首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have previously shown that a homozygous mutation encoding a substitution of proline for leucine at position 233 in the insulin receptor is linked with the syndrome of leprechaunism, being a lethal form of insulin resistance in newborn children. Specific binding of insulin and insulin-stimulated autophosphorylation of the insulin receptor are nearly absent in fibroblasts from the leprechaun patient. To examine the molecular basis of the observed insulin receptor abnormalities, CHO cell lines overexpressing mutant insulin receptors were made by transfection. The results show that the mutation inhibits cleavage and transport of the proreceptor from intracellular sites to the cell surface. As the mutant receptor is poorly precipitated by two different monoclonal antibodies recognizing epitopes on undenatured wild-type alpha-subunits, the mutation probably affects overall folding of the alpha-subunit. The mutant proreceptor is unable to bind insulin and exhibits no insulin-stimulated autophosphorylation. These data explain the abnormalities seen in the patient's fibroblasts. Pulse-chase labeling experiments on transfected cells show that the mutant precursor has an extended half-life (approximately 5 h) compared to the precursor of wild-type insulin receptors (approximately 2 h). This mutation is the first example of a naturally occurring mutation in the insulin receptor which completely blocks cleavage of the proreceptor and transport to the cell surface.  相似文献   

2.
Cultured skin fibroblasts from a proband with a lethal form of osteogenesis imperfecta produce two forms of type I collagen chains, with normal and delayed electrophoretic migration; collagen of the proband's mother was normal. Peptide mapping experiments localized the structural defect in the proband to alpha1(I) CB8 peptide in which residues 123 to 402 are spaned. Direct sequencing of amplified cDNA covering this region revealed a G to A single base change in one allele of the alpha1(I) chain, that converted glycine 388 to arginine. Restriction enzyme digestion of the RT-PCR product was consistent with a heterozygous COL1A1 mutation. The novel mutation conforms to the linear gradient of clinical severity for the alpha1(I) chain and results in reduced thermal stability by 3 degrees C and intracellular retention of abnormal molecules.  相似文献   

3.
Summary Denaturing gradient gel electrophoreses of polymerase chain reaction amplified DNA products and subsequent direct sequencing identified a G-to-A transition causing a replacement of Gly 122 with Arg in an electrophoretic mobility variant of human triosephosphate isomerase, TPI-Manchester. This was the only TPI electromorph variant detected in screening of > 3,400 humans in an Ann Arbor, Mich. population. This substitution is at the amino terminus or solvent interaction end of the fifth sheet of the / barrel structure. The TPI-Manchester variant is á thermolabile enzyme, but the stability of the variant enzyme is not sensitive to other denaturants. This amino acid substitution does not involve residues of the active site and does not detectably alter the kinetic properties of the enzyme. The data provide additional insight into the amino acid residues that are important for the maintenance of the structural characteristics of this very evolutionary constrained protein.  相似文献   

4.
A Japanese child born to an HBeAg-positive carrier mother received anti-HBs immunoglobulins and a plasma-derived HBs vaccine with a poor anti-HBs-antibody response. The child, who is now 3 years old, is presently suffering from chronic hepatitis with unusual serological findings that are positive for HBsAg, anti-HBs and HBeAg, since being infected with a measles virus at 12 months of age. The nucleotide sequences of the S region of HBV DNA obtained from the patient, the mother and an HBeAg-positive brother were completely identical except for one nucleotide at position 587 (mother and brother: guanosine, patient: adenosine), giving an amino acid change: Gly - greater than Arg at position 145 of the major HBs protein.  相似文献   

5.
The effect of the substitution of Arg for Gly 13 on the structure of the transforming region decapeptide (Leu 6-Gly 15) of the ras oncogene encoded P21 protein has been investigated using conformational energy analysis. A human malignancy has been identified that contains a ras gene with a single mutation in the thirteenth codon such that the encoded protein would have Arg substituted for Gly at this position, and transfection of cells in culture with this gene results in malignant transformation. Conformational analysis demonstrates that the Arg 13 decapeptide adopts a conformation identical to that for other peptides with substitutions at position 13 (Asp 13, Val 13) from transforming proteins that is distinctively different from that for peptides (Gly 13, Ser 13) from normal, nontransforming proteins. This is found to be an indirect effect resulting from changes in the conformation of Gly 12 produced by substitutions at position 13. These results are consistent with recent analysis of crystallographic data of proteins on conformational preferences for glycine in tripeptide sequences.  相似文献   

6.
Receptors for insulin and epidermal growth factor contain cysteine-rich domains in the extracellular portion of the molecule. His209 (insulin receptor numbering system) is 1 of 2 amino acid residues that are identically conserved in the cysteine-rich domains of insulin receptors, epidermal growth factor receptors, and other homologous receptors. Previously, we have identified a patient with leprechaunism who is homozygous for a mutation substituting Arg for His209 in the insulin receptor gene (Kadowaki, T., Kadowaki, H., Rechler, M. M., Serrano-Rios, M., Roth, J., Gorden, P., and Taylor, S. I. (1990) J. Clin. Invest. 86, 254-264). In this investigation, the Arg209 mutant receptor was expressed by transfection of mutant cDNA into NIH-3T3 cells. The mutation impairs several steps in the post-translational processing of the insulin receptor:dimerization of 190-kDa proreceptors into a disulfide linked species, proteolytic cleavage of the proreceptor into alpha- and beta-subunits, and terminal processing of the high mannose form of N-linked oligosaccharide into complex carbohydrate. In addition, the defects in post-translational processing within the endoplasmic reticulum and Golgi apparatus are associated with a marked inhibition in transport of receptors to the plasma membrane. Nevertheless, a small number (approximately 10%) of the receptors are transported to the cell surface. These receptors on the cell surface bind insulin with normal affinity and have normal tyrosine kinase activity.  相似文献   

7.
The intracellular domain of the insulin receptor possesses activity as a tyrosine-specific protein kinase. The receptor tyrosine kinase is stimulated by insulin binding to the extracellular domain of the receptor. Previously, we have identified a patient with a genetic form of insulin resistance who is heterozygous for a mutation substituting Ile for Met1153 in the tyrosine kinase domain of the receptor near the cluster of the three major autophosphorylation sites (Tyr1158, Tyr1162, and Tyr1163). In this investigation, the Ile1153 mutant receptor was expressed by transfection of mutant cDNA into NIH-3T3 cells. The mutation impairs receptor tyrosine kinase activity and also inhibits the ability of insulin to stimulate 2-deoxyglucose uptake and thymidine incorporation. These data support the hypothesis that the receptor tyrosine activity plays a necessary role in the ability of the receptor to mediate insulin action in vivo. Furthermore, expression of the Ile1153 mutant receptor exerted a dominant negative effect to inhibit the ability of endogenous murine receptors for insulin and insulin-like growth factor I to mediate their actions upon the cell. This observation is consistent with previous suggestions that mutant receptors dimerize with wild type receptors, thereby creating hybrid molecules which lack biological activity. The dominant negative effect of the mutant receptor may explain the dominant mode of inheritance of insulin resistance caused by the Ile1153 mutation. Finally, the mutation inhibits the ability of insulin to stimulate receptor endocytosis. This may explain the normal number of insulin receptors on the surface of the patient's cells in vivo. Despite the presence of markedly elevated levels of insulin in the patient's plasma, the receptors were resistant to down-regulation.  相似文献   

8.
The beta1 adrenergic receptor genotypes (Ser49Gly and Arg389Gly) were determined in 190 individuals from 3 Mexican populations. Mestizos and Teenek present the highest frequencies for the *Arg allele and the lowest frequencies for the *Gly allele (Arg389Gly) compared to European, Asian, and African populations. Mayos present the highest frequency for the *Gly allele. The knowledge of the distribution of these alleles could help define the significance of these polymorphisms as genetic susceptibility markers in Amerindian populations.  相似文献   

9.
Normotensive adults homozygous for glycine (Gly) of the Arg16/Gly beta2-adrenergic-receptor polymorphism have 1) greater forearm beta2-receptor mediated vasodilation and 2) a higher heart rate (HR) response to isometric handgrip than arginine (Arg) homozygotes. To test the hypothesis that the higher HR response in Gly16 subjects serves to maintain the pressor response [increased cardiac output (CO)] in the setting of augmented peripheral vasodilation to endogenous catecholamines, we measured continuous HR (ECG), arterial pressure (Finapres), and CO (transthoracic echocardiography) during isometric, 40% submaximal handgrip to fatigue in healthy subjects homozygous for Gly (n = 30; mean age +/- SE: 30 +/- 1.2, 13 women) and Arg (n = 17, age 30 +/- 1.6, 11 women). Resting data were similar between groups. Handgrip produced similar increases in arterial pressure and venous norepinephrine and epinephrine concentrations; however, HR increased more in the Gly group (60.1 +/- 4.3% increase from baseline vs. 45.5 +/- 3.9%, P = 0.03), and this caused CO to be higher (Gly: 7.6 +/- 0.3 l/m vs. Arg: 6.5 +/- 0.3 l/m, P = 0.03), whereas the decrease in systemic vascular resistance in the Gly group did not reach significance (P = 0.09). We conclude that Gly16 homozygotes generate a higher CO to maintain the pressor response to handgrip. The influence of polymorphic variants in the beta2-adrenergic receptor gene on the cardiovascular response to sympathoexcitation may have important implications in the development of hypertension and heart failure.  相似文献   

10.
Mutations in the insulin receptor gene can compromise the ability of the receptor to mediate insulin action. Previously, in investigations of a patient with a genetic form of insulin resistance, we have identified a mutant allele encoding an insulin receptor in which lysine is substituted for asparagine at position 15 of the alpha-subunit. In the present study, we have characterized the Lys15-mutant receptor expressed by transfection of mutant cDNA into NIH-3T3 cells. The Lys15-mutation causes at least two defects in insulin receptor function. First, the mutation retards the post-translational processing of the receptor and impairs transport of the receptor to the plasma membrane, thereby reducing the number of receptors on the cell surface. Second, the mutation causes a 5-fold reduction in the affinity of the receptor to bind insulin. These two defects combine to render the target cell resistant to normal physiological concentrations of insulin. It seems likely that both functional defects associated with the Lys15-mutation can be explained by assuming that the mutation distorts the three-dimensional structure of the receptor. Presumably, the abnormal conformation interferes with the transport of the receptor through the endoplasmic reticulum and Golgi, and also inhibits the binding of insulin to its binding site on the receptor.  相似文献   

11.
Ser/Thr phosphorylation of insulin receptor substrate (IRS) proteins negatively modulates insulin signaling. Therefore, the identification of serine sites whose phosphorylation inhibit IRS protein functions is of physiological importance. Here we mutated seven Ser sites located proximal to the phosphotyrosine binding domain of insulin receptor substrate 1 (IRS-1) (S265, S302, S325, S336, S358, S407, and S408) into Ala. When overexpressed in rat hepatoma Fao or CHO cells, the mutated IRS-1 protein in which the seven Ser sites were mutated to Ala (IRS-1(7A)), unlike wild-type IRS-1 (IRS-1(WT)), maintained its Tyr-phosphorylated active conformation after prolonged insulin treatment or when the cells were challenged with inducers of insulin resistance prior to acute insulin treatment. This was due to the ability of IRS-1(7A) to remain complexed with the insulin receptor (IR), unlike IRS-1(WT), which underwent Ser phosphorylation, resulting in its dissociation from IR. Studies of truncated forms of IRS-1 revealed that the region between amino acids 365 to 430 is a main insulin-stimulated Ser phosphorylation domain. Indeed, IRS-1 mutated only at S408, which undergoes phosphorylation in vivo, partially maintained the properties of IRS-1(7A) and conferred protection against selected inducers of insulin resistance. These findings suggest that S408 and additional Ser sites among the seven mutated Ser sites are targets for IRS-1 kinases that play a key negative regulatory role in IRS-1 function and insulin action. These sites presumably serve as points of convergence, where physiological feedback control mechanisms, which are triggered by insulin-stimulated IRS kinases, overlap with IRS kinases triggered by inducers of insulin resistance to terminate insulin signaling.  相似文献   

12.
A series of analogues of neurokinin A(4-10) was synthesized using solid phase techniques with Chiron pins, and purified by HPLC. The potencies of 10 peptides with substitution at Ser5 were assessed at rat fundus NK2 receptors. In membrane binding studies with [125I]-[Lys5,Tyr(I2)7,MeLeu9,Nle10]-NKA(4-10), all compounds except [Asp5]NKA(4-10) showed reasonable affinity, and analogues with Lys and Arg substitutions were five-fold more potent than NKA(4-10). In functional studies, all peptides were able to contract the rat isolated fundus strips. Analogues with Phe, His and Asn substitutions were substantially weaker in functional than in binding studies, whereas there was an excellent correlation (r = 0.95) between binding and functional potency for the remaining seven peptides. [Phe5]NKA(4-10) is in fact neurokinin B(4-10) and this residue may be critical in determining selectivity between NK2 and NK3 receptors. Analogues with a basic residue (Lys, Arg) at position 5 showed both increased affinity and functional potency, whereas the neutral [Asn5]NKA(4-10) was equally as weak in contractile studies as the acidic [Asp5]NKA(4-10). However, [Glu5]NKA(4-10) and [Gln5]NKA(4-10) were no different from NKA(4-10). Our results could indicate the presence of a negative charge on the NK2 receptor, close to position 5 of NKA. This would facilitate interaction with positively charged side chains and impede interaction with negatively charged side chains, particularly the inflexible side chain of aspartic acid. Thus, not only the charge, but also the length of the side chain of the residue at position 5, seems to be important for interaction with the rat NK2 receptor.  相似文献   

13.
We have determined the primary structure of a mutant insulin receptor of a leprechaun patient born from a consanguineous marriage. A characteristic feature of leprechaunism is an extreme resistance to insulin. In this patient the insulin resistance seems to result from an observed lack of insulin binding to intact cells. Solubilization of cells in non-ionic detergents leads to the appearance of insulin receptors which can bind insulin. However, the insulin-stimulated autophosphorylation of the receptor's beta subunit is markedly reduced. Cloning and sequencing of cDNA derived from insulin receptor mRNA of this patient revealed a leucine-to-proline mutation at position 233 in the alpha subunit. By means of DNA amplification we found that the patient is homozygous for this mutation and that the parents and two grandparents from the consanguineous line are heterozygous. The heterozygous individuals all show decreased insulin binding to cultured fibroblasts. In addition, they are mildly insulin resistant in vivo. These observations show a linkage between the leucine-to-proline mutation and the observed insulin resistance in this family. We therefore conclude that the mutation in the homozygous form is responsible for the extreme insulin resistance in the leprechaun patient. The mutation for the first time characterizes a region in the insulin receptor which seems to be involved in transmitting the insulin binding signal to the tyrosine kinase domain.  相似文献   

14.
Pertussis toxin is an ADP-ribosyltransferase which alters the function of some of the GTP-binding proteins and inhibits some actions of insulin. In vivo, pertussis toxin (2 micrograms/ml/2h) inhibited insulin-stimulated tyrosyl autophosphorylation of the insulin receptor by 50% in FaO cells, and nearly completely inhibited phosphorylation of the cellular insulin receptor substrate pp185. Similarly, insulin-stimulated autophosphorylation and kinase activity of the insulin receptor purified on wheat germ agglutinin-agarose from pertussis toxin-treated FaO cells was diminished 50%; however, treatment of cells with the catalytically inactive B-oligomer of the toxin had no effect on receptor tyrosine kinase activity in vitro. Pertussis toxin did not alter insulin binding or the cellular levels of ATP, cAMP, and cGMP. Furthermore, immunoprecipitation of the insulin receptor from intact cells with anti-insulin receptor antibodies showed that pertussis toxin did not increase the phosphorylation of serine or threonine residues in the insulin receptor. These results suggest that pertussis toxin can modulate signal transduction of insulin at the level of the insulin receptor kinase.  相似文献   

15.
Studies in singletons have found an association between birthweight and Type 2 diabetes in adult life. The aim of this study was to investigate whether this association could also be seen in twins. 59 monozygotic (MZ) and 69 dizygotic (DZ) same-sex twin pairs aged 19-50 years and 89 singleton controls matched for age, gestational age, gender, maternal age and parity were recruited from a local obstetric database. Associations between adult glucose, HbA(1)C and insulin levels and insulin resistance and birthweight were assessed by linear regression with adjustment for confounding variables. Twins were significantly lighter at birth than singleton controls, but there were no significant differences in adult weight, glucose, HbA(1)C and insulin levels or insulin resistance between twins and controls. The relationship between birthweight and fasting glucose and insulin levels, and insulin resistance was not significantly different from zero in either twins or controls, but birthweight was significantly negatively associated with HbA(1)C only in controls. There was no evidence of a difference between MZ and DZ twins in unpaired or within-pair analysis. These results provide little evidence that low birthweight in twins increases the risk of impaired glucose-insulin metabolism in young adults or that genetic factors can account for the association observed in singletons.  相似文献   

16.
Serine phosphorylation of insulin receptor substrate-1 (IRS-1) inhibits insulin signal transduction in a variety of cell backgrounds, which might contribute to peripheral insulin resistance. However, because of the large number of potential phosphorylation sites, the mechanism of inhibition has been difficult to determine. One serine residue located near the phosphotyrosine-binding (PTB) domain in IRS-1 (Ser(307) in rat IRS-1 or Ser(312) in human IRS-1) is phosphorylated via several mechanisms, including insulin-stimulated kinases or stress-activated kinases like JNK1. During a yeast tri-hybrid assay, phosphorylation of Ser(307) by JNK1 disrupted the interaction between the catalytic domain of the insulin receptor and the PTB domain of IRS-1. In 32D myeloid progenitor cells, phosphorylation of Ser(307) inhibited insulin stimulation of the phosphatidylinositol 3-kinase and MAPK cascades. These results suggest that inhibition of PTB domain function in IRS-1 by phosphorylation of Ser(307) (Ser(312) in human IRS-1) might be a general mechanism to regulate insulin signaling.  相似文献   

17.
18.
The synthesis and structure-activity relationships concerning 3,4,5-trisubstituted 1,2,4-triazoles as ghrelin receptor ligands are described. The importance of the starting aminoacid material as well as its configuration was explored and the (D) Trp residue was found to lead to the best agonist or antagonist compounds.  相似文献   

19.
Antigen processing and the human T cell receptor repertoire for insulin   总被引:5,自引:0,他引:5  
Three human T cell lines specific for the A loop of beef insulin were studied to determine the requirements for Ag processing. The data show that the conformation of the A loop of insulin is required for recognition and that the B chain of insulin per se is not necessary for this response. Processing of native insulin was required for responses of all three T cell lines; however, each displayed a different pattern of sensitivity to inhibition of processing and aldehyde fixation of APC. A peptide comprised of two disulfide-linked A chains was partially stimulatory when presented by fixed APC whereas A chain monomers and disulfide-linked A and B chain peptides were not. The response to native insulin, peptides, and A chain dimers was sensitive to chloroquine suggesting that none of these moieties is the terminal processed peptide recognized by insulin immune T cells. The unique patterns of fine specificity, processing requirements, and recognition of aldehyde-fixed antigen-MHC for each T cell line suggest the hypothesis that Ag processing leads to heterogeneity of the T cell repertoire for a single epitope of insulin.  相似文献   

20.
Noelle V  Tennagels N  Klein HW 《Biochemistry》2000,39(24):7170-7177
We examined the effects of mutations of tyrosine and serine autophosphorylation sites on the dual specificity of the insulin receptor kinase (IRKD) in vitro using autophosphorylation and substrate phosphorylation and phosphopeptide mapping. For comparable studies, the recombinant kinases were overexpressed in the baculovirus system, purified, and analyzed. The phosphate incorporation into the enzymes was in the range of 3-4.5 mol/mol, and initial velocities of autophosphorylation were reduced up to 2-fold. However, the mutation Y1151F in the activation loop inhibited phosphate incorporation in the C-terminal serine residues 1275 and 1309, due to a 10-fold decrease of the initial velocity of serine autophosphorylation. Although the K(M) and V(MAX) values of this mutant were only slightly altered in substrate phosphorylation reactions using a recombinant C-terminal insulin receptor peptide (K(M): Y1151F, 9.9 +/- 0.4 microM; IRKD, 6.1 +/- 0.2 microM; V(MAX): Y1151F, 72 +/- 4 nmol min(-)(1) mg(-)(1); IRKD, 117 +/- 6 nmol min(-)(1) mg(-)(1)), diminished phosphate incorporation into serine residues of the peptide was observed. In contrast, the phosphorylation of a recombinant IRS-1 fragment, which was shown to be phosphorylated markedly on serine residues by IRKD, was not affected by any kinase mutation. These results underline that IRKD is a kinase with dual specificity. The substrate specificity toward C-terminal serine phosphorylation sites can be modified by a single amino acid substitution in the activation loop, whereas the specificity toward IRS-1 is not affected, suggesting that the C-terminus and the activation loop interact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号