首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas formation by 116 strains of Escherichia coli and 104 strains of Aerobacter was determined in a specially constructed and accurately controlled water bath employing EC, lactose, maltose, sucrose, glucose, levulose, and galactose broths at temperatures ranging from 44.5 to 46.5 C.

Greatest gas activity occurred in EC broth. In the range 44.9 to 45.5 C over 92% of the E. coli cultures formed gas, but the Aerobacter strains dropped from 68 to 2%. A natural point of separation of the two groups occurred at 45.5 C.

Inhibition of the gas-forming mechanism rather than death is the universal response of the Escherichia organisms to these temperatures. The inhibition increases with rising temperatures and is readily reversible. At 46.5 C, 64.5% of all the Escherichia cultures were inhibited and 69.1% of all the cultures were actually viable.

In EC broth it was found that as a group atypical E. coli (-+--) were the most resistant gas-positive types. Least resistant in EC broth was a group of known typical fecal isolates of E. coli (++--). Of intermediate resistance between the two groups was the large body of typical E. coli (++--) organisms.

Certain individual strains of E. coli excelled in the production of gas in the variety of sugar broths tested at elevated temperatures. The Aerobacter strains did not exhibit this property.

Finally it is suggested that elevated temperature incubation studies of this type be conducted in critically controlled water baths with an ascertained accuracy in the vicinity of 45.5 ± 0.1 C under full load.

  相似文献   

2.
The efficiencies of two 24-hr elevated-temperature tests to recover Escherichia coli from estaurine water were compared simultaneously with the 72-hr standard methods procedure of the American Public Health Association (APHA). From 1,710 tubes, E. coli was recovered 222 times in lauryl tryptose medium incubated at 44 ± 0.2 C for 24 hr, 261 times in an experimental medium incubated at 44.5 ± 0.2 C for 24 hr, and 257 times by the 72-hr APHA method. The number of false positives enumerated was similar in all three tests. The data indicated that E. coli in raw seawater could be determined in 24 hr without a significant loss of accuracy.  相似文献   

3.
Tests of two leading brands of membrane filters used for enumerating fecal coliform bacteria showed that Gelman GN-6 filters recovered statistically more colonies of bacteria than did Millipore HAWG 047SO filters from pure cultures incubated at either 35 C (the optimal growth temperature) or 44.5 C (the standard temperature for the fecal coliform test). Standard membrane filter procedures with M-FC broth base were used to enumerate the organisms. Densities of colonies incubated on Gelman filters at 44.5 C averaged 2.3 times greater than those on Millipore filters. Plate counts of the bacteria at both temperatures indicated that incubation at 44.5 C did not inhibit propagation of fecal coliform bacteria. For the pour plates, M-FC broth base plus 1.5% agar was used. This modified medium compared favorably to plate count agar for enumerating Escherichia coli. At 35 and 44.5 C, colony counts on Gelman filters agreed closely with plate counts prepared concurrently, but Millipore counts were consistently lower than plate counts, especially at 44.5 C. Comparative analyses of river water for fecal coliform bacteria by the membrane filter technique gave results comparable to those for the pure cultures.  相似文献   

4.
A rapid method for enumerating fecal coliforms in foods was developed employing an agar pour-plate medium. After 7 h of incubation at 41.5 +/- 0.05 C, this medium effectively allows the growth of fecal coliforms only. This rapid method was compared with the Association of Official Analytical Chemists multiple-tube dilution method for Escherichia coli, by using 21 samples of fresh, cut-up chicken and a surface rinsing procedure for sample preparation. Verification of picked colonies was carried out in EC broth using parallel incubation temperatures of 45.5 and 44.5 +/- 0.05 C. Verifications for these temperatures averaged 79 and 98%, respectively. All positively verified isolates were E. coli types I and II, as were the negatives. Geometric means for the verified 7-h plate count were within 12% of the standard means for both EC broth incubation temperatures.  相似文献   

5.
Significance of Fecal Coliform-Positive Klebsiella   总被引:11,自引:10,他引:1       下载免费PDF全文
A total of 191 Klebsiella pneumoniae isolates of human clinical, bovine mastitis, and a wide variety of environmental sources were tested for fecal coliform (FC) response with the membrane filtration and most probable number techniques. Twenty-seven Escherichia coli cultures of human clinical and environmental origins were also tested. Eighty-five percent (49/58) of known pathogenic K. pneumoniae were FC positive, compared with 16% (19/120) of the environmental strains. E. coli results indicated 93% (13/14) of the clinical and 85% (11/13) of the environmental strains as FC positive. There was no significant difference in the incidence of FC-positive cultures between pathogenic Klebsiella and E. coli. pH measurements of K. pneumoniae and E. coli cultures growing in m-FC broth at 44.5°C revealed three distinct pH ranges correlating with colony morphology. β-Galactosidase assays of Klebsiella and E. coli cultures at 44.5°C indicated all were able to hydrolyze lactose, even if they were FC negative by the membrane filtration or most probable number techniques. The FC response pattern appears stable in K. pneumoniae. Three pathogenic cultures showed no change in FC responses after 270 generations of growth in sterile pulp mill effluent. Since K. pneumoniae is carried in the gastrointestinal tract of humans and animals and 85% of the tested pathogenic strains were FC positive, the isolation of FC-positive Klebsiella organisms from the environment would indicate their fecal or clinical origin or both. The added fact that K. pneumoniae is an opportunistic pathogen of increasing importance makes the occurrence of FC-positive environmental Klebsiella, particularly in large numbers, a potential human and animal health hazard.  相似文献   

6.
Aims: To evaluate the suitability of commercially available Petrifilm? EC plates for enumeration of Escherichia coli from soil. Methods and Results: A confirmed E. coli strain isolated from liquid swine manure was inoculated into sterilized sandy clay loam and loam soils at the concentrations of 102, 103, 105 CFU g?1 of soil. The efficiency of recovery on Petrifilm? EC plates for soils spiked with E. coli was compared with standard membrane filtration techniques on m‐FC basal medium supplemented with 3‐bromo‐4‐chloro‐5‐indoyl‐β‐d ‐glucopyranoside (BCIG) and most probable numbers (MPN) techniques in E. coli medium with 4‐methylumbelliferyl‐β‐d ‐glucuronide (EC‐MUG) broth. Petrifilm? EC and m‐FC (BCIG) methods were then assessed for the ability to recover E. coli from field soils applied with swine manure. No significant differences (P > 0·05) were observed between Petrifilm? EC, m‐FC (BCIG) and MPN methods for the recovery of E. coli from spiked samples, irrespective of soil type. However, recovery of E. coli from manure‐applied field soil samples showed a significant difference (P < 0·05) between the Petrifilm? EC method and the m‐FC method in enumerating E. coli possibly as a result of false positives on m‐FC. Conclusion: The Petrifilm? EC method is suitable for the enumeration of E. coli from soil with a detection limit of 10 CFU g?1 soil. Significance and Impact of the Study: The commercially available Petrifilm? EC method is comparatively low cost, easy to use method for the enumeration of E. coli from soil without the need for further confirmation tests.  相似文献   

7.
This study compared the performance of a commercial chromogenic medium, CHROMagarECC (CECC), and CECC supplemented with sodium pyruvate (CECCP) with the membrane filtration lauryl sulfate-based medium (mLSA) for enumeration of Escherichia coli and non-E. coli thermotolerant coliforms (KEC). To establish that we could recover the maximum KEC and E. coli population, we compared two incubation temperature regimens, 41 and 44.5°C. Statistical analysis by the Fisher test of data did not demonstrate any statistically significant differences (P = 0.05) in the enumeration of E. coli for the different media (CECC and CECCP) and incubation temperatures. Variance analysis of data performed on KEC counts showed significant differences (P = 0.01) between KEC counts at 41 and 44.5°C on both CECC and CECCP. Analysis of variance demonstrated statistically significant differences (P = 0.05) in the enumeration of total thermotolerant coliforms (TTCs) on CECC and CECCP compared with mLSA. Target colonies were confirmed to be E. coli at a rate of 91.5% and KEC of likely fecal origin at a rate of 77.4% when using CECCP incubated at 41°C. The results of this study showed that CECCP agar incubated at 41°C is efficient for the simultaneous enumeration of E. coli and KEC from river and marine waters.  相似文献   

8.
To identify airborne dissemination of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) in a chicken house, airborne E. coli was collected from indoor air of a chicken house using six-stage Anderson sampler, and E. coli from chicken fecal samples were also isolated simultaneously. ESBL-producing E. coli isolates from indoor air and fecal samples were screened by a phenotypic confirmatory test according to CLSI recommendations. And then, the enterobacterial repetitive intergenic consensus polymerase chain reaction was performed to analyze the source of airborne ESBL-producing E. coli. The results showed that the ESBL-positive rates of E. coli isolates from feces and the indoor air were 56 % (18/32) and 40 % (6/15), respectively. Furthermore, airborne ESBL-producing E. coli isolates in the chicken house had 100 % genetic similarities with the strains from chicken feces, indicating that ESBL-producing E. coli from chicken feces could be aerosolized and spread to the air.  相似文献   

9.
Polynucleotide sequence similarity tests were carried out to determine the extent of divergence present in a number of Escherichia coli strains, obtained from diverse human, animal, and laboratory sources, and closely related strains of Shigella, Salmonella, and the Alkalescens-Dispar group. At 60 C, relative reassociation of deoxyribonucleic acid (DNA) from the various strains with E. coli K-12 DNA ranged from 100 to 36%, with the highest level of reassociation found for three strains derived from K-12, and the lowest levels for two “atypical” E. coli strains and S. typhimurium. The change in thermal elution midpoint, which indicates the stability of DNA duplexes, ranged from 0.1 to 14.5 C, with thermal stability closely following the reassociation data. Reassociation experiments performed at 75 C, at which temperature only the more closely related DNA species form stable duplexes, gave similar indications of relatedness. At both temperatures, Alkalescens-Dispar strains showed close relatedness to E. coli, supporting the idea that they should be included in the genus Escherichia. Reciprocal binding experiments with E. coli BB, 02A, and K-12 yielded different reassociation values, suggesting that the genomes of these strains are of different size. The BB genome was calculated to be 9% larger than that of K-12, and that of 02A 9% larger than that of BB. Calculation of genome size for a series of E. coli strains yielded values ranging from 2.29 × 109 to 2.97 × 109 daltons. E. coli strains and closely related organisms were compared by Adansonian analysis for their relatedness to a hypothetical median strain. E. coli 0128a was the most closely related to this median organism. In general, these data compared well with the data from reassociation experiments among E. coli strains. However, anomalous results were obtained in the cases of Shigella flexneri, S. typhimurium, and “atypical” E. coli strains.  相似文献   

10.
To assess the sensitivity of direct plating of bovine fecal samples for detection of Escherichia coli O157:H7, calves (n = 28) were orally inoculated with 109 colony-forming units (cfu) per calf of a mixture of three strains of nalidixic acid-resistant E. coli O157:H7, and fecal samples were collected for analysis. One-gram samples from inoculated calves were mixed with 9 mL of Gram-negative broth with vancomycin, cefixime, and cefsoludin. From this suspension, serial dilutions were made (10−1 to 10−4) and spread plated in triplicate on Sorbitol MacConkey agar with nalidixic acid for enumeration of E. coli O157:H7 in fecal samples. Direct plating samples were streaked for isolation on Sorbitol MacConkey agar with cefixime, and tellurite (SMACct). After incubation overnight at 37°C, morphologically typical colonies from direct streak plates were plated onto blood agar and incubated overnight at 37°C; then an indole test was performed on each colony. Indole-positive colonies were confirmed by O157 agglutination and were then plated on SMAC agar with 20 μg/mL nalidixic acid (SMACnal) to confirm nalidixic acid resistance. Overall sensitivity of detection was 32.5% (110/338 samples). Sensitivity to detect fecal samples shedding at above 5 × 104 cfu/g was 83% (71/86 samples). Based on these data, direct plating of fecal samples might be an effective way to identify cattle that are likely to be shedding E. coli O157 at high levels.  相似文献   

11.
Feedlot cattle were observed for fecal excretion of and rectoanal junction (RAJ) colonization with Escherichia coli O157:H7 to identify potential “supershedders.” RAJ colonization and fecal excretion prevalences were correlated, and E. coli O157:H7 prevalences and counts were significantly greater for RAJ samples. Based on a comparison of RAJ and fecal ratios of E. coli O157:H7/E. coli counts, the RAJ appears to be preferentially colonized by the O157:H7 serotype. Five supershedders were identified based on persistent colonization with high concentrations of E. coli O157:H7. Cattle copenned with supershedders had significantly greater mean pen E. coli O157:H7 RAJ and fecal prevalences than noncopenned cattle. Cumulative fecal E. coli O157:H7 excretion was also significantly higher for pens housing a supershedder. E. coli O157:H7/E. coli count ratios were higher for supershedders than for other cattle, indicating greater proportional colonization. Pulsed-field gel electrophoresis analysis demonstrated that isolates from supershedders and copenned cattle were highly related. Cattle that remained negative for E. coli O157:H7 throughout sampling were five times more likely to have been in a pen that did not house a supershedder. The data from this study support an association between levels of fecal excretion of E. coli O157:H7 and RAJ colonization in pens of feedlot cattle and suggest that the presence of supershedders influences group-level excretion parameters. An improved understanding of individual and population transmission dynamics of E. coli O157:H7 can be used to develop preslaughter- and slaughter-level interventions that reduce contamination of the food chain.  相似文献   

12.
Although research has increasingly focused on the pathogenesis of avian pathogenic Escherichia coli (APEC) infections and the “APEC pathotype” itself, little is known about the reservoirs of these bacteria. We therefore compared outbreak strains isolated from diseased chickens (n = 121) with nonoutbreak strains, including fecal E. coli strains from clinically healthy chickens (n = 211) and strains from their environment (n = 35) by determining their virulence gene profiles, phylogenetic backgrounds, responses to chicken serum, and in vivo pathogenicities in a chicken infection model. In general, by examining 46 different virulence-associated genes we were able to distinguish the three groups of avian strains, but some specific fecal and environmental isolates had a virulence gene profile that was indistinguishable from that determined for outbreak strains. In addition, a substantial number of phylogenetic EcoR group B2 strains, which are known to include potent human and animal extraintestinal pathogenic E. coli (ExPEC) strains, were identified among the APEC strains (44.5%) as well as among the fecal E. coli strains from clinically healthy chickens (23.2%). Comparably high percentages (79.2 to 89.3%) of serum-resistant strains were identified for all three groups of strains tested, bringing into question the usefulness of this phenotype as a principal marker for extraintestinal virulence. Intratracheal infection of 5-week-old chickens corroborated the pathogenicity of a number of nonoutbreak strains. Multilocus sequence typing data revealed that most strains that were virulent in chicken infection experiments belonged to sequence types that are almost exclusively associated with extraintestinal diseases not only in birds but also in humans, like septicemia, urinary tract infection, and newborn meningitis, supporting the hypothesis that not the ecohabitat but the phylogeny of E. coli strains determines virulence. These data provide strong evidence for an avian intestinal reservoir hypothesis which could be used to develop intestinal intervention strategies. These strains pose a zoonotic risk because either they could be transferred directly from birds to humans or they could serve as a genetic pool for ExPEC strains.  相似文献   

13.
Two variations of the multiple-tube fermentation technique were used to enumerate fecal coliforms in commercially processed, frozen crab meat. These were the EC confirmation test and a more rapid method that requires medium A-1. The method with medium A-1 was more specific than the EC confirmation test for detecting Escherichia coli type 1. E. coli was isolated from 84% of the positive medium A-1 tubes, whereas it was isolated from only 64% of the positive tubes of EC broth. When samples of crab meat were inoculated with known amounts of E. coli, better estimates of the known numbers were obtained by the medium A-1 method. Several species of nonfecal coliforms were isolated from cultures in EC broth. These belonged to the genera Klebsiella, Citrobacter, Enterobacter, and Serratia. Apparently these strains were naturally adapted to growth at an elevated temperature because the majority were able to grow at 44.5 degrees C when retested in EC broth. Fewer species of nonfecal coliforms were isolated from medium A-1. Those that were isolated belonged to the genera Citrobacter and Enterobacter.  相似文献   

14.
The sensitivity of a test for cattle shedding Escherichia coli serogroup O26 was estimated using several fecal pats artificially inoculated at a range of concentrations with different E. coli O26 strains. The test involves the enrichment of fecal microflora in buffered peptone water, the selective concentration of E. coli O26 using antibody-coated immunomagnetic-separation beads, the identification of E. coli colonies on Chromocult tryptone bile X-glucuronide agar, and confirmation of the serogroup with E. coli serogroup O26-specific antisera using slide agglutination. The effective dose of E. coli O26 for an 80% test sensitivity (ED80) was 1.0 × 104 CFU g−1 feces (95% confidence interval, 4.7 × 103 to 2.4 × 104). Differences in test sensitivity between different E. coli O26 strains and fecal pats were also observed. Individual estimates of ED80 for each strain and fecal pat combination ranged from 4.2 × 102 to 4.8 × 105 CFU g−1. These results suggest that the test is useful for identifying individuals shedding a large number of E. coli O26 organisms or, if an appropriate number of individuals in a herd are sampled, for identifying affected herds. The study also provides a benchmark estimate of sensitivity that can be used to compare alternative tests for E. coli O26 and a methodological approach that can be applied to tests for other pathogenic members of the Enterobacteriaceae and other sample types.  相似文献   

15.
To study the mechanism of synergism between Bacteroides fragilis and Escherichia coli, the effect of sublethal dose of E. coli lipopolysaccharide (LPS) (25μg/mouse) was checked on B. fragilis abscess formation. LPS was administered prior or after inoculum injection. No significant difference in the abscess size was observed at necropsy on day 6. However, all the groups receiving LPS showed higher incidence of recovery of additional intestinal bacteria (23.5–45.5%) from the abscess pus. When LPS was given 4 hr prior to inoculum administration, 83–100% mortality was observed. Detailed investigation showed autoclaved cecal contents alone could also cause similar mortality. Studies with stimulation of endogenous cytokines by E. coli LPS demonstrated induction of all of them within 3 hr in the blood stream with TNF-α demonstrating peak at 1 hr, IL-1α and IL-6 at 4 hr and IFN-γ between 6–9 hr with moderately high levels at 4 hr. This E. coli LPS-triggered cytokine cascade possibly gets further stimulated by injection of autoclaved cecal contents containing high concentration of endotoxins (1.6 × 105 EU/ml) contributed by dead bacteria and lead to the mortality of animals.  相似文献   

16.
Two variations of the multiple-tube fermentation technique were used to enumerate fecal coliforms in commercially processed, frozen crab meat. These were the EC confirmation test and a more rapid method that requires medium A-1. The method with medium A-1 was more specific than the EC confirmation test for detecting Escherichia coli type 1. E. coli was isolated from 84% of the positive medium A-1 tubes, whereas it was isolated from only 64% of the positive tubes of EC broth. When samples of crab meat were inoculated with known amounts of E. coli, better estimates of the known numbers were obtained by the medium A-1 method. Several species of nonfecal coliforms were isolated from cultures in EC broth. These belonged to the genera Klebsiella, Citrobacter, Enterobacter, and Serratia. Apparently these strains were naturally adapted to growth at an elevated temperature because the majority were able to grow at 44.5 degrees C when retested in EC broth. Fewer species of nonfecal coliforms were isolated from medium A-1. Those that were isolated belonged to the genera Citrobacter and Enterobacter.  相似文献   

17.
The organism most frequently encountered during the 1971 outbreak of enteropathogenic Escherichia coli (EPEC) in soft ripened cheese was a strain that failed to ferment lactose broth within 48 h. Since existing methods for E. coli are dependent upon fermentation of this sugar, such strains can remain undetected, particularly when present in low numbers. Therefore, a cultural testing procedure was developed to insure isolation of both lactose-positive and -negative strains. This method used GN broth, modified by substituting lactose and arabinose for glucose and D-mannitol, as an enrichment medium. MacConkey agar, used as a plating medium, was modified by substituting arabinose for half the lactose. The cultural procedure was used in conjunction with a fluorescent antibody method to screen cheese for the presence of presumptive enteropathogenic E. coli. Suspected isolates were subjected to further biochemical and serological testing and identified as members of specific serogroups. These methods were used for the analysis of over 2,000 wheels of cheese; over 10% of the samples tested were found to contain strains belonging to six different serogroups associated with diarrheal diseases. No attempt was made to confirm pathogenicity by in vivo tests. Enumeration of E. coli in cheese showed that numbers increased during storage. Cheese with less than 10 organisms/g initially increased to over 105 at room temperature and over 103 at 4 C within 10 days. With higher initial counts, levels up to 109 were found at 4 C. These studies showed that the high levels of E. coli encountered in these products cannot be used as a direct indicator of post-processing contamination.  相似文献   

18.
Escherichia coli O157:H7 is a major foodborne human pathogen causing disease worldwide. Cattle are a major reservoir for this pathogen and those that shed E. coli O157:H7 at >104 CFU/g feces have been termed “super-shedders”. A rich microbial community inhabits the mammalian intestinal tract, but it is not known if the structure of this community differs between super-shedder cattle and their non-shedding pen mates. We hypothesized that the super-shedder state is a result of an intestinal dysbiosis of the microbial community and that a “normal” microbiota prevents E. coli O157:H7 from reaching super-shedding levels. To address this question, we applied 454 pyrosequencing of bacterial 16S rRNA genes to characterize fecal bacterial communities from 11 super-shedders and 11 contemporary pen mates negative for E. coli O157:H7. The dataset was analyzed by using five independent clustering methods to minimize potential biases and to increase confidence in the results. Our analyses collectively indicated significant variations in microbiome composition between super-shedding and non-shedding cattle. Super-shedders exhibited higher bacterial richness and diversity than non-shedders. Furthermore, seventy-two operational taxonomic units, mostly belonging to Firmicutes and Bacteroidetes phyla, were identified showing differential abundance between these two groups of cattle. The operational taxonomic unit affiliation provides new insight into bacterial populations that are present in feces arising from super-shedders of E. coli O157:H7.  相似文献   

19.
A medium (A-1) which shortens the time necessary to identify and enumerate Escherichia coli found in estuarine water was evaluated for use for recovery of E. coli found in shellfish. Productivity of E. coli by this medium was comparable to that of the lengthier American Public Health Association method, and the occurrence of false positives was substantially reduced.  相似文献   

20.
Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) cells were isolated from 191 fecal samples from cattle with gastrointestinal infections (diagnostic samples) collected in New South Wales, Australia. By using a multiplex PCR, E. coli cells possessing combinations of stx1, stx2, eae, and ehxA were detected by a combination of direct culture and enrichment in E. coli (EC) (modified) broth followed by plating on vancomycin-cefixime-cefsulodin blood (BVCC) agar for the presence of enterohemolytic colonies and on sorbitol MacConkey agar for the presence of non-sorbitol-fermenting colonies. The high prevalence of the intimin gene eae was a feature of the STEC (35 [29.2%] of 120 isolates) and contrasted with the low prevalence (9 [0.5%] of 1,692 fecal samples possessed STEC with eae) of this gene among STEC recovered during extensive sampling of feces from healthy slaughter-age cattle in Australia (M. Hornitzky, B. A. Vanselow, K. Walker, K. A. Bettelheim, B. Corney, P. Gill, G. Bailey, and S. P. Djordjevic, Appl. Environ. Microbiol. 68:6439-6445, 2002). Forty-seven STEC serotypes were identified, including O5:H−, O8:H19, O26:H−, O26:H11, O113:H21, O157:H7, O157:H− and Ont:H− which are known to cause severe disease in humans and 23 previously unreported STEC serotypes. Serotypes Ont:H− and O113:H21 represented the two most frequently isolated STEC isolates and were cultured from nine (4.7%) and seven (3.7%) animals, respectively. Fifteen eae-positive E. coli serotypes, considered to represent atypical EPEC, were identified, with O111:H− representing the most prevalent. Using both techniques, STEC cells were cultured from 69 (36.1%) samples and EPEC cells were cultured from 30 (15.7%) samples, including 9 (4.7%) samples which yielded both STEC and EPEC. Culture on BVCC agar following enrichment in EC (modified) broth was the most successful method for the isolation of STEC (24.1% of samples), and direct culture on BVCC agar was the most successful method for the isolation of EPEC (14.1% samples). These studies show that diarrheagenic calves and cattle represent important reservoirs of eae-positive E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号