首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify intrinsic defects in lupus, we studied short-term, CD4(+) T cell lines that were established from 16 lupus patients (active or inactive) and 15 normal subjects by stimulating once with anti-CD3, anti-CD28, and IL-2. After resting, the pure CD4(+) T cells were exposed to anergy-inducing stimulation with plate-bound anti-CD3 mAb in the absence of APC. Lupus T cells showed prolonged high level expression of CD40 ligand (CD40L, CD154) even in the face of anergy protocol, which shut down CD40L expression in normal T cells. The sustained CD40L expression in lupus T cells did not correlate with memory status or Th deviation, and was relatively independent of IL-2 or other autocrine or paracrine signals via CD28 or CTLA-4. Cyclosporin A could block CD40L expression by lupus T cells when added early during the anti-CD3 stimulation period, but only partially when added later, indicating that another mechanism regulates the prolonged hyperexpression of CD40L besides the Ca(2+) --> calcineurin-dependent NF-AT pathway. When exposed to the anergy protocol, lupus T cells, in marked contrast to normal T cells, did not phosphorylate Cbl/Cbl-b but continued to express strongly phosphorylated extracellular signal-regulated kinase (ERK); U0126, a specific inhibitor of mitogen-activated protein kinase kinase --> ERK, could block both the early and the prolonged hyperexpression of CD40L. Thus, pathways regulating the activities of Cbl and one particular mitogen-activated protein kinase, ERK, are involved in the prolonged hyperexpression of CD40L in lupus T cells.  相似文献   

2.
The function of the T cell surface protein CD99 was investigated in human CD4(+) peripheral T cells. Crosslinking of the CD99 molecule using anti-CD99 mAbs in the presence of anti-CD3 Ab resulted in a marked enhancement of proliferation. CD99 coligation also enhanced CD25 expression and early markers of T cell activation, CD69 and CD40L. Ligation of CD99 resulted in the pronounced tyrosine phosphorylation of an approximately 29-kDa protein suggesting that a specific CD99-induced signal transduction pathway may exist. Simultaneous costimulation with anti-CD99 and anti-CD28 Abs appeared to have additive effects on CD40L expression while CD99 ligation had no effect on CD2-mediated T cell induction of CD40L expression. These results demonstrate that CD99 signal transduction can deliver effective costimulatory signals to T cells.  相似文献   

3.
We assessed the effect of the stimulatory anti-CD40 Ab on NK cell activation in vivo and the therapeutic potential of activated NK cells in tumor-bearing mice. Single-dose i.p. injection of the anti-CD40 Ab resulted in production of IL-12 and IFN-gamma in vivo, followed by a dramatic increase in NK cell cytolytic activity in PBLs. NK cell activation by anti-CD40 Ab was also observed in CD40 ligand knockout mice. Because NK cells express CD40 ligand but not CD40, our results suggest that NK activation is mediated by increased cytokine production upon CD40 ligation of APCs. Treatment of tumor-bearing mice with anti-CD40 Ab resulted in substantial antitumor and antimetastatic effects in three tumor models. Depletion of NK cells with anti-asialo GM1 Ab reduced or abrogated the observed antitumor effects in all the tested models. These results indicate that a stimulatory CD40 Ab indirectly activates NK cells, which can produce significant antitumor and antimetastatic effects.  相似文献   

4.
During cognate interaction with CD40 ligand (CD154)-expressing T cells, Ag-presenting accessory cells are activated for increased cytokine synthetic and costimulatory function. We examined whether CD40 modulates in vivo innate immune function over time, hypothesizing that distinct cytokine responses evolve to delayed microbial exposure. C3H/HeN mice pretreated with activating anti-CD40 Ab (FGK45) produced 10-fold more serum IFN-gamma and IL-12 p70 to delayed, but not synchronous, challenge with LPS. A novel finding was that LPS-induced IFN-alpha increased by 20-fold in mice pretreated for 24 h, but not 6 h or less, with anti-CD40. Anti-CD40-pretreated C57BL/6 RAG-2(-/-) mice similarly increased IFN-alpha responses to delayed LPS challenge, confirming mediation by innate immunity. Type I IFNR- and IFN-gamma-deficient mice treated with anti-CD40 failed to expand serum IFN-alpha responses to LPS challenge. Combined pretreatment with anti-CD40 and anti-IFN-gamma mAb showed that IFN-gamma produced after anti-CD40 pretreatment, but before LPS challenge, was necessary for IFN-alpha synthetic enhancement. Anti-CD40 also increased polyinosinic-polycytidylic acid (poly(I:C))-inducible IFN-alpha by 5-fold in an IFN-gamma-dependent fashion, but did not significantly increase IFN-alpha production to CpG or Pam(3)Cys challenges. Poly(IC)-stimulated splenocytes from anti-CD40-pretreated mice produced 4-fold more IFN-alpha than controls and production associated with CD11c(+) cells. Finally, rIFN-gamma and anti-CD40 combined synergistically to increase poly(IC)-inducible IFN-alpha synthetic capacity in bone marrow dendritic cells. We conclude that innate immune production of IFN-alpha is cooperatively regulated by CD40 and IFN-gamma acting on dendritic cells, suggesting a unique mechanism by which innate immune function evolves in response to specific adaptive immune signals.  相似文献   

5.
Type I IFNs are important for direct control of viral infection and generation of adaptive immune responses. Recently, direct stimulation of CD4(+) T cells via type I IFNR has been shown to be necessary for the formation of functional CD4(+) T cell responses. In contrast, we find that CD4(+) T cells do not require intrinsic type I IFN signals in response to combined TLR/anti-CD40 vaccination. Rather, the CD4 response is dependent on the expression of type I IFNR (IFNαR) on innate cells. Further, we find that dendritic cell (DC) expression of the TNF superfamily member OX40 ligand was dependent on type I IFN signaling in the DC, resulting in a reduced CD4(+) T cell response that could be substantially rescued by an agonistic Ab to the receptor OX40. Taken together, we show that the IFNαR dependence of the CD4(+) T cell response is accounted for exclusively by defects in DC activation.  相似文献   

6.
OX40 and its ligand (OX40L) have been implicated in T cell-dependent humoral immune responses. To further characterize the role of OX40/OX40L in T-B cell interaction, we newly generated an anti-mouse OX40L mAb (RM134L) that can inhibit the costimulatory activity of OX40L transfectants for anti-CD3-stimulated T cell proliferation. Flow cytometric analyses using RM134L and an anti-mouse OX40 mAb indicated that OX40 was inducible on splenic T cells by stimulation with immobilized anti-CD3 mAb in a CD28-independent manner, while OX40L was not expressed on resting or activated T cells. OX40L was inducible on splenic B cells by stimulation with anti-IgM Ab plus anti-CD40 mAb, but not by either alone. These activated B cells exhibited a potent costimulatory activity for anti-CD3-stimulated T cell proliferation and IL-2 production. Anti-CD80 and anti-CD86 mAbs partially inhibited the costimulatory activity, and further inhibition was obtained by their combination with RM134L and/or anti-CD70 mAb. We also found the anti-IgM Ab- plus anti-CD40 mAb-stimulated B cells exhibited a potent costimulatory activity for proliferation of and IL-2 production by anti-CD3-stimulated CD28- T cells from CD28-deficient mice, which was substantially inhibited by RM134L and/or anti-CD70 mAb. These results indicated that OX40L and CD70 expressed on surface Ig- and CD40-stimulated B cells can provide CD28-independent costimulatory signals to T cells.  相似文献   

7.
T cell suppression exerted by regulatory T cells represents a well-established phenomenon, but the mechanisms involved are still a matter of debate. Recent data suggest that anergic T cells can suppress responder T cell activation by inhibiting Ag presentation by dendritic cells (DC). In this study, we focused our attention on the mechanisms that regulate the susceptibility of DC to suppressive signals and analyzed the fate of DC and responder T cells. To address this issue, we have cocultured human alloreactive or Ag-specific CD4+ T cell clones, rendered anergic by incubation with immobilized anti-CD3 Ab, with autologous DC and responder T cells. We show that anergic T cells affect either Ag-presenting functions or survival of DC, depending whether immature or mature DC are used as APC. Indeed, MHC and costimulatory molecule expression on immature DC activated by responder T cells is inhibited, while apoptotic programs are induced in mature DC and in turn in responder T cells. Ligation of CD95 by CD95L expressed on anergic T cells in the absence of CD40-CD40L (CD154) interaction are critical parameters in eliciting apoptosis in both DC and responder T cells. In conclusion, these findings indicate that the defective activation of CD40 on DC by CD95L+ CD154-defective anergic T cells could be the primary event in determining T cell suppression and support the role of CD40 signaling in regulating both conditioning and survival of DC.  相似文献   

8.
The expansion of CD8(+) T cells in response to Ag can be characterized as either dependent or independent of CD4(+) T cells. The factors that influence this dichotomy are poorly understood but may be dependent upon the degree of inflammation associated with the Ag. Using dendritic cells derived from MHC class II-deficient mice to avoid interaction with CD4(+) T cells in vivo, we have compared the immunogenicity of peptide-pulsed dendritic cells stimulated with molecules associated with infection to those stimulated via CD40. In the absence of CD4(+) T cell help, the expansion of primary CD8(+) T cells after immunization with TNF-alpha- or poly(I:C)-stimulated dendritic cells was minimal. In comparison, LPS- or CpG-stimulated dendritic cells elicited substantial primary CD8(+) T cell responses, though not to the same magnitude generated by immunization with CD40L-stimulated dendritic cells. Remarkably, mice immunized with any stimulated dendritic cell population generated fully functional recall CD8(+) T cells without the aid of CD4(+) T cell help. The observed hierarchy of immunogenicity was closely correlated with the expression of CD70 (CD27L) on the stimulated dendritic cells, and Ab-mediated blockade of CD70 substantially prevented the CD4(+) T cell-independent expansion of primary CD8(+) T cells. These results indicate that the expression of CD70 on dendritic cells is an important determinant for helper-dependence of primary CD8(+) T cell expansion and provide an explanation for the ability of a variety of pathogens to stimulate primary CD8(+) T cell responses in the absence of CD4(+) T cells.  相似文献   

9.
In cancer, the coordinate engagement of professional APC and Ag-specific cell-mediated effector cells may be vital for the induction of effective antitumor responses. We speculated that the enhanced differentiation and function of dendritic cells through CD40 engagement combined with IL-2 administration to stimulate T cell expansion would act coordinately to enhance the adaptive immune response against cancer. In mice bearing orthotopic metastatic renal cell carcinoma, only the combination of an agonist Ab to CD40 and IL-2, but neither agent administered alone, induced complete regression of metastatic tumor and specific immunity to subsequent rechallenge in the majority of treated mice. The combination of anti-CD40 and IL-2 resulted in significant increases in dendritic cell and CD8(+) T cell number in advanced tumor-bearing mice compared with either agent administered singly. The antitumor effects of anti-CD40 and IL-2 were found to be dependent on CD8(+) T cells, IFN-gamma, IL-12 p40, and Fas ligand. CD40 stimulation and IL-2 may therefore be of use to promote antitumor responses in advanced metastatic cancer.  相似文献   

10.
Differences in murine follicular dendritic cells (FDC)-CD23 expression under Th1 vs Th2 conditions prompted the hypothesis that T cells help regulate the phenotype of FDCs. FDCs express CD40, suggesting that T cell-CD40L and lymphokines may be involved in regulating FDC-CD23. To test this, highly enriched FDCs were incubated with CD40L trimer or anti-CD40 to mimic T cell signaling in the presence of IFN-gamma or IL-4. Surface expression of CD23 was determined by flow cytometry, whereas mRNA levels of CD23 and its isoforms CD23a and CD23b were independently measured by quantitative PCR. When FDCs were incubated with either CD40L trimer or agonistic anti-CD40 Ab, the expression of FDC-CD23 was increased both at the mRNA and protein levels. Moreover, engagement of FDC-CD40 enhanced mRNA levels for both CD23a and CD23b isoforms. In addition, IFN-gamma substantially enhanced CD23a and CD23b mRNA levels in CD40-stimulated FDCs. Curiously, IL-4 could also up-regulate FDC-CD23a but not -CD23b. Anti-IFN-gamma dramatically inhibited FDC-CD23 in mice immunized with CFA, whereas anti-IL-4 had only a modest inhibitory effect. In contrast with FDCs, IFN-gamma inhibited surface expression of murine B cell-CD23 as well as mRNA for B cell CD23a and -CD23b, whereas IL-4 dramatically enhanced message for both isoforms as well as protein expression. In short, CD23 was regulated very differently in FDCs and B cells. Previous studies suggest that high levels of FDC-CD23 inhibit IgE production, and this IFN-gamma and CD40L-mediated up-regulation of FDC-CD23 may explain, at least in part, why Th1 responses are associated with low IgE responses in vivo.  相似文献   

11.
Sepsis causes a marked apoptosis-induced depletion of lymphocytes. The degree of lymphocyte apoptosis during sepsis strongly correlates with survival. CD40, a member of the TNFR family, is expressed on APCs and has potent antiapoptotic activity. In this study we determined whether an agonistic Ab against CD40 could protect lymphocytes from sepsis-induced apoptosis. Secondly, we examined potential antiapoptotic mechanisms of the putative protection. Lastly, we aimed to determine whether anti-CD40 treatment could improve survival in sepsis. CD1 mice were made septic by the cecal ligation and puncture method and treated postoperatively with anti-CD40 Ab. Treatment with anti-CD40 completely abrogated sepsis-induced splenic B cell death and, surprisingly, decreased splenic and thymic T cell death as well (p < 0.001). To investigate the mechanism of protection of anti-CD40 therapy on T cells, CD40 receptor expression was examined. As anticipated, the CD40 receptor was constitutively expressed on B cells, but, unexpectedly, splenic and thymic T cells were found to express CD40 receptor during sepsis. Furthermore, CD4+CD8- T cells were the predominant subtype of T cells expressing CD40 receptor during sepsis. Additionally, the antiapoptotic protein Bcl-x(L) was found to be markedly increased in splenic B and T cells as well as in thymic T cells after treatment with anti-CD40 Ab (p < 0.0025). Lastly, mice that were made septic in a double injury model of sepsis had improved survival after treatment with anti-CD40 as compared with controls (p = 0.05). In conclusion, anti-CD40 treatment increases Bcl-x(L), provides nearly complete protection against sepsis-induced lymphocyte apoptosis, and improves survival in sepsis.  相似文献   

12.
The proliferation of human peripheral and tonsillar B cells stimulated with the anti-CDw40 mAb 626.1 and/or anti-IgM antibody (Ab) in the presence of anti-CD45 mAb A.1.1 was investigated. The anti-CD45 mAb suppressed the anti-CDw40-stimulated proliferation of peripheral blood B cells but had no effect on the proliferation of unfractionated tonsillar B cells stimulated similarly. When tonsillar B cells were separated according to their sizes, the anti-CDw40-induced proliferation of small tonsillar B cells was inhibited by the anti-CD45 mAb, whereas large tonsillar B cells were resistant. In contrast, anti-IgM-induced proliferation of human B cells was always significantly inhibited by the anti-CD45 mAb regardless of cell size and tissue origin. The anti-CD45 mAb also inhibited the anti-IgM-induced initial rise in intracellular [Ca2+] and the G0-G1 cell cycle transition of small tonsillar B cells. However, co-stimulation with anti-IgM/anti-CDw40 Ab resulted in the resistance to the anti-CD45 inhibitory effect on proliferation of peripheral blood B cells and the majority of tonsillar B cells. In contrast, B cell proliferation co-stimulated with anti-IgM Ab/and B cell growth factors were always suppressed by the anti-CD45 mAb. These results demonstrate that certain activational signal mechanisms utilized by anti-CDw40/anti-IgM Ab and anti-IgM Ab/B cell growth factors are different in that B cells stimulated with these agents differ in their sensitivity to the anti-CD45 mAb. Moreover, both the activational state of human B cells and the nature of activation signals given determine their response to the inhibitory signals delivered by the anti-CD45 mAb.  相似文献   

13.
CD40 is an important costimulatory molecule for B cells as well as dendritic cells, monocytes, and other APCs. The ligand for CD40, CD154, is expressed on activated T cells, NK cells, mast cells, basophils, and even activated B cells. Although both CD40(-/-) and CD154(-/-) mice have impaired ability to isotype switch, form germinal centers, make memory B cells, and produce Ab, it is not entirely clear whether these defects are intrinsic to B cells, to other APCs, or to T cells. Using bone marrow chimeric mice, we investigated whether CD40 or CD154 must be expressed on B cells for optimal B cell responses in vivo. We demonstrate that CD40 expression on B cells is required for the generation of germinal centers, isotype switching, and sustained Ab production, even when other APCs express CD40. In contrast, the expression of CD154 on B cells is not required for the generation of germinal centers, isotype switching, or sustained Ab production. In fact, B cell responses are completely normal when CD154 expression is limited exclusively to Ag-specific T cells. These results suggest that the interaction of CD154 expressed by activated CD4 T cells with CD40 expressed by B cells is the primary pathway necessary to achieve B cell activation and differentiation and that CD154 expression on B cells does not noticeably facilitate B cell activation and differentiation.  相似文献   

14.
A gastric cancer (GC) cell line, AGS, has high-level expression of CD40, a tumor necrosis factor receptor (TNFR) family member. CD40 is present on the surfaces of a large variety of cells, including B cells, endothelial cells, dendritic cells and some carcinoma cells, and delivers signals regulating diverse cellular responses, such as proliferation, differentiation, growth suppression, and cell death. In this research, we studied the effects of different forms of CD40 stimulation on AGS cells by flow cytometry, Western blotting and siRNA transfection. We found that different forms of CD40 stimulation, either recombinant soluble CD40L (sCD40L, ligation) or agonist anti-CD40 antibody (cross-linking), induced different effects in AGS gastric cancer cells, proliferation or apoptosis. We also showed that VEGF provided a significant contribution to sCD40L-induced proliferation, while agonist anti-CD40 antibody induced GADD45 upregulation and promoted apoptosis.  相似文献   

15.
We report that the subsets of CD4+ T cells characterized by differential expression of CD45RA (2H4) Ag showed significant differences in proliferative response to immobilized anti-CD3 antibody (Ab) and cytokines: IL-1, IL-2, IL-4, and IL-6. Most strikingly, CD4+/45RA+ but not CD4+/45RA- T cells responded to anti-CD3 Ab and IL-4. Similar difference in response to IL-4 occurred when the subsets were stimulated by two "alternative" T cell activation pathways via CD2 and GD3 Ag. The response of CD4+/45RA+ cells to anti-CD3 Ab and IL-4 was enhanced by the two monokines: IL-1 and IL-6. Further differences between the subsets included the preferential response of the CD4+/45RA+ cells to enhancing effect of IL-6 on proliferation mediated by the anti-CD3 Ab and IL-2. In contrast to IL-6, IL-1 was unable to increase this proliferation significantly. In turn, the CD4+/45RA- cells responded preferentially to a weak stimulation mediated by anti-CD3 Ab either alone, or together with IL-1 and IL-6. Existence of these significant differences in the response of CD4+ T cell subsets costimulatory effects of the cytokines, suggests that the in vivo events resulting in an accumulation of the cytokines in particular combinations may lead to selective activation of one of the CD4+ T cell subsets during the immune response.  相似文献   

16.
DNA-based vaccines generate potent CTL responses. The mechanism of T cell stimulation has been attributed to plasmid-transfected dendritic cells. These cells have also been shown to express plasmid-encoded proteins and to become activated by surface marker up-regulation. However, the increased surface expression of CD40 and B7 on these dendritic cells is insufficient to overcome the need for MHC class II-restricted CD4(+) T cell help in the priming of a CTL response. In this study, MHC class II(-/-) mice were unable to generate a CTL response following DNA immunization. This deficit in CTL stimulation by MHC class II-deficient mice was only modestly restored with CD40-activating Ab, suggesting that there were other elements provided by MHC class II-restricted T cell help for CTL induction. CTL activity was also augmented by coinjection with a vector encoding the costimulatory ligand B7.1, but not B7.2. These data indicate that dendritic cells in plasmid DNA-injected mice require conditioning signals from MHC class II-restricted T cells that are both CD40 dependent and independent and that there are different roles for costimulatory molecules that may be involved in inducing optimal CTL activity.  相似文献   

17.
Previously, we have shown that priming of therapeutic CD8(+) T cells in tumor vaccine-draining lymph nodes of mice vaccinated with GM-CSF secreting B16BL6 melanoma cells occurs independent of CD4 T cell help. In this study, we examined the contribution of the major costimulatory molecules, CD40 ligand (CD40L), CD80, and CD86, in the priming of CD8(+) T cells. Priming of therapeutic CD8(+) T cells by a GM-CSF-transduced tumor vaccine did not require CD40 and CD40L interactions, as therapeutic T cells could be generated from mice injected with anti-CD40L Ab and from CD40L knockout mice. However, costimulation via either CD80 or CD86 was required, as therapeutic T cells could be generated from mice injected with either anti-CD80 or anti-CD86 Ab alone, but administration of both Abs completely inhibited the priming of therapeutic T cells. Blocking experiments also identified that priming of therapeutic T cells in MHC class II-deficient mice required TNFR and IL-12 signaling, but signaling through CD40, lymphotoxin-betaR, or receptor activator of NF-kappaB was not essential. Thus, cross-priming of therapeutic CD8(+) T cells by a tumor vaccine transduced with GM-CSF requires TNFR, IL-12, and CD28 signaling.  相似文献   

18.
Excessive apoptosis and prolonged inflammation of alveolar cells are associated with the pathogenesis of pulmonary emphysema. We aimed to determine whether CD40 affects alveolar epithelial cells and endothelial cells, with regard to evoking apoptosis and inflammation. Mice were repeatedly treated with agonistic-anti CD40 antibody (Ab), with or without agonistic-anti Fas Ab, and evaluated for apoptosis and inflammation in lungs. Human pulmonary microvascular endothelial cells and alveolar epithelial cells were treated with agonistic anti-CD40 Ab and/or anti-Fas Ab to see their direct effect on apoptosis and secretion of proinflammatory molecules in vitro. Furthermore, plasma soluble CD40 ligand (sCD40L) level was evaluated in patients with chronic obstructive pulmonary disease (COPD). In mice, inhaling agonistic anti-CD40 Ab induced moderate alveolar enlargement. CD40 stimulation, in combination with anti-Fas Ab, induced significant emphysematous changes and increased alveolar cell apoptosis. CD40 stimulation also enhanced IFN-γ-mediated emphysematous changes, not via apoptosis induction, but via inflammation with lymphocyte accumulation. In vitro, Fas-mediated apoptosis was enhanced by CD40 stimulation and IFN-γ in endothelial cells and by CD40 stimulation in epithelial cells. CD40 stimulation induced secretion of CCR5 ligands in endothelial cells, enhanced with IFN-γ. Plasma sCD40L levels were significantly increased in patients with COPD, inversely correlating to the percentage of forced expiratory volume in 1 s and positively correlating to low attenuation area score by CT scan, regardless of smoking history. Collectively CD40 plays a contributing role in the development of pulmonary emphysema by sensitizing Fas-mediated apoptosis in alveolar cells and increasing the secretion of proinflammatory chemokines.  相似文献   

19.
Functional activation of T cells requires ligation of Ag receptors with specific peptides presented by MHC molecules on APCs concurrent with appropriate contacts of cell surface accessory molecules. Among these accessory molecules, interactions between CD28/CTLA-4 with B7 family members (CD80 and CD86) and CD40 with CD40 ligand (CD40L) play a decisive role in regulating the progression of balanced immune responses. However, most information regarding the role of accessory molecules in immune responses has been derived in the context of signals from the TCRs. Little understanding has been achieved regarding the consequence of ligation of costimulation molecules in absence of signals from the TCR. By employing an in vivo murine system, we show, herein, that ligation of CD28 alone with anti-CD28 Abs leads to a dramatic enlargement of the peripheral lymphoid organs characterized primarily by the expansion of B cells. B cells from anti-CD28-treated mice are resistant to spontaneous and anti-IgM-induced apoptosis. These cells are also unsusceptible to FasL-mediated apoptosis. Interestingly, this in vivo effect of CD28 on B cells is largely mediated by inducing the expression of CD40L, since coadministration of a blocking Ab against CD40L inhibited CD28-mediated B cell survival and expansion. Therefore, CD28-mediated expression of CD40L may play an important role in the regulation of lymphocyte homeostasis.  相似文献   

20.
CD154 is transiently expressed by activated T cells and interacts with CD40 on B cells, dendritic cells, macrophages, and monocytes. This costimulatory receptor-ligand couple seems decisive in Ag-driven immune responses but may be differentially involved in type 1 vs type 2 responses. We studied the importance of CD40-CD154 in both responses using the reporter Ag popliteal lymph node assay in which selectively acting drugs generate clearly polarized type 1 (streptozotocin) or type 2 (D-penicillamine, diphenylhydantoin) responses to a constant coinjected Ag in the same mouse strain. Treatment of mice with anti-CD154 reduced characteristic immunological parameters in type 2 responses (B and CD4(+) T cell proliferation, IgG1 and IgE Abs, and IL-4 secretion) and only slightly affected the type 1 response (small decrease in IFN-gamma production, influx of CD11c(+) and F4/80(+) cells, and prevention of architectural disruption of the lymph node, but no effect on IgG2a Ab and TNF-alpha secretion or B and CD4(+) T cell proliferation). The findings indicate that the CD40-CD154 costimulatory interaction is a prerequisite in drug-induced type 2 responses and is only marginally involved in type 1 responses. The observed expression patterns of CD80 and CD86 on different APC (B cells in type 2 and dendritic cells in type 1) may be responsible for this discrepancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号