomycetes for growth and survival under anaerobic conditions.  相似文献   

3.
Phylogenetic diversity of sediment bacteria in the northern Bering Sea   总被引:2,自引:0,他引:2  
The bacterial diversity in sediments from the northern Bering Sea was investigated by culture-independent approaches. Community fingerprint analysis by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that sediment at two deep stations (DBSE and DBS1, >400 m in depth) harbored a bacterial community distinct from the sediments collected at shallow stations (<150 m in depth) on the continental shelf. Three 16S rRNA gene clone libraries for sediments collected from shallow to deep water stations (NEC5, DBSE and DBS1, respectively) were established. Sediment collected at the deepest station DBS1 showed the highest diversity index value. Sequences fell into 19 major lineages of the domain Bacteria: Alpha-, Beta-, Gamma-, Delta- and Epsilonproteobacteria, Bacteroidetes, Acidobacteria, Actinobacteria, Firmicutes, Planctomycetes, Nitrospirae, Verrucomicrobia, Chloroflexi, Chlorobi, Spirochaetes, Cyanobacteria (or chloroplasts), and candidate divisions OP8, TM6, and WS3. A small fraction of retrieved sequences (1.8%) did not fall into any taxonomic division. Deltaproteobacteria (30%) was the dominant phylum in the three libraries, followed by Gammaproteobacteria (21%) and Acidobacteria (16%). The percentages of cloned sequences with the highest similarity to reported sequences below 97 and 93% were 48.1 and 24.3%, respectively. A large number of phylotypes affiliated with bacteria that play important roles in the carbon, sulfur, and nitrogen cycles suggest an important link of bacteria to the matter cycling in these subarctic sediments.  相似文献   

4.
Bacteria in the order ‘Candidatus Brocadiales’ within the phylum Planctomycetes (Planctomycetota) have the remarkable ability to perform anaerobic ammonium oxidation (anammox). Two families of anammox bacteria with different biogeographical distributions have been reported, marine Ca. Scalinduaceae and freshwater Ca. Brocadiaceae. Here we report evidence of three new species within a novel genus and family of anammox bacteria, which were discovered in biofilms of a subsea road tunnel under a fjord in Norway. In this particular ecosystem, the nitrogen cycle is likely fuelled by ammonia from organic matter degradation in the fjord sediments and the rock mass above the tunnel, resulting in the growth of biofilms where anammox bacteria can thrive under oxygen limitation. We resolved several metagenome-assembled genomes (MAGs) of anammox bacteria, including three Ca. Brocadiales MAGs that could not be classified at the family level. MAGs of this novel family had all the diagnostic genes for a full anaerobic ammonium oxidation pathway in which nitrite was probably reduced by a NirK-like reductase. A survey of published molecular data indicated that this new family of anammox bacteria occurs in many marine sediments, where its members presumably would contribute to nitrogen loss.  相似文献   

5.
The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat‐forming bacteria. In this study we explored the diversity, abundance and activity of sulfur‐oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40–70% of all 14CO2‐incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur‐oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS‐Gam209 group) were abundant, reaching up to 1.3 × 108 cells ml?1 (4.6% of all cells). Approximately 25% of this population incorporated CO2, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed.  相似文献   

6.
The community structure and diversity of anaerobic ammonium oxidation (anammox) bacteria in the surface sediments of equatorial Pacific were investigated by phylogenic analysis of 16S rRNA and hydrazine oxidoreductase (hzo) genes and PCoA (principal coordinates analysis) statistical analysis. Results indicated that 16S rRNA and hzo sequences in the P2 (off the center of western Pacific warm pool) and P3 (in the eastern equatorial Pacific) sites all belong to the Candidatus “Scalindua”, the dominate anammox bacteria in the low-temperature marine environment proved by previous studies. However, in the P1 site (in center of warm pool of western Pacific), large part of 16S rRNA gene sequences formed a separated cluster. Meanwhile, hzo gene sequences from P1 sediment also grouped into a single cluster. PCoA analysis demonstrated that the anammox community structure in the P1 has significant geographical distributional difference from that of P2, P3, and other marine environments based on 16S rRNA and hzo genes. The abundances of anammox bacteria in surface sediments of equatorial Pacific were quantified by q-PCR analysis of hzo genes, which ranged from 3.98 × 103 to 1.17 × 104 copies g−1 dry sediments. These results suggested that a special anammox bacteria phylotypes exist in the surface sediment of the western Pacific warm pool, which adapted to the specific habitat and maybe involved in the nitrogen loss process from the fixed inventory in the habitat.  相似文献   

7.
The efficiency of a novel integrated treatment system for biological removal of ammonium, nitrite, nitrate, and heavy metals from fossil power plant effluent was evaluated. Microbial communities were analyzed using bacterial and archaeal 16S rRNA gene clone libraries (Sanger sequences) and 454 pyrosequencing technology. While seasonal changes in microbial community composition were observed, the significant (P?=?0.001) changes in bacterial and archaeal communities were consistent with variations in ammonium concentration. Phylogenetic analysis of 16S rRNA gene sequences revealed an increase of potential ammonium-oxidizing bacteria (AOB), Nitrosomonas, Nitrosococcus, Planctomycetes, and OD1, in samples with elevated ammonium concentration. Other bacteria, such as Nitrospira, Nitrococcus, Nitrobacter, Thiobacillus, ε-Proteobacteria, Firmicutes, and Acidobacteria, which play roles in nitrification and denitrification, were also detected. The AOB oxidized 56 % of the ammonium with the concomitant increase in nitrite and ultimately nitrate in the trickling filters at the beginning of the treatment system. Thermoprotei within the phylum Crenarchaeota thrived in the splitter box and especially in zero-valent iron extraction trenches, where an additional 25 % of the ammonium was removed. The potential ammonium-oxidizing Archaea (AOA) (Candidatus Nitrosocaldus) were detected towards the downstream end of the treatment system. The design of an integrated treatment system consisting of trickling filters, zero-valent iron reaction cells, settling pond, and anaerobic wetlands was efficient for the biological removal of ammonium and several other contaminants from wastewater generated at a coal burning power plant equipped with selective catalytic reducers for nitrogen oxide removal.  相似文献   

8.
9.
We identified 16S rRNA gene sequences in sediment samples from Ago Bay in Japan, forming a new branch of the anammox group or closely related to anaerobic ammonium oxidizing (anammox) bacterial sequences. Anammox activity in the sediment samples was detected by 15N tracer assays. These results, along with the results of fluorescence in situ hybridization (FISH) analysis, suggest the presence of anammox bacteria in the marine sediments.  相似文献   

10.
The microeukaryotic community in Zodletone Spring, a predominantly anaerobic sulfide and sulfur-rich spring, was examined using an 18S rRNA gene cloning and sequencing approach. The majority of the 288 clones sequenced from three different locations at Zodletone Spring belonged to the Stramenopiles, Alveolata, and Fungi, with members of the phylum Cercozoa, order Diplomonadida, and family Jakobidae representing a minor fraction of the clone library. No sequences suggesting the presence of novel kingdom level diversity were detected in any of the three libraries. A large fraction of stramenopile clones encountered were monophyletic with either members of the genus Cafeteria (order Bicosoecida) or members of the order Labyrinthulida (slime nets), both of which have so far been encountered mainly in marine habitats. The majority of the observed fungal clone sequences belonged to the ascomycetous yeasts (order Saccharomycetales), were closely related to yeast genera within the Hymenobasidiomycetes (phylum Basidiomycetes), or formed a novel fungal lineage with several previously published or database-deposited clones. To determine whether the unexpected abundance of fungal sequences in Zodletone Spring clone libraries represents a general pattern in anaerobic habitats, we generated three clone libraries from three different anaerobic settings (anaerobic sewage digester, pond sediment, and hydrocarbon-exposed aquifer sediments) and partially sequenced 210 of these clones. Phylogenetic analysis indicated that clone sequences belonging to the kingdom Fungi represent a significant fraction of all three clone libraries, an observation confirmed by phospholipid fatty acid and ergosterol analysis. Overall, this work reveals an unexpected abundance of Fungi in anaerobic habitats, describes a novel, yet-uncultured group of Fungi that appears to be widespread in anaerobic habitats, and indicates that several of the previously considered marine protists could also occur in nonmarine habitats.  相似文献   

11.
Prokaryotes in marine sediments taken from two neighboring semienclosed bays (the Yamada and Kamaishi bays) at the Sanriku coast in Japan were investigated by the culture-independent molecular phylogenetic approach coupled with chemical and activity analyses. These two bays were chosen in terms of their similar hydrogeological and chemical characteristics but different usage modes; the Yamada bay has been used for intensive shellfish aquaculture, while the Kamaishi bay has a commercial port and is not used for aquaculture. Substantial differences were found in the phylogenetic composition of 16S rRNA gene clone libraries constructed for the Yamada and Kamaishi sediments. In the Yamada library, phylotypes affiliated with δ-Proteobacteria were the most abundant, and those affiliated with γ-Proteobacteria were the second-most abundant. In contrast, the Kamaishi library was occupied by phylotypes affiliated with Planctomycetes, γ-Proteobacteria, δ-Proteobacteria, and Crenarchaeota. In the γ-Proteobacteria, many Yamada phylotypes were related to free-living and symbiotic sulfur oxidizers, whereas the Kamaishi phylotype was related to the genus Pseudomonas. These results allowed us to hypothesize that sulfate-reducing and sulfur-oxidizing bacteria have become abundant in the Yamada sediment. This hypothesis was supported by quantitative competitive PCR (qcPCR) with group-specific primers. The qcPCR also suggested that organisms closely related to Desulfotalea in the Desulfobulbaceae were the major sulfate-reducing bacteria in these sediments. In addition, potential sulfate reduction and sulfur oxidation rates in the sediment samples were determined, indicating that the sulfur cycle has become active in the Yamada sediment beneath the areas of intensive shellfish aquaculture.  相似文献   

12.
Bacterial and archaeal community structures and diversity of three different sedimentary environments (BH1A, BH2A and BH3A) in the acid pit lake of a chalcopyrite mine at Touro (Spain) were determined by 16S rRNA gene PCR-DGGE and sequencing of clone libraries. DGGE of bacterial and archaeal amplicons showed that the sediments harbor different communities. Bacterial 16S rRNA gene sequences were assigned to Acidobacteria, Actinobacteria, Cyanobacteria, Planctomycetes, Proteobacteria, Chloroflexi and uncultured bacteria, after clustering into 42 operational taxonomic units (OTUs). OTU 2 represented approximately 37, 42 and 37 % of all sequences from sediments BH1A, BH2A and BH3A, respectively, and was phylogenetically related to uncultured Chloroflexi. Remaining OTUs were phylogenetically related to heterotrophic bacteria, including representatives of Ferrithrix and Acidobacterium genera. Archaeal 16S rRNA gene sequences were clustered into 54 OTUs. Most of the sequences from the BH1A sediment were assigned to Euryarchaeota, whereas those from BH2A sediment were assigned to Crenarchaeota. The majority of the sequences from BH3A sediment were assigned to unclassified Archaea, and showed similarities to uncultured and unclassified environmental clones. No sequences related to Acidithiobacillus and Leptospirillum, commonly associated with acid mine drainage, were detected in this study.  相似文献   

13.
Availability of fixed nitrogen is a pivotal driver on primary productivity in the oceans, thus the identification of key processes triggering nitrogen losses from these ecosystems is of major importance as they affect ecosystems function and consequently global biogeochemical cycles. Denitrification and anaerobic ammonium oxidation coupled to nitrite reduction (Anammox) are the only identified marine sinks for fixed nitrogen. The present study provides evidence indicating that anaerobic ammonium oxidation coupled to the reduction of sulfate, the most abundant electron acceptor present in the oceans, prevails in marine sediments. Tracer analysis with 15N-ammonium revealed that this microbial process, here introduced as Sulfammox, accounts for up to 5 μg 15N2 produced g?1 day?1 in sediments collected from the eastern tropical North Pacific coast. Raman and X-ray diffraction spectroscopies revealed that elemental sulfur and sphalerite (ZnFeS) were produced, besides free sulfide, during the course of Sulfammox. Anaerobic ammonium oxidation linked to Fe(III) reduction (Feammox) was also observed in the same marine sediments accounting for up to 2 μg 15N2 produced g?1 day?1. Taxonomic characterization, based on 16S rRNA gene sequencing, of marine sediments performing the Sulfammox and Feammox processes revealed the microbial members potentially involved. These novel nitrogen sinks may significantly fuel nitrogen loss in marine environments. These findings suggest that the interconnections among the oceanic biogeochemical cycles of N, S and Fe are much more complex than previously considered.  相似文献   

14.
Bacterial communities in sediments of the shallow Lake Dongping in China   总被引:2,自引:0,他引:2  
Aims: The purpose of this study was to discuss how the environmental inputs and anthropogenic activities impact bacterial communities in the sediments of a shallow, eutrophic and temperate freshwater lake. Methods and Results: Sediment cores were collected from Lake Dongping, located in Taian, Shandong, China. All samples were processed within 4 h of collection. Total nitrogen, total phosphorus (TP), total organic carbon, ammonium nitrogen and nitrate nitrogen content of samples were measured by Kjeldahl determination, sulphuric acid–perchloric acid digestion and molybdenum blue colorimetry, potassium dichromate titration, Nessler’s reagent colorimetric and the phenol disulphonic acid colorimetric method, respectively. Seasonal and temporal diversity of sediment bacterial communities at six stations in Lake Dongping were investigated using molecular approaches (terminal restriction fragment length polymorphism and 16S rDNA clone libraries). Noticeable seasonal and temporal variations were observed in bacterial diversity and composition at all six stations. Sediment bacterial communities in Lake Dongping belonged to 16 phyla: Proteobacteria (including α‐Proteobacteria, β‐Proteobacteria, δ‐Proteobacteria, ε‐Proteobacteria, γ‐Proteobacteria), Acidobacteria, Planctomycetes, Bacteroidetes, Firmicutes, Verrucomicrobia, Nitrospira, Chloroflexi, Gemmatimonadetes, Chlorobi, Cyanobacteria, Deferribacteres, Actinobacteria, OP8, Spirochaetes and OP11. Members of β‐, δ‐ and γ‐Proteobacterial sequences were predominant in 11 of 12 clone libraries derived from sediment samples. Sediment samples collected at stations 1 and 4 in July had the greatest bacterial diversity while those collected at station 2 in October had the least diversity. TP concentration was significantly correlated with the distribution of bacterial communities. Conclusions: Our results suggested that different environmental nutrient inputs contribute to seasonal and temporal variations of chemical features and bacterial communities in sediments of Lake Dongping. TP concentration was significantly correlated with the distribution of bacterial communities. Significance and Impact of the Study: This study has an important implication for the optimization of integrated ecosystem assessment of shallow temperate freshwater lake and provides interesting information for the subsequent of the ecosystem.  相似文献   

15.
Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered new microbial process performed by the Candidatus Methylomirabilis oxyfera with an unusual intra-aerobic pathway, but there is no report about n-damo bacteria in marine environments. M. oxyfera-like sequences were successfully retrieved for the first time from both surface and subsurface ocean sediments of the South China Sea (SCS) using both 16S rRNA and pmoA genes as biomarkers and PCR amplification in this study. The majority of M. oxyfera-like 16S rRNA gene-based PCR amplified sequences from the SCS sediments formed a new group distinctively different from those detected in freshwater habitats and the information is consistent phylogenetically with those obtained from the pmoA gene. This study showed the existence of n-damo in ocean sediments and suggests that marine sediments harbor n-damo phylotypes different from those in the freshwater. This finding here expands our understanding on the distribution of n-damo bacteria to marine ecosystem and implies their potential contribution to the marine C and N cycling.  相似文献   

16.
Although the deep-sea sediments harbor diverse and novel bacteria with important ecological and environmental functions, a comprehensive view of their community characteristics is still lacking, considering the vast area and volume of the deep-sea sedimentary environments. Sediment bacteria vertical distribution and community structure were studied of the E272 site in the East Pacific Ocean with the molecular methods of 16S rRNA gene T-RFLP (terminal restriction fragment length polymorphism) and clone library analyses. Layered distribution of the bacterial assemblages was detected by both methods, indicating that the shallow sediments (40 cm in depth) harbored a diverse and distinct bacterial composition with fine-scale spatial heterogeneity. Substantial bacterial diversity was detected and nine major bacterial lineages were obtained, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Nitrospirae, Planctomycetes, Proteobacteria, and the candidate divisions OP8 and TM6. Three subdivisions of the Proteobacteria presented in our libraries, including the α-, γ- and δ-Proteobacteria. Most of our sequences have low similarity with known bacterial 16S rRNA genes, indicating that these sequences may represent as-yet-uncultivated novel bacteria. Most of our sequences were related to the GenBank nearest neighboring sequences retrieved from marine sediments, especially from deep-sea methane seep, gas hydrate or mud volcano environments. Several sequences were related to the sequences recovered from the deep-sea hydrothermal vent or basalt glasses-bearing sediments, indicating that our deep-sea sampling site might be influenced to certain degree by the nearby hydrothermal field of the East Pacific Rise at 13°N. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Planktonic sulfur oxidizers are important constituents of ecosystems in stratified water bodies, and contribute to sulfide detoxification. In contrast to marine environments, taxonomic identities of major planktonic sulfur oxidizers in freshwater lakes still remain largely unknown. Bacterioplankton community structure was analyzed in a stratified freshwater lake, Lake Mizugaki in Japan. In the clone libraries of 16S rRNA gene, clones very closely related to a sulfur oxidizer isolated from this lake, Sulfuritalea hydrogenivorans, were detected in deep anoxic water, and occupied up to 12.5% in each library of different water depth. Assemblages of planktonic sulfur oxidizers were specifically analyzed by constructing clone libraries of genes involved in sulfur oxidation, aprA, dsrA, soxB and sqr. In the libraries, clones related to betaproteobacteria were detected with high frequencies, including the close relatives of Sulfuritalea hydrogenivorans.  相似文献   

18.
Abyssal marine sediments cover a large proportion of the ocean floor, but linkages between their microbial community structure and redox stratification have remained poorly constrained. This study compares the downcore gradients in microbial community composition to porewater oxygen and nitrate concentration profiles in an abyssal marine sediment column in the South Pacific Ocean. Archaeal 16S rRNA clone libraries showed a stratified archaeal community that changed from Marine Group I Archaea in the aerobic and nitrate-reducing upper sediment column towards deeply branching, uncultured crenarchaeotal and euryarchaeotal lineages in nitrate-depleted, anaerobic sediment horizons. Bacterial 16S rRNA clone libraries revealed a similar shift on the phylum and subphylum level within the bacteria, from a complex community of Alpha-, Gamma- and Deltaproteobacteria, Actinobacteria and Gemmatimonadetes in oxic surface sediments towards uncultured Chloroflexi and Planctomycetes in the anaerobic sediment column. The distinct stratification of largely uncultured bacterial and archaeal groups within the oxic and nitrate-reducing marine sediment column provides initial constraints for their microbial habitat preferences.  相似文献   

19.
20.
Microbial communities in ancient marine sediments composed of clay and silt obtained from the terrestrial subsurface were phylogenetically analyzed based on their 16S rRNA gene sequences. Chloroflexi and Miscellaneous Crenarchaeotic Group were predominant in bacterial and archaeal clone libraries, respectively. Of 44 operational taxonomic units (OTUs) that had close relatives in the database, 30 were close to sequences obtained from marine environments. Some sequences belonged to the candidate groups JS1, ANME-I, and Marine Benthic Group-C, which are typically found in marine sediments. Low chloride concentrations in the sediments suggest that these marine-affiliated sequences may not reflect currently active microbial communities. Our results indicate the existence of long-term preserved DNA or descendants of ancient oceanic microbial components in subsurface muddy sediments in a temperate region, which may reflect indigenous population of paleoenvironments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号