首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During dog-fish spermatogenesis, chromatin undergoes a continuous processing which involves two basic protein transitions: the first from somatic-type histones to spermatid-specific proteins and the second leading to protamines. Two spermatid-specific proteins S1 and S2 were isolated from nuclei of spermatid-enriched testis zone and the amino acid sequence of S1 has been determined. S1 contains 87 amino acids and has a molecular mass of 11179 Da. It is mainly characterized by a high content of basic residues (45%) and the presence of one residue of cysteine. Its primary structure shows that the N-terminal half is highly basic while the hydrophobic residues are preferentially localized in the C-terminal region. Three forms of S1 are present in testis which correspond to di-, mono- and nonphosphorylated molecules. This spermatid-specific protein shares no common structural feature with either histones and dog-fish protamines or rat spermatid-specific protein which has been previously described.  相似文献   

2.
Protamine precursors in human spermatozoa   总被引:1,自引:0,他引:1  
Basic proteins isolated from human sperm nuclei are highly heterogeneous. Three groups of nuclear basic proteins have been characterized: somatic-type as well as testis-specific histones, protamines and basic proteins with an electrophoretic mobility which is intermediate between that of histones and that of protamines. Human protamines can be separated into 2 protein families with different amino acid composition and amino-acid sequence. Protamines HP1 differ in their degree of phosphorylation. Protamines HP2, 3 and 4 differ by their amino-terminal sequence. Intermediate basic proteins (HPI1, HPI2, HPS1, HPS2) share a common C-terminal sequence of 54 residues identical to the amino-acid sequence of protamine HP3; only their N-terminal regions are different. Taking into account these structural homologies, the intermediate basic protein HPI1 appears as a precursor of protamines HP2 and HP3.  相似文献   

3.
4.
Changes of chromosomal basic proteins of rats have been followed during transformation of spermatids into spermatozoa in the testis and during maturation of spermatozoa in the epididymis. Rat testis chromatin has been fractionated on the basis of differing sensitivity to shearing, yielding a soluble fraction and a condensed fraction. The sperm histone is found in the condense fraction. Somatic-type histones are found in both fractions. The somatic-type histones in the condensed fraction contains much more lysine-rich histone I, than does the somatic-type histones in the soluble fraction. This may suggest that the lysine-rich histone I is the last histone to be displaced during the replacement of somatic-type histones by sperm histone. After extensive shearing followed by sucrose centrifugation, the condensed portion of testis chromatin can be further fractionated into two morphologically distinctive fractions. One is a heavy fraction possessing an elongated shape typical of the head of late spermatids. The other is a light fraction which is presumably derived from spermatids at earlier stages of chromatin condensation and which is seen as a beaded structure in the light microscope. Sperm histone of testis chromatin can be extractable completely by guanidinium chloride without a thiol, wheras 2-mercaptoethanol is required for extraction of sperm histone from caput and cauda epididymal spermatozoa. The light fraction of the condensed testis chromatin contains unmodified and monophospho-sperm histone. The sperm histones of the heavy fraction is mainly of monophospho and diphospho species, whereas unmodified and monophosphosperm histones are found in caput and cauda epididymal spermatozoa. Labeling of cysteine sulfhydryl groups of sperm histone releases by 2-mercaptoethanol treatment shows that essentially all of the cysteine residues of sperm histone in testis chromatin are present as sulfhydryl groups, while those of sperm histone isolated from mature (cauda epididymal) spermatozoa are present as disulfide forms and approximately 50% of the cysteine residues of sperm histone obtained from caput epididymal spermatozoa are in disulfide forms. These results suggest that phosphorylation of sperm histone is involved in the process of chromatin condensation during transformation of spermatozoa in the epididymis.  相似文献   

5.
Nuclei of spermatozoa of the sea cucumber Holothuria tubulosa contain the five somatic-type histones plus a sperm-specific histone H1 and a unique basic protein phi 0, which is related to H1 in amino acid composition. No proteins of the High Mobility Group (HMG) type have been detected. The structure of this chromatin has been probed nuclease digestion. Its behaviour is anomalous, since two distinct fractions of chromatin are recovered from these spermatozoa, which differ either in the presence or absence of the sperm-specific proteins H1 and phi 0. This heterogeneous distribution is not found in conventional materials, such as calf thymus or chicken erythrocytes. Proteins H1 and phi 0 are not uniformly distributed and may be localized in special regions of chromatin. Fragments containing long stretches of nucleosomes lacking both proteins can be recovered. At the same time, the chromatin fractions which contain these two proteins are shown to be less soluble. When an extensive digestion of chromatin is carried out yielding only nucleosomes and small oligomers, the H1 and phi 0 proteins redistribute themselves on chromatin, the two proteins acting in a cooperative fashion in this process. Cross-linking experiments carried out in whole cells indicate a proximity of phi 0 and H1, whereas no crosslinks have been detected between phi 0 and any of the four nucleosomal histones. The phi 0 protein may thus play a role similar to histone H1 and be only loosely associated with nucleosomal histones, but contribute to the structuration of chromatin during spermiogenesis.  相似文献   

6.
To date several studies have been carried out which indicate that DNA of crustacean sperm is neither bound nor organized by basic proteins and, contrary to the rest of spermatozoa, do not contain highly packaged chromatin. Since this is the only known case of this type among metazoan cells, we have re-examined the composition, and partially the structure, of the mature sperm chromatin of Cancer pagurus, which has previously been described as lacking basic DNA-associated proteins. The results we present here show that: (a) sperm DNA of C. pagurus is bound by histones forming nucleosomes of 170 base pairs, (b) the ratio [histones/DNA] in sperm of two Cancer species is 0.5 and 0.6 (w/w). This ratio is quite lower than the proportion [proteins/DNA] that we found in other sperm nuclei with histones or protamines, whose value is from 1.0 to 1.2 (w/w), (c) histone H4 is highly acetylated in mature sperm chromatin of C. pagurus. Other histones (H3 and H2B) are also acetylated, though the level is much lower than that of histone H4. The low ratio of histones to DNA, along with the high level of acetylation of these proteins, explains the non-compact, decondensed state of the peculiar chromatin in the sperm studied here. In the final section we offer an explanation for the necessity of such decondensed chromatin during gamete fertilization of this species.  相似文献   

7.
Protamine-like proteins constitute a group of sperm nuclear basic proteins that have been shown to be related to somatic linker histones (histone H1 family). Like protamines, they usually replace the chromatin somatic histone complement during spermiogenesis; hence their name. Several of these proteins have been characterized to date in invertebrate organisms, but information about their occurrence and characterization in vertebrates is still lacking. In this sense, the genus Mullus is unique, as it is the only known vertebrate that has its sperm chromatin organized by virtually only protamine-like proteins. We show that the sperm chromatin of this organism is organized by two type I protamine-like proteins (PL-I), and we characterize the major protamine-like component of the fish Mullus surmuletus (striped red mullet). The native chromatin structure resulting from the association of these proteins with DNA was studied by micrococcal nuclease digestion as well as electron microscopy and X-ray diffraction. It is shown that the PL-I proteins organize chromatin in parallel DNA bundles of different thickness in a quite distinct arrangement that is reminiscent of the chromatin organization of those organisms that contain protamines (but not histones) in their sperm.  相似文献   

8.
The sperm nuclei of Aulacomya ater, family Mitylidae, contain three proteins (X, Aa5 and Aa6) which are specific to this cell type coexisting with a set of five somatic-type histones. Information about the chromatin structure resulting from this kind of association is scarce. Therefore, we have probed the structure of this sperm chromatin through digestion with micrococcal nuclease in combination with salt fractionation. The data obtained have allowed us to propose a nucleosomal arrangement for this chromatin. However, two types of nucleosomes would be present in agreement with their protein components.  相似文献   

9.
Nuclei of spermatozoa of the sea cucumber Holothuria tubulosa contain the five somatic-type histones plus a sperm-specific histone H1 and a unique basic protein 0, which is related to H1 in amino acid composition. No proteins of the High Mobility Group (HMG) type have been detected. The structure of this chromatin has been probed by nuclease digestion. Its behaviour is anomalous, since two distinct fractions of chromatin are recovered from these spermatozoa, which differ either in the presence or absence of the sperm-specific proteins H1 and 0. This heterogeneous distribution is not found in conventional materials, such as calf thymus or chicken erythrocytes. Proteins H1 and 0 are not uniformly distributed and may be localized in special regions of chromatin. Fragments containing long stretches of nucleosomes lacking both proteins can be recovered. At the same time, the chromatin fractions which contain these two proteins are shown to be less soluble. When an extensive digestion of chromatin is carried out yielding only nucleosomes and small oligomers, the H1 and 0 proteins redistribute themselves on chromatin, the two proteins acting in a cooperative fashion in this process. Cross-linking experiments carried out in whole cells indicate a proximity of 0 and H1, whereas no crosslinks have been detected between 0 and any of the four nucleosomal histones. The 0 protein may thus play a role similar to histone H1 and be only loosely associated with nucleosomal histones, but contribute to the structuration of chromatin during spermiogenesis.  相似文献   

10.
Sperm nuclear basic proteins (SNBPs) can be grouped into three main categories: histone (H) type, protamine (P) type, and protamine-like (PL) type. Protamine-like SNBPs represent the most structurally heterogeneous group, consisting of basic proteins which are rich in both lysine and arginine amino acids. The PL proteins replace most of the histones during spermiogenesis but to a lesser extent than the proteins of the P type. In most instances, PLs coexist in the mature sperm with a full histone complement. The replacement of histones by protamines in the mature sperm is a characteristic feature presented by those taxa located at the uppermost evolutionary branches of protostome and deuterostome evolution, while the histone type of SNBPs is predominantly found in the sperm of taxa which arose early in metazoan evolution; giving rise to the hypothesis that protamines may have evolved through a PL type intermediate from a primitive histone ancestor. The structural similarities observed between PL and H1 proteins, which were first described in bivalve molluscs, provide a unique insight into the evolutionary mechanisms underlying SNBP evolution. Although the evolution of SNBPs has been exhaustively analyzed in the last 10 years, the origin of PLs in relation to the evolution of the histone H1 family still remains obscure. In this work, we present the first complete gene sequence for two of these genes (PL-III and PL-II/PL-IV) in the mussel Mytilus and analyze the protein evolution of histone H1 and SNBPs, and we provide evidence that indicates that H1 histones and PLs are the direct descendants of an ancient group of "orphon" H1 replication-dependent histones which were excluded to solitary genomic regions as early in metazoan evolution as before the differentiation of bilaterians. While the replication-independent H1 lineage evolved following a birth-and-death process, the SNBP lineage has been subject to a purifying process that shifted toward adaptive selection at the time of the differentiation of arginine-rich Ps.  相似文献   

11.
Most DNA in human sperm is bound to highly basic proteins called protamines, but a small proportion is complexed with histones similar to those found in active chromatin. This raises the intriguing possibility that histones in sperm are marking sets of genes that will be preferentially activated during early development. We have examined the chromatin structure of members of the β-globin gene family, which are expressed at different times in development, and the protamine 2 gene, which is expressed in spermatids prior to the widespread displacement of histones by transition proteins. The genes coding for and γ globin, which are active in the embryonic yolk sac, contain regions which are histone associated in the sperm. No histone-associated regions are present at the sites tested within the β- and δ-globin genes which are silent in the embryonic yolk sac. The trends of histone or protamine association are consistent for samples from the same person, and no significant between-subject variations in these trends are found for 13 of the 15 fragments analyzed in the two donors. The results suggest that sperm chromatin structures are generally similar in different men but that the length of the histone-associated regions can vary. The association of sperm DNA with histones or protamines sometimes changes within as little as 400 bp of DNA, suggesting that there is fine control over the retention of histones.  相似文献   

12.
Male germ cells of the greater bandicoot rat, Bandicota indica, have recently been categorized into 12 spermiogenic steps based upon the morphological appearance of the acrosome and nucleus and the cell shape. In the present study, we have found that, in the Golgi and cap phases, round spermatid nuclei contain 10-nm to 30-nm chromatin fibers, and that the acrosomal granule forms a huge cap over the anterior pole of nucleus. In the acrosomal phase, many chromatin fibers are approximately 50 nm thick; these then thickened to 70-nm fibers and eventually became 90-nm chromatin cords that are tightly packed together into highly condensed chromatin, except where nuclear vacuoles occur. Immunocytochemistry and immunogold localization with anti-histones, anti-transition protein2, and anti-protamine antibodies suggest that histones remain throughout spermiogenesis, that transition proteins are present from step 7 spermatids and remain until the end of spermiogenesis, and that protamines appear at step 8. Spermatozoa from the cauda epididymidis have been analyzed by acid urea Triton X-100 polyacrylamide gel electrophoresis for basic nuclear proteins. The histones, H2A, H3, H2B, and H4, transitional protein2, and protamine are all present in sperm extracts. These findings suggest that, in these sperm of unusual morphology, both transition proteins and some histones are retained, a finding possibly related to the unusual nuclear form of sperm in this species.  相似文献   

13.
Chromatin condensation is a typical feature of sperm cells. During mammalian spermiogenesis, histones are first replaced by transition proteins and then by protamines, while little is known for Drosophila melanogaster. Here we characterize three genes in the fly genome, Mst35Ba, Mst35Bb, and Mst77F. The results indicate that Mst35Ba and Mst35Bb encode dProtA and dProtB, respectively. These are considerably larger than mammalian protamines, but, as in mammals, both protamines contain typical cysteine/arginine clusters. Mst77F encodes a linker histone-like protein showing significant similarity to mammalian HILS1 protein. ProtamineA-enhanced green fluorescent protein (eGFP), ProtamineB-eGFP, and Mst77F-eGFP carrying Drosophila lines show that these proteins become the important chromosomal protein components of elongating spermatids, and His2AvDGFP vanishes. Mst77F mutants [ms(3)nc3] are characterized by small round nuclei and are sterile as males. These data suggest the major features of chromatin condensation in Drosophila spermatogenesis correspond to those in mammals. During early fertilization steps, the paternal pronucleus still contains protamines and Mst77F but regains a nucleosomal conformation before zygote formation. In eggs laid by sesame-deficient females, the paternal pronucleus remains in a protamine-based chromatin status but Mst77F-eGFP is removed, suggesting that the sesame gene product is essential for removal of protamines while Mst77F removal is independent of Sesame.  相似文献   

14.
Basic spermal proteins of various species of hydrobionts attributed to Pisces and Cephalopoda are studied. It is established that chromatin of nine species referring to two Cypriniformes families includes the somatic histones. Histone H1 of Cypriniformes is attributed to the lysine-rich type histones and contains 35% mol. of lysine and 0.7% mol. of tyrosine. Chromatin of 14 species of fish referring to nine families of the percoid fish superorder includes protamines similar to salmin, a typical protamine of salmon. The amino acidic analysis of protamine from the sandre sperma has shown that it contains 59% mol. of arginine and no tyrosine. Chromatin of three species from squid superorder referring to Cephalopoda includes gametones -- proteins differing from histones and protamines both in the electrophoretic mobility and amino acidic composition (75% mol. of arginine, 3% mol. of tyrosine).  相似文献   

15.
The remodeling of nucleoproteins during dog-fish spermiogenesis involves two successive nuclear protein transitions: the first from somatic-type histones to transition proteins during the nuclear elongation of spermatids and the second leading to protamine-DNA association in mature spermatozoa. The chromatin of elongating spermatids contains two transition proteins called S1 and S2. The amino acid sequence of protein S1, a polypeptide of 87 residues was determined previously [Chauvière, M., Martinage, A., Briand, G., Sautière, P. & Chevaillier, Ph. (1987) Eur. J. Biochem. 169, 105-111]. In the present paper, we report the elucidation of the primary structure of the minor transition protein S2 established by automated Edman degradation of the protein and of its fragments generated by cleavage at methionine and aspartate residues. S2 contains 80 residues and has a molecular mass of 9726 Da. S2 is mainly characterized by a high content of basic amino acids mostly represented by lysine, a relatively high level of hydrophobic residues, the presence of six phosphorylatable residues and the lack of cysteine. Its amino acid sequence shows that the N-terminal half is highly basic, while the acidic residues are located in the C-terminal part of the protein where more diversity in amino acids is noticed. The two transition proteins S1 and S2 share striking structural similarities. Few but significative similarities have been detected with the mammalian transition protein TP1 [Kistler, W. S., Noyes, C., Hsu, R. & Heinrikson, R. L. (1975) J. Biol. Chem. 250, 1847-1853], suggesting similar functions for all these proteins in chromatin remodeling during sperm differentiation. By contrast, the two dog-fish spermatid-specific proteins are structurally unrelated to sperm protamines and cannot be considered as their precursors.  相似文献   

16.
Chromosomal proteins in the spermatogenesis of Drosophila   总被引:1,自引:0,他引:1  
Hennig W 《Chromosoma》2003,111(8):489-494
  相似文献   

17.
The chromatin of the spermatozoa from the bivalve molluscProtothaca thaca, has a peculiar composition in which coexist core histones with sperm-specific proteins H1 and Pt1, the latter being a protein exhibiting features intermediate between histones and protamines. In this paper, we report an analysis of chromatin organization using micrococcal nuclease digestion, salt fractionation of soluble chromatin derived from nuclease digestion and crosslinking experiments. The results obtained indicate that it is possible to obtain two types of chromatin, one which is soluble, more accessible to micrococcal nuclease action and which does not contain Pt1, and another insoluble type, more resistant to micrococcal nuclease and enriched in protein Pt1. The crosslinking experiments show that the protein Pt1 interacts with itself and with core histones but not with sperm-specific H1. These results have led us to propose a special structural arrangement for this chromatin. Based in the data reported here we propose the coexstence in the genome ofP. thaca of two interspersed chromatin domains, one nucleosomal and the other nonnucleosomal containing protein Pt1.  相似文献   

18.
19.
20.
We have analyzed the chromosomal protein composition of the sperm from several species belonging to three different classes (Hydrozoa, Scyphozoa, Anthozoa) of the phylum Cnidaria. In every instance, the sperm nuclear basic proteins (SNBPs) were found to consist of one to two major protein fractions that belong to the histone H1 family, as can be deduced from their amino acid composition and solubility in dilute perchloric acid, and the presence of a trypsin-resistant core. In those species where mature spawned sperm could be obtained, we were able to show that these proteins completely replace the somatic histones from the stem cells that are present at the onset of spermatogenesis. The presence of a highly specialized histone H1 molecule in the sperm of this phylum provides support for the idea that the protamine-like proteins (PL) from higher groups in the phylogenetic tree (and possibly protamines as well) may all have evolved from a primitive histone H1 ancestor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号