首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Nuclei migrate during many events, including fertilization, establishment of polarity, differentiation, and cell division. The Caenorhabditis elegans KASH protein UNC-83 localizes to the outer nuclear membrane where it recruits kinesin-1 to provide the major motor activity required for nuclear migration in embryonic hyp7 cells. Here we show that UNC-83 also recruits two dynein-regulating complexes to the cytoplasmic face of the nucleus that play a regulatory role. One consists of the NudE homolog NUD-2 and the NudF/Lis1/Pac1 homolog LIS-1, and the other includes dynein light chain DLC-1, the BicaudalD homolog BICD-1, and the Egalitarian homologue EGAL-1. Genetic disruption of any member of these two complexes caused nuclear migration defects that were enhanced in some double mutant animals, suggesting that BICD-1 and EGAL-1 function in parallel to NUD-2. Dynein heavy chain mutant animals also had a nuclear migration defect, suggesting these complexes function through dynein. Deletion analysis indicated that independent domains of UNC-83 interact with kinesin and dynein. These data suggest a model where UNC-83 acts as the cargo-specific adaptor between the outer nuclear membrane and the microtubule motors kinesin-1 and dynein. Kinesin-1 functions as the major force generator during nuclear migration, while dynein is involved in regulation of bidirectional transport of the nucleus.  相似文献   

2.
Nuclear distribution gene C (NudC) was first found in Aspergillus nidulans as an upstream regulator of NudF, whose mammalian homolog is Lissencephaly 1 (Lis1). NudC is conserved from fungi to mammals. Vertebrate NudC has three homologs: NudC, NudC-like protein (NudCL), and NudC-like protein 2 (NudCL2). All members of the NudC family share a conserved p23 domain, which possesses chaperone activity both in conjunction with and independently of heat shock protein 90 (Hsp90). Our group and the others found that NudC homologs were involved in cell cycle regulation by stabilizing the components of the LIS1/dynein complex. Additionally, NudC plays important roles in cell migration, ciliogenesis, thrombopoiesis, and the inflammatory response. It has been reported that NudCL is essential for the stability of the dynein intermediate chain and ciliogenesis via its interaction with the dynein 2 complex. Our data showed that NudCL2 regulates the LIS1/dynein pathway by stabilizing LIS1 with Hsp90 chaperone. The fourth distantly related member of the NudC family, CML66, a tumor-associated antigen in human leukemia, contains a p23 domain and appears to promote oncogenesis by regulating the IGF-1R-MAPK signaling pathway. In this review, we summarize our current knowledge of the NudC family and highlight its potential clinical relevance.  相似文献   

3.
LIS1, a gene mutated in classical lissencephaly, plays essential roles in cytoplasmic dynein regulation, mitosis and cell migration. However, the regulation of LIS1 (lissencephaly protein 1) protein remains largely unknown. Genetic studies in Aspergillus nidulans have uncovered that the Nud (nuclear distribution) pathway is involved in the regulation of cytoplasmic dynein complex and a temperature-sensitive mutation in the nudC gene (L146P) greatly reduces the protein levels of NudF, an Aspergillus ortholog of LIS1. Here, we showed that L146 in Aspergillus NudC and its flanking region were highly conservative during evolution. The similar mutation in human NudC (L279P) obviously led to reduced LIS1 and cellular phenotypes similar to those of LIS1 down-regulation. To explore the underlying mechanism, we found that the p23 domain-containing protein NudC bound to the molecular chaperone Hsp90, which is also associated with LIS1. Inhibition of Hsp90 chaperone function by either geldanamycin or radicicol resulted in a decrease in LIS1 levels. Ectopic expression of Hsp90 partially reversed the degradation of LIS1 caused by overexpression of NudC-L279P. Furthermore, NudC was found to regulate the ATPase activity of Hsp90, which was repressed by the mutation of L279P. Interestingly, NudC itself was shown to possess a chaperone function, which also was suppressed by the L279P mutation. Together, these data suggest that NudC may be involved in the regulation of LIS1 stability by its chaperone function.  相似文献   

4.
Small heat-shock proteins (sHsps) are ubiquitous stress proteins with molecular chaperone activity. They share characteristic homology with the α-crystallin protein of the mammalian eye lens as well as being ATP-independent in their chaperone activity. We isolated a clone for a cytosolic class I sHsp,NtHSP17.6, fromNicotiana tabacum, and analyzed its functional mode for such activity. Following its transformation intoEscherichia coli and its over-expression, NtHSPI 7.6 was purified and examinedin vitro. This purified NtHSPI 7.6 exhibited typical chaperone activity in a light-scattering test. It was enable to protect a model substrate, firefly luciferase, from heat-induced aggregation. Non-denaturing PAGE showed that NtHSP17.6 formed a dodecamer in its native conformation, and was bound to its substrate under heat stress. A labeling test with bis-ANS indicated that this binding might be linked to newly exposed hydrophobic sites of the NtHSPI 7.6 complexes during heat shock. Based on these data, we suggest that NtHSP17.6 is a molecular chaperone that functions as a dodecamer in a heat-induced manner.  相似文献   

5.
6.
NudC is a highly conserved protein necessary for cytoplasmic dynein-mediated nuclear migration in Aspergillus nidulans. NudC interacts genetically with Aspergillus NudF and physically with its mammalian orthologue Lis1, which is crucial for nuclear and neuronal migration during brain development. To test for related roles for NudC, we performed in utero electroporation into embryonic rat brain of cDNAs encoding shRNAs as well as wild-type and mutant forms of NudC. We show here that NudC, like Lis1, is required for neuronal migration during neocorticogenesis and we identify a specific role in apical nuclear migration in radial glial progenitor cells. These results identify a novel neuronal migration gene with a specific role in interkinetic nuclear migration, consistent with cytoplasmic dynein regulation.  相似文献   

7.
Large-conductance calcium and voltage-activated potassium channels, termed SLO-1 (or BK), are pivotal players in the regulation of cell excitability across the animal phyla. Furthermore, emerging evidence indicates that these channels are key mediators of a number of neuroactive drugs, including the most recent new anthelmintic, the cyclo-octadepsipeptide emodepside. Detailed reviews of the structure, function and pharmacology of BK channels have recently been provided (Salkoff et al. in Nat Rev Neurosci 7:921–931, 2006; Ghatta et al. in Pharmacol Ther 110:103–116, 2006) and therefore these aspects will only briefly be covered here. The purpose of this review is to discuss how SLO-1 channels might function as regulators of neural transmission and network activity. In particular, we focus on the role of SLO-1 in the regulation of Caenorhabditis elegans behaviour and highlight the role of this channel as an effector for pleiotropic actions of neuroactive drugs, including emodepside. On the premise that C. elegans is a ‘model nematode’ with respect to many aspects of neural function, the intention is that this might inform a broader understanding of the role of these channels in the nematodes and their potential as novel anthelmintic targets.  相似文献   

8.
The NudC family consists of four conserved proteins with representatives in all eukaryotes. The archetypal nudC gene from Aspergillus nidulans is a member of the nud gene family that is involved in the maintenance of nuclear migration. This family also includes nudF, whose human orthologue, Lis1, codes for a protein essential for brain cortex development. Three paralogues of NudC are known in vertebrates: NudC, NudC-like (NudCL), and NudC-like 2 (NudCL2). The fourth distantly related member of the family, CML66, contains a NudC-like domain. The three principal NudC proteins have no catalytic activity but appear to play as yet poorly defined roles in proliferating and dividing cells. We present crystallographic and NMR studies of the human NudC protein and discuss the results in the context of structures recently deposited by structural genomics centers (i.e., NudCL and mouse NudCL2). All proteins share the same core CS domain characteristic of proteins acting either as cochaperones of Hsp90 or as independent small heat shock proteins. However, while NudC and NudCL dimerize via an N-terminally located coiled coil, the smaller NudCL2 lacks this motif and instead dimerizes as a result of unique domain swapping. We show that NudC and NudCL, but not NudCL2, inhibit the aggregation of several target proteins, consistent with an Hsp90-independent heat shock protein function. Importantly, and in contrast to several previous reports, none of the three proteins is able to form binary complexes with Lis1. The availability of structural information will be of help in further studies on the cellular functions of the NudC family.  相似文献   

9.
Substrate transfer from the chaperone Hsp70 to Hsp90   总被引:5,自引:0,他引:5  
Hsp90 is an essential chaperone protein in the cytosol of eukaryotic cells. It cooperates with the chaperone Hsp70 in defined complexes mediated by the adaptor protein Hop (Sti1 in yeast). These Hsp70/Hsp90 chaperone complexes play a major role in the folding and maturation of key regulatory proteins in eukaryotes. Understanding how non-native client proteins are transferred from one chaperone to the other in these complexes is of central importance. Here, we analyzed the molecular mechanism of this reaction using luciferase as a substrate protein. Our experiments define a pathway for luciferase folding in the Hsp70/Hsp90 chaperone system. They demonstrate that Hsp70 is a potent capture device for unfolded protein while Hsp90 is not very efficient in this reaction. When Hsp90 is absent, in contrast to the in vivo situation, Hsp70 together with the two effector proteins Ydj1 and Sti1 exhibits chaperone activity towards luciferase. In the presence of the complete chaperone system, Hsp90 exhibits a specific positive effect only in the presence of Ydj1. If this factor is absent, the transferred luciferase is trapped on Hsp90 in an inactive conformation. Interestingly, identical results were observed for the yeast and the human chaperone systems although the regulatory function of human Hop is completely different from that of yeast Sti1.  相似文献   

10.
The cell division control protein (Cdc2) kinase is a catalytic subunit of a protein kinase complex, called the M phase promoting factor, which induces entry into mitosis and is universal among eukaryotes. This protein is believed to play a major role in cell division and control. The lives of biological cells are controlled by proteins interacting in metabolic and signaling pathways, in complexes that replicate genes and regulate gene activity, and in the assembly of the cytoskeletal infrastructure. Our knowledge of protein–protein (P–P) interactions has been accumulated from biochemical and genetic experiments, including the widely used yeast two-hybrid test. In this paper we examine if P–P interactions in regenerating tissues and cells of the anuran Xenopus laevis can be discovered from biomedical literature using computational and literature mining techniques. Using literature mining techniques, we have identified a set of implicitly interacting proteins in regenerating tissues and cells of Xenopus laevis that may interact with Cdc2 to control cell division. Genome sequence based bioinformatics tools were then applied to validate a set of proteins that appear to interact with the Cdc2 protein. Pathway analysis of these proteins suggests that Myc proteins function as the regulator of M phase initiation by controlling expression of the Akt1 molecule that ultimately inhibits the Cdc2-cyclin B complex in cells. P–P interactions that are implicitly appearing in literature can be effectively discovered using literature mining techniques. By applying evolutionary principles on the P–P interacting pairs, it is possible to quantitatively analyze the significance of the associations with biological relevance. The developed BioMap system allows discovering implicit P–P interactions from large quantity of biomedical literature data. The unique similarities and differences observed within the interacting proteins can lead to the development of the new hypotheses that can be used to design further laboratory experiments.  相似文献   

11.
Despite mitochondria and chloroplasts having their own genome, 99% of mitochondrial proteins (Rehling et al., Nat Rev Mol Cell Biol 5:519–530, 2004) and more than 95% of chloroplast proteins (Soll, Curr Opin Plant Biol 5:529–535, 2002) are encoded by nuclear DNA, synthesised in the cytosol and imported post-translationally. Protein targeting to these organelles depends on cytosolic targeting factors, which bind to the precursor, and then interact with membrane receptors to deliver the precursor into a translocase. The molecular chaperones Hsp70 and Hsp90 have been widely implicated in protein targeting to mitochondria and chloroplasts, and receptors capable of recognising these chaperones have been identified at the surface of both these organelles (Schlegel et al., Mol Biol Evol 24:2763–2774, 2007). The role of these chaperone receptors is not fully understood, but they have been shown to increase the efficiency of protein targeting (Young et al., Cell 112:41–50, 2003; Qbadou et al., EMBO J 25:1836–1847, 2006). Whether these receptors contribute to the specificity of targeting is less clear. A class of chaperone receptors bearing tetratricopeptide repeat domains is able to specifically bind the highly conserved C terminus of Hsp70 and/or Hsp90. Interestingly, at least of one these chaperone receptors can be found on each organelle (Schlegel et al., Mol Biol Evol 24:2763–2774, 2007), which suggests a universal role in protein targeting for these chaperone receptors. This review will investigate the role that chaperone receptors play in targeting efficiency and specificity, as well as examining recent in silico approaches to find novel chaperone receptors.  相似文献   

12.
We identified families of proteins characterized by the presence of a domain similar to human p23 protein, which include proteins such as Sgt1, involved in the yeast kinetochore assembly; melusin, involved in specific interactions with the cytoplasmic integrin beta1 domain; Rar1, related to pathogenic resistance in plants, and to development in animals; B5+B5R flavo-hemo cytochrome NAD(P)H oxidoreductase type B in humans and mice; and NudC, involved in nucleus migration during mitosis. We also found that p23 and the HSP20/alpha-crystallin family of heat shock proteins, which share the same three-dimensional folding, show a pattern of conserved residues that points to a common origin in the evolution of both protein domains. The p23 and HSP20/alpha-crystallin phylogenetic relationship and their similar role in chaperone activity suggest a common function, probably involving protein-protein interaction, for those proteins containing p23-like domains.  相似文献   

13.
Konar M  Alam MS  Arora C  Agrawal P 《The FEBS journal》2012,279(15):2781-2792
whiB-like genes have been found in all actinomycetes sequenced so far. The amino-acid sequences of WhiB proteins of Mycobacterium?tuberculosis H37Rv are highly conserved and participate in several cellular functions. Unlike other WhiB proteins of M.?tuberculosis that have properties of protein disulfide reductases, WhiB2 showed properties like a chaperone as it suppressed the aggregation of several model substrates (e.g. citrate synthase, rhodanese and luciferase). Suppression of aggregation of the model substrates did not require ATP. Four cysteine residues of WhiB2 form two intramolecular disulfide bonds; however, chaperone function was unaffected by the redox state of the cysteines. WhiB2 also restored the activity of chemically denatured citrate synthase and did not require either ATP or a co-chaperone for refolding. The results indicate that WhiB2, which has been shown to be associated with cell division in mycobacteria and streptomyces, has evolved independently of other WhiBs, although it retains basic properties of this group of proteins. This is the first report to show that a WhiB protein has chaperone-like function; therefore, this report will have major implications in attempts to understand the role of WhiB proteins in mycobacteria, particularly in cell division.  相似文献   

14.
In eukaryotes, highly conserved Dna2 helicase/endonuclease proteins are involved in DNA replication, DNA double-strand break repair, telomere regulation, and mitochondrial function. The Dna2 protein assists Fen1 (Flap structure-specific endonuclease 1) protein in the maturation of Okazaki fragments. In yeast, Dna2 is absolutely essential for viability, whereas Fen1 is not. In Caenorhabditis elegans, however, CRN-1 (a Fen1 homolog) is essential, but Dna2 is not. Here we explored the biological function of C. elegans Dna2 (Cedna-2) in multiple developmental processes. We find that Cedna-2 contributes to embryonic viability, the morphogenesis of both late-stage embryos and male sensory rays, and normal life span. Our results support a model whereby CeDNA-2 minimizes genetic defects and maintains genome integrity during cell division and DNA replication. These finding may provide insight into the role of Dna2 in other multi-cellular organisms, including humans, and could have important implications for development and treatment of human conditions linked to the accumulation of genetic defects, such as cancer or aging.  相似文献   

15.
16.
Heat stress proteins can be assigned to eleven protein families conserved among bacteria, plants and animals. Most of them aid other proteins to maintain or regain their native conformation by stabilizing partially unfolded states. Hence, they are called molecular chaperones. Experimental data indicate that many of them form heterooligomeric complexes, so-called chaperone machines, interacting with each other to generate a network for maturation, assembly and intracellular targeting of proteins. In this review we summarize the essential information on the structure and function of chaperone and chaperone complexes. In addition we present a compilation ofin vivo andin vivo test systems used in the preceding ten years of chaperone research.  相似文献   

17.
Cytoplasmic dynein is a microtubule-dependent motor protein that functions in mitotic cells during centrosome separation, metaphase chromosome congression, anaphase spindle elongation, and chromosome segregation. Dynein is also utilized during interphase for vesicle transport and organelle positioning. While numerous cellular processes require cytoplasmic dynein, the mechanisms that target and regulate this microtubule motor remain largely unknown. By screening a conditional Caenorhabditis elegans cytoplasmic dynein heavy chain mutant at a semipermissive temperature with a genome-wide RNA interference library to reduce gene functions, we have isolated and characterized twenty dynein-specific suppressor genes. When reduced in function, these genes suppress dynein mutants but not other conditionally mutant loci, and twelve of the 20 specific suppressors do not exhibit sterile or lethal phenotypes when their function is reduced in wild-type worms. Many of the suppressor proteins, including two dynein light chains, localize to subcellular sites that overlap with those reported by others for the dynein heavy chain. Furthermore, knocking down any one of four putative dynein accessory chains suppresses the conditional heavy chain mutants, suggesting that some accessory chains negatively regulate heavy chain function. We also identified 29 additional genes that, when reduced in function, suppress conditional mutations not only in dynein but also in loci required for unrelated essential processes. In conclusion, we have identified twenty genes that in many cases are not essential themselves but are conserved and when reduced in function can suppress conditionally lethal C. elegans cytoplasmic dynein heavy chain mutants. We conclude that conserved but nonessential genes contribute to dynein function during the essential process of mitosis.  相似文献   

18.
70 kDa heat shock proteins (Hsp70s) act as molecular chaperones involved in essential cellular processes such as protein folding and protein transport across membranes. They also play a role in the cell’s response to a wide range of stress conditions. The Arabidopsis family of Hsp70s homologues includes two highly conserved proteins, cpHsc70-1 and cpHsc70-2 which are both imported into chloroplasts (Su and Li in Plant Physiol 146:1231–1241, 2008). Here, we demonstrate that YFP-fusion proteins of both cpHsc70-1 and cpHsc70-2 are predominantly stromal, though low levels were detected in the thylakoid membrane. Both genes are ubiquitously expressed at high levels in both seedlings and adult plants. We further show that both cpHsc70-1 and cpHsc70-2 harbour ATPase activity which is essential for Hsp70 chaperone activity. A previously described T-DNA insertion line for cpHsc70-1 (ΔcpHsc70-1) has variegated cotyledons, malformed leaves, growth retardation, impaired root growth and sensitivity to heat shock treatment. In addition, under stress conditions, this mutant also exhibits unusual sepals, and malformed flowers and sucrose concentrations as low as 1% significantly impair growth. cpHsc70-1/cpHsc70-2 double-mutants are lethal. However, we demonstrate through co-suppression and artificial microRNA (amiRNA) approaches that transgenic plants with severely reduced levels of both genes have a white and stunted phenotype. Interestingly, chloroplasts in these plants have an unusual morphology and contain few or no thylakoid membranes. Our data show that cpHsc70-1 and cpHsc70-2 are essential ATPases, have overlapping roles and are required for normal plastid structure.  相似文献   

19.
Correct spindle positioning is fundamental for proper cell division during development and in stem cell lineages. Dynein and an evolutionarily conserved ternary complex (nuclear mitotic apparatus protein [NuMA]–LGN–Gα in human cells and LIN-5–GPR-1/2–Gα in Caenorhabditis elegans) are required for correct spindle positioning, but their relationship remains incompletely understood. By analyzing fixed specimens and conducting live-imaging experiments, we uncovered that appropriate levels of ternary complex components are critical for dynein-dependent spindle positioning in HeLa cells and C. elegans embryos. Moreover, using mutant versions of Gα in both systems, we established that dynein acts at the membrane to direct spindle positioning. Importantly, we identified a region within NuMA that mediates association with dynein. By using this region to target dynein to the plasma membrane, we demonstrated that the mere presence of dynein at that location is sufficient to direct spindle positioning in HeLa cells. Overall, we propose a model in which the ternary complex serves to anchor dynein at the plasma membrane to ensure correct spindle positioning.  相似文献   

20.
Part of the challenge of the post-genomic world is to identify functional elements within the wide array of information generated by genome sequencing. Although cross-species comparisons and investigation of rates of sequence divergence are an efficient approach, the relationship between sequence divergence and functional conservation is not clear. Here, we use a comparative approach to examine questions of evolutionary rates and conserved function within the guanine nucleotide-binding protein (G protein) gene family in nematodes of the genus Caenorhabditis. In particular, we show that, in cases where the Caenorhabditis elegans ortholog shows a loss-of-function phenotype, G protein genes of C. elegans and Caenorhabditis briggsae diverge on average three times more slowly than G protein genes that do not exhibit any phenotype when mutated in C. elegans, suggesting that genes with loss of function phenotypes are subject to stronger selective constraints in relation to their function in both species. Our results also indicate that selection is as strong on G proteins involved in environmental perception as it is on those controlling other important processes. Finally, using phylogenetic footprinting, we identify a conserved non-coding motif present in multiple copies in the genomes of four species of Caenorhabditis. The presence of this motif in the same intron in the gpa-1 genes of C. elegans, C. briggsae and Caenorhabditis remanei suggests that it plays a role in the regulation of gpa-1, as well as other loci.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号