首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J. Easton  M. Gophen 《Hydrobiologia》2003,491(1-3):91-100
Diel vertical migration (DVM) behaviour is a predator avoidance mechanism observed within many zooplankton species in the presence of zooplanktivorous fish. A 24-h survey was carried out in June 1998 to investigate diel variation in the vertical distribution of fish, zooplankton and phytoplankton (chlorophyll) in Lake Kinneret, Israel. Fish revealed diel variation in vertical distribution but had no spatial overlap with zooplankton, and consequently no apparent influence on zooplankton dispersal. Zooplankton revealed some diel variation in distribution being affected by thermocline and oxycline position and movement of the internal the internal seiche wave. Cyclopoid species closely follow the movement of the seiche wave implying that, due to their greater motility, they are following conditions that are suitable to them. The Cladocera species and small rotifers only partly, which may be part of their phototaxic behaviour. Physical forces like convection, horizontal and vertical forcing probably have a role in contributing to a homogeneous distribution of the plankton by preventing stratification or interfering with the more motile zooplankton which may be attempting to migrate.  相似文献   

2.
Producers, consumers, and decomposers are the three key functional groups that form the basis of all ecosystems. But, little is known about how these functional groups coexist with each other in aquatic environments, particularly in subtropical reservoirs. In this study, we describe the nature of microeukaryotic communities in a subtropical deep reservoir during the strongly stratified period. Denaturing gradient gel electrophoresis gel band sequencing, pyrosequencing, and light microscopy were used together to facilitate an in‐depth investigation of the community structure of phytoplankton, zooplankton, and fungi. Our results showed that thermal and oxygen stratification shaped the composition of the phytoplankton, zooplankton, and fungi populations in the reservoir. Stratification was evident among ecological functional groups in autumn: producers and consumers were overwhelmingly dominant in the epilimnion characterized by high temperatures and oxygen levels, whereas decomposers were inclined to inhabit the hypolimnion. These results contribute to our understanding of the relationship of ecosystem functional groups in the man‐made aquatic systems and have important practical implications for reservoir management. Results suggest that the strategies for the control of eutrophication and harmful algal bloom prevention should focus on a fuller understanding of the consequences of both thermal stratification and vertical distribution of microplankton.  相似文献   

3.
The short-term, in situ diel grazing of Ceriodaphnia sp. duringperiods of stratification and mixing was investigated usingthe technique of fluorimetric analysis of the gut pigments.There were considerable seasonal differences in feeding behaviourIn mixing, when the concentration of chlorophyll a in the watercolumn was high and Ceriodaphnia abundance was low, gut pigmentcontents showed clear diel variation patterns, probably dueto diel variations of the high values of feeding activity observedin the 24 hour cycle The maximum values were found at dawn.On the other hand, no diel variations in gut pigment were observedduring periods of stratification and while the amounts of pigmentsin the water and in the gut were very low, species abundancewas high. Taking into account the ambient conditions, the authorsdiscuss the possibility that the change of feeding of the Ceriodaphniasp. observed when the environment changed from a mixing periodto one of stratification represents a change from herbivorousto detritivorous behavior.  相似文献   

4.
The present work reviews our current understanding of the limnology of Lake Zirahuén and extends this knowledge through an analysis of the phytoplankton, illustrating phenomena that typify monomictic tropical lakes. The analysis reinforces the postulate that atelomixis determines the variation in phytoplankton composition of deep tropical lakes with a monomictic mixing regime. Similarly, it is proposed that an incomplete or partial atelomixis, generating a highly dynamic mixing layer, is a force that possibly drives the selection of algal groups, like the Desmidiaceae, with a high surface area to volume ratio. These organisms, characteristic of tropical lakes, though found in the deep epilimnetic layer, receive sufficient irradiance to support their high photosynthetic rate; their high population density survive thanks to a constant supply of nutrients. Lake Zirahuén is a particularly relevant case for Mexico, since the low calcium concentration and the trophic level of the lake provide an explanation for the otherwise uncommon presence of desmids in other Mexican lakes, even in lakes that exhibit atelomictic phenomena.  相似文献   

5.
The transport and assimilation of the various forms of biologically available nitrogen by phytoplankton, and the subsequent biosynthesis of N-containing macromolecules, have the potential to respond in different ways during the daily growth cycle. This review examines five types of effect that may influence the daily pattern of nitrogen uptake and metabolism: light versus dark (the day/night cycle); changes in irradiance during the day (including the diurnal rise and fall in photon fluence rates); circadian rhythms (endogenous patterns of variation which may continue in the absence of external environmental forcing); periodic variations in exogenous nitrogen supply; and the 24-hour dynamics of stratification and mixing. The hydrodynamic effects operate through a variety of direct and indirect controls, and can substantially modify the diel rhythmicity of phytoplankton growth.  相似文献   

6.
7.
8.
Zooplankton-phytoplankton interactions in a eutrophic lake   总被引:3,自引:0,他引:3  
Enclosure experiments were made in a cyanobacteria dominatedlake (Lake Rotongaio) to assess the impact of zooplankton (>150µm) grazing on algal growth rates and determine the effectof diel and vertical changes in zooplankton grazing intensityand nutrient (NH4-N) regeneration upon abundance of phytoplankton.The filamentous cyanobacterium Anabaena minutissima var. attenuataand diatom Cyclotella meneghiniana showed a negative linearchange in abundance with a gradient in zooplankton grazing intensity.Phytoflagellates were not grazed and showed a positive linearchange in abundance with increasing zooplankton biomass. Theseeffects, as well as shortening of filament length of Anabaena,were caused by raptorial feeding by the alanoid copepod Boeckellapropinqua which dominated the zooplankton. Phytoplankton growthwas not stimulated by addition of nutrients, suggesting nutrientregeneration was not important. Diel and vertical changes infeeding and NH4-N regeneration rates were measured in Marchand June 1988. Diel differences were more pronounced in Marchwhen the water column was stratified. Specific feeding rateswere more important than vertical changes in zooplankton biomassin determining community grazing rates in March, but in Junewhen the water column was mixed, vertical distribution of zooplanktonbiomass was important. Zooplankton grazing was an importantloss process for phytoplankton in the lower part of the epilimnionin Lake Rotongaio.  相似文献   

9.
Day/night differences in the removal rate of phytoplankton can occur as a result of increased copepod grazing rates at certain times of the day and diel vertical migration of animals. We conducted shipboard grazing experiments and fine-scale vertical zooplankton sampling to resolve these behaviors. Day/night feeding differences were compared in the center of several warm-core Gulf Stream rings, under conditions of no lateral water mass exchange, in the mesohaline portion of Chesapeake Bay and when following drogues in the Chesapeake Bay plume. Day/night variations in copepod biomass in the surface mixed layer were greater in neritic waters as compared to the open ocean stations. Day/night differences in weight-specific copepod filtration rates varied less than biomass. At the neritic stations copepod grazing was often higher at night, whereas at the oceanic stations day/night grazing rates were similar or daytime grazing rates were highest. The night/day ratio of zooplankton grazing impact on the phytoplankton community (the product of zooplankton biomass and their weight-specific grazing rate) averaged 4.8 in the Chesapeake Bay plume and 1.6 in warm-core Gulf Stream rings. Our results suggest that at lower food levels, there often are less day/night differences in the removal rate of phytoplankton by the copepod community.  相似文献   

10.
Stocking piscivorous salmonids in Lake Michigan produced dramaticalterations in food-web structure, including higher numbersof large-bodied zooplankton (especially Daphnia pulicaria),lower summer chlorophyll concentrations and increased watertransparency. Experimental determinations of epilimnetic phytoplanktongrowth rates and of zooplankton grazing rates indicate thatherbivorous zooplankton controlled algal dynamics during thesummer of 1983 because grazers occupied the surface waters throughoutthe day. In 1985, however, both large- and small-bodied Daphniamade approximately equal contributions to total grazer biomass,and all grazers displayed pronounced diel vertical migrations,visiting epilimnetic waters only at night. This prohibited zooplanktonfrom controlling algal dynamics because grazing losses did notexceed phytoplankton growth rates. The changes in zooplanktoncommunity composition and behavior observed in summer 1985 probablyresulted from increased predation by visually orienting planktivorousfish, especially bloater chub (Coregonus hoyi). Effects of food-webmanipulations on phytoplankton dynamics were evident only duringJuly and August. During spring and early summer copepods dominateLake Michigan's zooplankton community. Owing to their smallbody size, copepods are less susceptible to fish predation andexhibit much lower filtering rates than Daphnia. Variabilityin zooplanktivorous fish abundance probably has little effecton phytoplankton dynamics during spring and early summer.  相似文献   

11.
Charts are presented of the seasonal variations in the distributionof four phytoplankton and five zooplankton taxa in the NorthAtlantic and the North Sea. The main factors determining theseasonal variations appear to be the distribution of the mainoverwintering stocks, the current system and, in some instances,temperature control of the rate of population increase. Informationis presented about the variation with latitude (over the rangefrom 34° N to 65 ° N) of the seasonal regime of theplankton. On the assumption that there is a relationship betweennutrient supply and vertical temperature stratification themain features of this variability can be interpreted. In thesouth (to about 43° N) nutrient limitation plus grazingappear to be dominant, resulting in a bimodal seasonal cycleof phytoplankton. North of about 60° N the system appearsto be limited by the size of the phytoplankton stocks beinggrazed primarily by Calanus Finmarchicus and Euphausiacea. Inan extensive zone, from about 44° N to 60° N, it wouldappear that the spring bloom of phytoplankton is under-exploitedby grazing while in summer the zooplankton graze the daily productionof the phytoplankton, the stocks of which are probably maintainedby in situ nutrient regeneration. The implications, for at leastthis mid-latitude zone, that rates and fluxes of processes,as opposed to density dependent interactions between stocks,play a major role in the dynamics of the seasonal cycle is consistentwith previously reported observations suggesting that physicalenvironmental factors play a major role in determining year-to-yearfluctuations in the abundance of the plankton.  相似文献   

12.
Impacts of mixing and stratification on the fate of primaryproduction were studied in an oligotrophic lake by comparingthe size-distributions of phytoplankton standing stock and productionin two basins, only one of which experiences seasonal thermalstratification. In both basins, the phytoplankton was dominatedby small cells (pico- and nanoplankton). The contribution ofpicoplankton to both biomass and production remained relativelyconstant throughout the season in both basins. Seasonal variationsin the size structure of phytoplankton communities do not agreewith the paradigm of dominance by small cells during summerstratification and dominance of larger cells during spring andfall mixing events. Nutrient control of productivity throughmixing and stratification is unlikely to affect the structureof phytoplankton communities when nutrients (allochthonous)derived from the catchment basin or sediments are in short supply.In such environments, nutrients (autochthonous) are largelyderived in the lake through heterotrophic food web processessuch as grazing, excretion and decomposition. Maximum ratesof production and losses in July and August in both basins areconsistent with increased regeneration and may represent a responseof larger-sized cells to higher nutrient availability resultingfrom enhanced grazing on picoplankton. The high correlationbetween the rates of loss and of potential growth for the phytoplanktoncommunity during all sampling periods, and the relative constancyof the picoplankton biomass, leads us to propose a long-term,steady-state equilibrium in the phytoplankton community underthe control of grazing by herbivores and/or other loss processes.  相似文献   

13.
14.
The present study was carried out in Faxinal Reservoir, a warm monomictic, meso-eutrophic reservoir in subtropical southern Brazil, with a long-standing, well-stratified condition, low epilimnetic nutrient concentrations, and a relatively clear epilimnion. In this study, we analyzed the dynamics of the phytoplankton functional groups, recognizing their driving forces in Faxinal Reservoir. Samples were taken at monthly intervals from January 2004 to January 2005 in surface waters. According to the reservoir’s mixing regime, three periods were identified during the study: stratification 1 (January–May 2004); mixing period (June–August 2004); and stratification 2 (September 2004–January 2005). The nutrient dynamics were driven by the mixing regime. The H1, F, and C phytoplankton functional groups were the most important in biomass, mainly represented by the N-fixing cyanobacterium Anabaena crassa, the colonial green alga with thick mucilaginous sheaths Nephrocytium sp., and the diatom Asterionella formosa, respectively. Tendencies pointed out by redundancy analysis (RDA) indicated that the mixing regime was the main determining factor of the seasonal dynamics of the phytoplankton community. The dominant functional groups showed a close relationship with the relative water-column stability (RWCS), and also, as a consequence of the mixing regime, with nutrient availability. The study also revealed the important role of physical processes in the seasonal gradient, in selecting for phytoplankton functional groups and, consequently, in the assessment of ecological status. Q index (assemblage index) of water quality based on functional groups revealed ecological status varying from very poor to tolerable in the stratification 1 period and from tolerable to medium in the mixing and stratification 2 periods. Handling editor: Judit Padisak  相似文献   

15.
Ocean warming has been implicated in the observed decline of oceanic phytoplankton biomass. Some studies suggest a physical pathway of warming via stratification and nutrient flux, and others a biological effect on plankton metabolic rates; yet the relative strength and possible interaction of these mechanisms remains unknown. Here, we implement projections from a global circulation model in a mesocosm experiment to examine both mechanisms in a multi‐trophic plankton community. Warming treatments had positive direct effects on phytoplankton biomass, but these were overcompensated by the negative effects of decreased nutrient flux. Zooplankton switched from phytoplankton to grazing on ciliates. These results contrast with previous experiments under nutrient‐replete conditions, where warming indirectly reduced phytoplankton biomass via increased zooplankton grazing. We conclude that the effect of ocean warming on marine plankton depends on the nutrient regime, and provide a mechanistic basis for understanding global change in marine ecosystems.  相似文献   

16.
Water-column mixing is known to have a decisive impact on plankton communities. The underlying mechanisms depend on the size and depth of the water body, nutrient status and the plankton community structure, and they are well understood for shallow polymictic and deep stratified lakes. Two consecutive mixing events of similar intensity under different levels of herbivory were performed in enclosures in a shallow, but periodically stratified, eutrophic lake, in order to investigate the effects of water-column mixing on bacteria abundance, phytoplankton abundance and diversity, and rotifer abundance and fecundity. When herbivory by filter-feeding zooplankton was low, water-column mixing that provoked a substantial nutrient input into the euphotic zone led to a strong net increase of bacteria and phytoplankton biomass. Phytoplankton diversity was lower in the mixed enclosures than in the undisturbed ones because of the greater contribution of a few fast-growing species. After the second mixing event, at a high biomass of filter-feeding crustaceans, the increase of phytoplankton biomass was lower than after the first mixing, and diversity remained unchanged because enhanced growth of small fast-growing phytoplankton was prevented by zooplankton grazing. Bacterial abundance did not increase after the second mixing, when cladoceran biomass was high. Changes in rotifer fecundity indicated a transmission of the phytoplankton response to the next trophic level. Our results suggest that water-column mixing in shallow eutrophic lakes with periodic stratification has a strong effect on the plankton community via enhanced nutrient availability rather than resuspension or reduced light availability. This fuels the basis of the classic and microbial food chain via enhanced phytoplankton and bacterial growth, but the effects on biomass may be damped by high levels of herbivory. Received: 3 May 1999 / Accepted: 13 April 2000  相似文献   

17.
Detailed surveys throughout San Francisco Bay over an annual cycle (1980) show that seasonal variations of phytoplankton biomass, community composition, and productivity can differ markedly among estuarine habitat types. For example, in the river-dominated northern reach (Suisun Bay) phytoplankton seasonality is characterized by a prolonged summer bloom of netplanktonic diatoms that results from the accumulation of suspended particulates at the convergence of nontidal currents (i.e. where residence time is long). Here turbidity is persistently high such that phytoplankton growth and productivity are severely limited by light availability, the phytoplankton population turns over slowly, and biological processes appear to be less important mechanisms of temporal change than physical processes associated with freshwater inflow and turbulent mixing. The South Bay, in contrast, is a lagoon-type estuary less directly coupled to the influence of river discharge. Residence time is long (months) in this estuary, turbidity is lower and estimated rates of population growth are high (up to 1–2 doublings d–1), but the rapid production of phytoplankton biomass is presumably balanced by grazing losses to benthic herbivores. Exceptions occur for brief intervals (days to weeks) during spring when the water column stratifies so that algae retained in the surface layer are uncoupled from benthic grazing, and phytoplankton blooms develop. The degree of stratification varies over the neap-spring tidal cycle, so the South Bay represents an estuary where (1) biological processes (growth, grazing) and a physical process (vertical mixing) interact to cause temporal variability of phytoplankton biomass, and (2) temporal variability is highly dynamic because of the short-term variability of tides. Other mechanisms of temporal variability in estuarine phytoplankton include: zooplankton grazing, exchanges of microalgae between the sediment and water column, and horizontal dispersion which transports phytoplankton from regions of high productivity (shallows) to regions of low productivity (deep channels).Multi-year records of phytoplankton biomass show that large deviations from the typical annual cycles observed in 1980 can occur, and that interannual variability is driven by variability of annual precipitation and river discharge. Here, too, the nature of this variability differs among estuary types. Blooms occur only in the northern reach when river discharge falls within a narrow range, and the summer biomass increase was absent during years of extreme drought (1977) or years of exceptionally high discharge (1982). In South Bay, however, there is a direct relationship between phytoplankton biomass and river discharge. As discharge increases so does the buoyancy input required for density stratification, and wet years are characterized by persistent and intense spring blooms.  相似文献   

18.
An investigation was conducted examining the horizontal and vertical distribution of zooplankton in Lake Miramar, a southern California reservoir. Daphnia and Mesocyclops populations were most abundant offshore and in deeper water during the day but appeared to move toward shore and upward at night. The results of inshore zooplankton sampling provided no evidence chat the diel horizontal migration pattern was a result of sampler avoidance by zooplankton. Inshore-offshore differences in Daphnia and Mesocyclops abundance and diel migrations were reduced during winter and early spring. Rotifer zooplankters exhibited less seasonal variation in their horizontal distributions than did the large crustacean zooplankters at all times of the year. It is hypothesized that the spatial distribution of zooplankton is related to predation gradients in Lake Miramar. The dominant planktivore in the reservoir, young-of-the-year Micropterus salmoides. was abundant from late May through December and much less so from January to early May. They were largely restricted to the littoral zone and this produced horizontal gradients of planktivory which varied in strength seasonally and from day lo night. It appears that crustacean zooplankton in Lake Miramar avoid areas with abundant planktivores during the day but migrate into these areas at night when the intensity of planktivory is reduced. Rotifers exhibit less horizontal heterogeneity and no significant diel migrations, which is attributed to the reduced risk of predation that rotifers experience relative to crustacean zooplankters. A graphical model is proposed to integrate our understanding of diel vertical and horizontal migrations of zooplankton. In this model, gradients of predation are completely vertical in offshore areas and strongly horizontal in near shore areas. Gradients of food availability are roughly similar to those of predation intensity. Plankiers respond to these gradients by migrating in a path parallel to gradients of predation at dawn and parallel to gradients of food availability after dark.  相似文献   

19.
20.
The impact of nutrient additions, zooplankton grazing and light intensity on phytoplankton net growth with depth and season was studied with five microcosm experiments in meso-oligotrophic, subalpine Castle Lake, California, during the period of summer stratification in June-September 1994. The incubations (4 day) were performed at 5 m intervals from the surface to the bottom using natural phytoplankton and zooplankton assemblages, with enrichments of phosphorus and nitrogen. The phytoplankton community was only limited by nutrients in the upper 5 m (epilimnion), as indicated by change in chlorophyll concentration. Nutrient enrichments had the greatest effect on the phytoplankton net growth in June and July. High light inhibited the phytoplankton net growth at the surface. Low light intensities limited phytoplankton at 20 m and below, and at the end of the growing season already around 10-15 m. A deep chlorophyll maximum in the hypolimnion in June-August was not limited by either light or nutrients. The results showed variation in grazers' impact on phytoplankton. These results suggest the importance of nutrient limitation only in the epilimnion with light inhibition at the surface, light limitation in the hypolimnion, and varying impact of zooplankton grazing in influencing the development of the phytoplankton in Castle Lake.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号