首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
光强对喜树幼苗叶片次生代谢产物喜树碱的影响   总被引:18,自引:5,他引:18  
王洋  戴绍军  阎秀峰 《生态学报》2004,24(6):1118-1122
喜树碱是我国特有树种——喜树中所含的重要次生代谢产物 ,在人工控制条件下观察了光强对喜树幼苗叶片喜树碱含量的影响。喜树幼苗叶片的喜树碱含量随着遮荫程度的增加 (光照强度降低 )而增加 ,但严重遮荫的 (光强为全光照的 2 0 % )在处理后期 (75 d)喜树碱含量降低。叶片的喜树碱产量 (喜树碱含量与叶片生物量乘积 )在处理初期 (30 d)随光强减弱而缓慢地略有增加 ,处理后期 (45 d以后 )随光强的减弱而有明显增加 ,但光强低于全光照的 6 0 %以后喜树碱产量迅速下降。喜树碱的增加可能是喜树幼苗通过次生代谢过程对不良环境 (遮荫 )的一种适应性反应  相似文献   

2.
丛枝菌根对喜树幼苗生长和氮、磷吸收的影响   总被引:12,自引:0,他引:12       下载免费PDF全文
喜树(Camptotheca acuminata)是我国特有的多年生亚热带落叶阔叶树种,因其次生代谢产物喜树碱具有良好的抗肿瘤活性而受到人们的广泛关注。该文通过温室盆栽接种试验,观察了2属6种丛枝菌根真菌即蜜色无梗囊霉(Acaulospora mellea)、光壁无梗囊霉(A. laevis)、木薯球囊霉(Glomus manihot)、地表球囊霉(G. versiforme)、幼套球囊霉(G. etunicatum)和透光球囊霉(G. diaphanum)对喜树幼苗生长和氮、磷养分吸收的影响。结果表明,丛枝菌根的形成对喜树幼苗的生长以及氮、磷营养的吸收均有影响。从生物量看,除幼套球囊霉和光壁无梗囊霉侵染形成的丛枝菌根喜树幼苗与无菌根幼苗(CK)差异不显著外,其余菌根幼苗的生物量均明显大于无菌根幼苗,透光球囊霉和蜜色无梗囊霉菌根幼苗尤为突出,分别达到无菌根幼苗的1.9和1.4倍。丛枝菌根的形成似乎不利于喜树幼苗的氮素营养吸收,并且主要体现在叶片的氮含量上。相反,丛枝菌根形成总体上促进喜树幼苗对磷素营养的吸收,并且主要体现在根的磷含量上。与无菌根幼苗比,所有菌根幼苗根的氮、磷分配比例增加,而叶片的氮、磷分配比例减少。  相似文献   

3.
Camptothecin, over four decades of surprising findings   总被引:18,自引:0,他引:18  
Lorence A  Nessler CL 《Phytochemistry》2004,65(20):2735-2749
Camptothecin (CPT) is a modified monoterpene indole alkaloid produced by Camptotheca acuminata (Nyssaceae), Nothapodytes foetida, Pyrenacantha klaineana, Merrilliodendron megacarpum (Icacinaceae), Ophiorrhiza pumila (Rubiaceae), Ervatamia heyneana (Apocynaceae) and Mostuea brunonis (Gelsemiaceae), species belonging to unrelated orders of angiosperms. From the distribution of CPT and other secondary metabolites, it has been postulated that the genes encoding enzymes involved in their biosynthesis evolved early during evolution. These genes were presumably not lost during evolution but might have been "switched off" during a certain period of time and "switched on" again at some later point. The CPT derivatives, irinotecan and topotecan, are used throughout the world for the treatment of various cancers, and over a dozen more CPT analogues are currently at various stages of clinical development. The worldwide market size of irinotecan/topotecan in 2002 was estimated at about $750 million and at $1 billion by 2003. In spite of the rapid growth of the market, CPT is still harvested by extraction from bark and seeds of C. acuminata and N. foetida. All parts of C. acuminata contain some CPT, although the highest level is found in young leaves (approximately 4-5 mg g(-1) dry weight), approximately 50% higher than in seeds and 250% higher than in bark. The development of hairy root cultures of O. pumila and C. acuminata, and the cloning and characterization of genes encoding key enzymes of the pathway leading to CPT formation in plants has opened new possibilities to propose alternative and more sustainable production systems for this important alkaloid.  相似文献   

4.
滤光膜对喜树幼苗叶片生长和喜树碱含量的影响   总被引:14,自引:4,他引:14  
喜树 (Camptotheca acuminata)为中国特有树种 ,因其次生代谢产物喜树碱具有抗癌作用而闻名。通过用黄色、红色、蓝色 3种滤光膜对温室栽培的喜树幼苗进行遮光处理 ,研究了不同光照环境下喜树幼苗叶片生物量、叶绿素含量、光合作用和喜树碱含量的差异。结果表明在 30 d的遮光过程中 ,红膜和蓝膜遮光明显导致幼苗叶片生物量降低 ,黄膜遮光下幼苗叶片生物量在处理后 2 5 d才表现明显降低。不同滤光膜下幼苗叶片叶绿素含量先降低然后升高 ,遮光幼苗的叶绿素 a/ b明显低于日光幼苗。幼苗日最大净光合速率的顺序是 :日光 >黄膜 >红膜 >蓝膜。处理后第 2 0天 ,不同滤光膜下幼苗的光饱和光合速率 (Amax)、光饱和点 (Is)、光补偿点 (Ic)、最大表观量子效率 (AQYmax)都不同程度的低于日光幼苗。处理后第 10天至第 30天 ,遮光幼苗叶片喜树碱含量均显著高于日光下幼苗 ,以蓝膜下幼苗的喜树碱含量最高。蓝膜和黄膜下幼苗的喜树碱产量在后期处理中显著高于日光下幼苗 ,蓝膜下幼苗喜树碱产量在第 30天最高 ,是日光下幼苗的 2 .4 9倍。红膜下幼苗的喜树碱产量在第 10天后与日光下幼苗差异不显著。通过滤光膜遮光促进喜树碱在幼苗叶片中的积累 ,提高了叶片喜树碱产量 ,对喜树碱的生产实践有一定的意义  相似文献   

5.
Seedlings and coppice shoots of Betula pubescens Ehrh. were grown under controlled conditions designed to simulate the annual growth cycle, and a water stress was introduced during the short day (SD). Alleviation of hud dormancy after increasing periods at chilling temperatures was tested under long day (LD) conditions. Abscisic acid (ABA) was analysed in leaf and bud samples by gas chromatography-mass spectrometry using [2H4]ABA as the internal standard. Elongation growth of coppice shoots was faster than that of seedlings under both LD and SD conditions, while the final growth cessation occurred in a similar manner and was not affected by water stress, which significantly reduced growth rate in both plant types. Bud dormancy gradually decreased with increasing length of chilling, starting from the basal parts of the plant axis. Water stress did not retard hudhurst. but rather improved it in the chilled coppice shoots and in the non-chilled and partially chilled seedlings. Water content of buds was higher in coppice shoots than in seedlings, but after exposure to SD. it gradually decreased to 45% in both plant types and was not affected by water stress or chilling. The ABA level in both leaves and buds increased during SD treatment and was" enhanced by water stress. No clear differences in bud ABA level were found between the seedlings and coppice shoots under SD conditions, although coppice shoots had less ABA during the preceding LD conditions. There was, in general, no clear effect of chilling on bud ABA level. Budbursl in chilled, single-node cuttings was inhibited by external ABA treatment, which raised the internal ABA levels 10 to 150 times above normal. The observed correlation between ABA level and water content in buds during induction of dormancy under SD and water stress conditions indicates a possible role for ABA in the regulation of dormancy.  相似文献   

6.
Naturally occurring camptothecins (CPT) are important sources of chemotherapeutic agents for clinical treatment of cancer. Extraction of CPT from Camptotheca acuminata trees remains to be a cost-effective way in the supply equation compared with a total synthesis. This study conducted a series of experiments to determine efficient solvent for the maximal extraction of CPT and its two derivatives, hydroxycamptothecin (HCPT) and methoxycamptothecin, from seeds and leaves of C. acuminata. Methanol as an extraction solvent demonstrated in seeds a significantly higher recovery of these three alkaloids than dichloromethane and acetone. Methanol concentrations at 70% in water resulted in maximum extraction of all the three alkaloids regardless of the type of plant materials. However, other strengths of methanol, lower or higher, either decreased the extracting power or showed no improvement in the extraction. Seed extract contained all the three alkaloids whereas leaf extract was absent of HCPT. A stable ratio of the three alkaloids was discovered but it was dependent upon seed or leaf extract of C. acuminata, which with various compositions can be produced. Ecological and medicinal implications of the leaf and seed extract characterized with different chemical compositions are discussed.  相似文献   

7.
植物在长期的生态环境适应过程中,产生了包括生物碱在内的大量次生代谢物.本文以我国特有树种--喜树(Camptotheca acuminata Decaisne)为材料,研究其不同器官中喜树碱(camptothecin,CPT)和10-羟基喜树碱(10-hydroxycamptothecin,HCPT)在不同热激温度和时间情况下的含量变化.CPT和HCPT变化呈现出较好的相互消长关系,并且分别在38℃和40℃达到各自的峰值,比以丙二醛和叶绿素为指标的致死温度低了2~4℃;HCPT在热激过程中的变化较CPT活跃;极易受到攻击和伤害的嫩叶中的生物碱含量变化最大.由此推断,CPT和HCPT遵循"幼嫩和生殖器官优先保护"的原则,从而有效地缓解了高温胁迫,并且HCPT和CPT代表了不同的防御策略.  相似文献   

8.
Biosynthesis of secondary metabolites may be affected by environmental stimuli. In the present work, the effect of drought on the levels of an indole alkaloid (camptothecin [CPT]) in Camptotheca acuminata seedlings was investigated. Three seed sources, one from its native habitat in China and two from earlier introductions to the United States, in Texas and South Carolina, were used to compare response patterns. Progressive drought stress significantly reduced biomass production in the 3 seed sources of C. acuminata . Stomatal conductance closely followed the drought cycles, indicating the stress levels experienced by the plants. Leaf CPT concentrations showed a strong increase in the initial drought cycle in all seed sources except Texas, but they deviated in the second drought cycle, in which the South Carolina source continued to increase, whereas the Chinese and Texas seed sources decreased. CPT was inducible by drought, but the sustainability of the drought effect on leaf CPT concentrations was low and varied among seed sources.  相似文献   

9.
Responses of canola (Brassica napus L.) seedlings to three ultraviolet (UV)-B levels [0 (zero), 5 (ambient) and 10 (enhanced) kJ m?2 d?1], two watering regimes (well-watered and water-stressed), and two abscisic acid (ABA) levels (with and without application) were investigated. Overall, enhanced UVB and water stress negatively affected plant growth and physiology, but ABA had very little effect. Enhanced UVB decreased stem height, leaf area, plant dry matter, water use efficiency and wax content, but increased concentrations of chlorophyll a, carotenoids and flavonoids, and ethylene evolution. Water stress reduced stem height and diameter, leaf area, plant dry matter, leaf weight ratio and shoot:root weight ratio under zero and ambient UVB. Water stress also reduced chlorophyll a and carotenoids in plants exposed to enhanced UVB. ABA with watering regime had significant interactive effects only on leaf dry matter and wax content. We found that enhanced UVB and water stress adversely affected B. napus seedlings. Interaction between these two factors affected plant performance. In this interaction, ABA had little significant role. Also, optimum vegetative growth and biomass were achieved under ambient UVB.  相似文献   

10.
不同光环境的四川大头茶幼苗的生态适应   总被引:20,自引:2,他引:18  
肖春旺  刘玉成 《生态学报》1999,19(3):422-426
将4年生的四川大头茶幼苗置于按全光照百分率为100%(S100)、55%(S55),33%(S33)和18%(S18)的人控光环境下处理。结果表明,不同光环境的四川大头茶幼勒的叶数,叶面积和叶大小的生长动态具有显著差异,且全光照的幼苗生长动态曲线波动最大,主要是因为日照胁迫所致,S100的幼苗地上部分生长最差,S55生长最好,后遮阴强度增大而下降;地下根系生长随光强增加而增加,主分量分析能很好地反  相似文献   

11.
The effects of the cytokinin benzyladenine (BA) and the auxin naphthalene acetic acid (NAA) on Camptotheca acuminata Decaisne growth and camptothecin (CPT) accumulation (leaf CPT concentration and total leaf CPT yield) were studied in a hydroponic culture system for three weeks. Increasing BA concentrations from 0 to 3 mg l–1 in growth medium decreased plant height, stem weight, and leaf weight but increased root weight. High BA levels (1 and 3 mg l–1) increased leaf CPT concentration (% of dry weight), whereas BA applications had no effect on total leaf CPT yield, the product of leaf CPT concentration and total leaf dry weight per seedling. There was a positive correlation between root weight and leaf CPT concentration under BA treatments. NAA supplementations (from 0.5 to 4 mg l–1) to growth medium reduced plant height, leaf number, leaf length, specific leaf weight, plant weight, stem weight, and leaf weight compared with the NAA control. Meanwhile, there were no differences in plant height, leaf length, and specific leaf weight among the NAA supplementations. NAA applications had no effect on leaf CPT concentration and NAA applications decreased total leaf CPT yield. There were negative correlations between leaf number and leaf CPT concentration, leaf length and leaf CPT concentration under NAA treatments. Our results suggest that BA applications from 0.3 to 3 mg l–1 are not helpful for achieving high total leaf CPT yield and NAA applications from 0.5 to 4 mg l–1 decrease total leaf CPT yield.  相似文献   

12.
13.
殷东生  魏晓慧 《植物研究》2018,38(6):828-833
采用盆栽实验的方法,设置4种水平氮肥处理,研究不同氮肥处理对风箱果1年生幼苗的生长表现、生物量积累和分配、光合生理特征、非结构性碳(NSC)积累等的影响。结果表明:施用氮肥促进了风箱果幼苗的地径、分枝数和冠幅的生长,促进了茎、叶和总生物量的积累(P<0.05),提高了茎的生物量分配比例,减少了根生物量的分配比例;施用氮肥显著提高了净光合速率、叶氮含量、茎中的可溶性糖和NSC的积累(P<0.05),但减少了根中的可溶性糖和NSC含量(P<0.05)。不同水平氮肥处理间(N1、N2、N3)的大部分指标差异并不显著,说明风箱果幼苗对土壤养分的变化并不敏感。  相似文献   

14.
A growth chamber experiment was conducted to determine if P fertilization to enhance the P nutrition of otherwise N and P deficient Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] seedlings reduces water stress in the seedlings during drought periods. Seedlings were grown in pasteurized mineral soil under well-watered conditions and fertilized periodically with a small amount of nutrient solution containing P at either of three levels: 0, 20, or 50 mg P L-1. By age 6 mo, leaf nutrient analysis indicated that N and P were deficient in control (0 mg P L-1) seedlings. The highest level of P fertilization, which doubled leaf P concentration, did not affect plant biomass, suggesting that N deficiency was limiting growth. When these seedlings were subjected to drought, there was no effect of P fertilization on leaf water potential or osmotic potential. Furthermore, P fertilized seedlings had lower stomatal conductance and net photosynthesis rate. These results indicate that enhanced P nutrition, in the presence of N deficiency, does not reduce water stress in Douglas fir seedlings during drought periods.  相似文献   

15.
American sycamore ( Platanus occidentalis L.) seedlings were grown in the field under different urea-nitrogen fertilization regimes to identify physiological variables that characterize the growth response. Treatments included fertilization at the beginning of the growing season with 50, 150, 450 kg N ha−1, fertilization 3 times each at 37.5 kg N ha−1 and unfertilized control. The greatest aboveground biomass accumulation (3× that of control) occurred in plots fertilized with 450 kg N ha−1, but nearly as much growth occurred when 37.5 kg N ha−1 was added periodically. Photosynthesis, chlorophyll concentrations and growth increased rapidly after the midseason application of 37.5 kg N ha−1 but not after the late-season application. Although nitrogen fertilization increased leaf area per plant, leaf nitrogen concentration did not differ between treatments. There was no evidence to indicate that fertilization extended the physiologically active season or increased susceptibility to drought or cold. Sycamore leaves accumulated sucrose and mannose in response to water stress in all treatments. Photosynthetic pigment concentrations and net photosynthetic rate were the most sensitive indicators of growth response to nitrogen fertilization in the first growing season. Careful timing (based on physiological indicators) of low level applications of nitrogen fertilizer can optimize growth.  相似文献   

16.
Changes of ABA levels in chilled rice (Oryza sativa L.) seedlings of two varieties were determined. On exposure to chilling, ABA concentration rapidly increased in the chilling-tolerant cultivar (cv. Tainung 67, TNG.67) but not in the chilling-sensitive cultivar (cv. Taichung Native 1, TN.1). Both detached shoots and roots of TNG.67 seedlings showed a significant ABA increase after exposure to chilling. TN.1 seedlings could not accumulate ABA under low temperature but well-watered status. Exogenous application of the ABA biosynthetic inhibitor, fluridone, reduced ABA accumulation, as well as survival ratio of chilled TNG.67 seedlings. Electrolyte leakage and leaf conductance were also increased by the inhibitor and the effects could be reversed by exogenously applied ABA. ABA concentrations in xylem sap of TNG.67 seedlings increased within 4 h after chilling, and this was temporally coincident with the reduction of leaf conductance. The roles of endogenous ABA in the tolerance of rice seedlings to chilling on a whole plant basis are discussed and suggested.  相似文献   

17.
The influence of arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae and Rhizophagus intraradices, on plant growth, leaf water status, chlorophyll concentration, photosynthesis, nutrient concentration, and fractal dimension (FD) characteristics of black locust (Robinia pseudoacacia L.) seedlings was studied in pot culture under well-watered, moderate drought stress, and severe drought stress treatments. Mycorrhizal seedlings had higher dry biomass, leaf relative water content (RWC), and water use efficiency (WUE) compared with non-mycorrhizal seedlings. Under all treatments, AMF colonization notably enhanced net photosynthetic rate, stomatal conductance, and transpiration rate, but decreased intercellular CO2 concentration. Leaf chlorophyll a and total chlorophyll concentrations were higher in AM seedlings than those in non-AM seedlings although there was no significant difference between AMF species. AMF colonization improved leaf C, N, and P concentrations, but decreased C:N, C:P, and N:P ratios. Mycorrhizal seedlings had a larger FD value than non-mycorrhizal seedlings. The FD value was positively and significantly correlated to the plant growth parameters, photosynthesis, RWC, WUE, and nutrient concentration but negatively correlated to leaf/stem ratio, C:N and C:P ratios, and intercellular CO2 concentration. We conclude that AMF lead to an improvement of growth performance of black locust seedlings under all growth conditions, including drought stress via improving leaf water status, chlorophyll concentration, photosynthesis, and nutrient uptake. Moreover, FD technology proved to be a powerful non-destructive method to characterize the effect of AMF on the physiology of host plants during drought stress.  相似文献   

18.
The experiments were carried out with maize (Zea mays L.) seedlings, hybrid Kneja 530, grown hydroponically in a growth chamber. Twelve-day-old plants were foliar treated with putrescine, N1-(2-chloro-4-pyridyl)-N2-phenylurea (4-PU-30), and abscisic acid (ABA) at concentrations of 10−5 m. Twenty-four hours later the plants were subjected to a water deficit program, induced by 15% polyethylene glycol (PEG; molecular weight, 6,000). Three days after drought stress half of the plants were transferred to nutrient solution for the next 3 days. The effects of the water shortage, rewatering, and plant growth regulator (PGR) treatment on the fresh and dry weights, leaf pigment content, proline level, relative water content (RWC), transpiration rate, activities of catalase and guaiacol peroxidase, hydrogen peroxide content, and level of the products of lipid peroxidation were studied. It was established that the application of PGRs alleviated to some extent the plant damage provoked by PEG stress. At the end of the water shortage program the plants treated with these PGRs possessed higher fresh weight than drought-subjected control seedlings. It was found also that putrescine increased the dry weight of plants. Under drought, the RWC and transpiration rate of seedlings declined, but PGR treatment reduced these effects. The accumulation of free proline, malondialdehyde, and hydrogen peroxide was prevented in PGR-treated plants compared with the water stress control. The results provided further information about the influence of putrescine, 4-PU-30, and ABA on maize plants grown under normal, drought, and rewatering conditions. Received September 25, 1997; accepted August 10, 1998  相似文献   

19.
接种时期对丛枝菌根喜树幼苗喜树碱含量的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
喜树(Camptotheca acuminata)是我国特有的多年生亚热带落叶阔叶树种, 因其次生代谢产物喜树碱具有良好的抗肿瘤活性而受到人们的广泛关注。通过温室盆栽接种试验, 观察了喜树幼苗不同生长时期接种蜜色无梗囊霉(Acaulospora mellea)和根内球囊霉(Glomus intraradices)对喜树幼苗喜树碱积累的影响。结果表明接种两种丛枝菌根真菌均促进了喜树幼苗喜树碱的积累, 表现为喜树碱产量(单株幼苗所含的喜树碱量, 喜树碱含量与幼苗生物量的乘积)的显著提高。进一步分析发现, 接种丛枝菌根真菌导致幼喜树苗喜树碱产量的提高, 早期(幼苗出土20天)接种主要是源于喜树碱含量的提高, 特别是叶片喜树碱含量的提高, 而晚期(幼苗出土60天)接种则主要是源于幼苗生物量的增加。  相似文献   

20.
The abscisic acid (ABA) analog 8′ acetylene ABA methyl ester (PBI 429) was evaluated for its potential to alter the growth and moisture use of bedding plants during nursery production. Treating seedlings with the ABA analog as a root-dip slowed moisture use and growth of tomato seedlings under greenhouse conditions. In marigolds, comparable ABA analog treatments had no effect on growth and limited effects on plant moisture use. To determine whether these differences in response to treatment with the ABA analog were associated with differences in absorption of the analog and/or its persistence, the ABA analog was applied either as a foliar spray or root-dip, and the resulting concentrations of the ABA analog were monitored over a 10-day interval in both the roots and the leaves. In both crops, the ABA analog was detected in both leaf and root tissues irrespective of the mode of application, suggesting systemic movement of the analog. Tissue concentrations of the ABA analog were consistently lower in the foliar treatment than in the root-dip. The uptake and the retention of the ABA analog over time was similar in leaves of the two test crops, but less of the ABA analog was absorbed and retained in the roots of marigold plants than in the tomatoes. This suggests that the observed differences in responses of these two plant species to application of ABA analogs may be related to differences in retention or accumulation of ABA in the roots rather than to differences in the total amount of ABA analog absorbed or its movement and retention in the plant system. Levels of endogenous ABA were not significantly altered by application of the ABA analog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号