首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasion of host cells by apicomplexan parasites is initiated when specialized secretory organelles called micronemes discharge protein complexes onto the parasite surface in response to a rise in parasite intracellular calcium levels. The microneme proteins establish interactions with host cell receptors, engaging the parasite with the host cell surface, and signal for the immediate exocytosis of another set of secretory organelles named the rhoptries. The rhoptry proteins reprogram the invaded host cell and participate in the formation of the parasitophorous vacuole in which the intracellular parasite resides and replicates. Disengagement of the invading parasite from the host cell receptors involves the action of at least one parasite plasma membrane rhomboid protease, which is concomitantly implicated in a checkpoint that signals the parasite to switch from an invasive to a replicative mode.  相似文献   

2.
The erythrocytic entry- and exit-mechanisms of Aegyptianella pullorum were investigated and characterized by scanning (SEM) and transmission electron microscopy (TEM) using for TEM ruthenium red as a marker of the red cell plasmalemma. The scanned Aegyptianella preparations produced static evidence of an endocytosis followed by an erythrocytic vesiculation as the possible mode of entrance of initial bodies into erythrocytes. The presence of ruthenium red only coating the membrane around the parasitophorous vacuole during the whole invasive process and the complete absence of the stain inside the host cell indicate that the entry of aegyptianellas is accomplished by invagination of the host cell plasmalemma and is not preceded nor followed by its breakage, furthermore unequivocally proving the intracellular parasitism of A. pullorum during its reproductive cycle. One possible mode of exit of initial bodies from parasitized erythrocytes appeared to be the invasive mechanism in reverse order, an exocytosis. Generally, however, the affected erythrocytes are parasitogenically injured, resulting in release of the parasites into the plasma and, subsequently, in host cell lysis.  相似文献   

3.
Enteropathogenic Escherichia coli (EPEC) causes diarrhoea in children in developing countries. Many EPEC genes involved in virulence are contained within the locus of enterocyte effacement (LEE), a large pathogenicity island. One of the genes at the far righthand end of the LEE encodes EspF, an EPEC secreted protein of unknown function. EspF, like the other Esps, is a substrate for secretion by the type III secretory system. Previous studies found that an espF mutant behaved as wild type in assays of adherence, invasion, actin condensation and tyrosine phosphorylation. As EPEC can kill host cells, we tested esp gene mutants for host cell killing ability. The espF mutant was deficient in host cell killing despite having normal adherence. The addition of purified EspF to tissue culture medium did not cause any damage to host cells, but expression of espF in COS or HeLa cells caused cell death. The mode of cell death in cells transfected with espF appeared to be pure apoptosis. EspF appears to be an effector of host cell death in epithelial cells; its proline-rich structure suggests that it may act by binding to SH3 domains or EVH1 domains of host cell signalling proteins.  相似文献   

4.
哺乳动物细胞表达系统及其研究进展   总被引:1,自引:0,他引:1  
从表达载体、宿主细胞、表达系统的类型及选择等四个方面对哺乳动物细胞系统进行了综述。对相关的研究进展,如高效启动子的发现和改构、新型细胞株的建立及诱导表达调控系统亦作了简要介绍。通过这些阐述,期望能建立一个简洁而清晰的有关该表达系统的框架,对在实验中决定选取何种载体、细胞株或何种表达方式时能够有所提示。  相似文献   

5.
Salmonella enterica are facultative intracellular bacteria that cause intestinal and systemic diseases, and replicate within host cells in a membrane-bound compartment, the Salmonella-containing vacuole. Intravacuolar bacterial replication depends on spatiotemporal regulated interactions with host cell vesicular compartments. Recent studies have shown that type III secretion effector proteins control both the vacuolar membrane dynamics and intracellular positioning of bacterial vacuoles. The functions of these effectors, which are beginning to be understood, disclose a complex hijacking of host cell microtubule motors--kinesins and dynein--and regulators of their function, and suggest interactions with the Golgi complex. Here, we discuss current models describing the mode of action of Salmonella type III secretion effector proteins involved in these processes.  相似文献   

6.
本文对梨胶锈菌性子期和锈子期菌丝吸器的形成方式、吸器及其与寄主细胞界面的超微结构进行了研究。观察结果表明:梨胶锈菌性子期和锈子期寄主胞间菌丝吸器的形成方式有两种:一种是由寄主胞间菌丝直接形成吸器;另一种是由寄主胞间菌丝先形成吸器母细胞,然后由吸器母细胞形成吸器。吸器在开始形成时只是一个乳头状的侵入楔,以后逐渐形成囊状、镰刀状、指状及其它不规则形状的吸器。多数吸器分化为颈和吸器主体两部分,在颈部及部分吸器主体外有一个由类似寄主细胞壁物质形成的领圈。吸器内部的超微结构与寄主胞间菌丝基本相同,但吸器壁比胞间菌丝或吸器母细胞的壁薄。吸器鞘的厚度随着吸器伸长膨大 而逐渐增厚。  相似文献   

7.
Key surface proteins of pathogens and their toxins bind to the host cell receptors in a manner that is quite different from the way the natural ligands bind to the same receptors and direct normal cellular responses. Here we describe a novel strategy for "non-antibody-based" pathogen countermeasure by targeting the very same "alternative mode of host receptor binding" that the pathogen proteins exploit to cause infection and disease. We have chosen the Staphylococcus enterotoxin B (SEB) superantigen as a model pathogen protein to illustrate the principle and application of our strategy. SEB bypasses the normal route of antigen processing by binding as an intact protein to the complex formed by the MHC class II receptor on the antigen-presenting cell and the T cell receptor. This alternative mode of binding causes massive IL-2 release and T cell proliferation. A normally processed antigen requires all the domains of the receptor complex for its binding, whereas SEB requires only the alpha1 subunit (DRalpha) of the MHC class II receptor and the variable beta subunit (TCRVbeta) of the T cell receptor. This prompted us to design a bispecific chimera, DRalpha-linker-TCRVbeta, that acts as a receptor mimic and prevents the interaction of SEB with its host cell receptors. We have adopted (GSTAPPA)(2) as the linker sequence because it supports synergistic binding of DRalpha and TCRVbeta to SEB and thereby makes DRalpha-(GSTAPPA)(2)-TCRVbeta as effective an SEB binder as the native MHC class II-T cell receptor complex. Finally, we show that DRalpha-(GSTAPPA)(2)-TCRVbeta inhibits SEB-induced IL-2 release and T cell proliferation at nanomolar concentrations.  相似文献   

8.
There are few examples of host signals that are beneficial to bacteria during infection. Here we found that 31 out of 42 host immunoregulatory chemokines were able to induce release of the virulence factor protein A (SPA) from a strain of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). Detailed study of chemokine CXCL9 revealed that SPA release occurred through a post-translational mechanism and was inversely proportional to bacterial density. CXCL9 bound specifically to the cell membrane of CA-MRSA, and the related SPA-releasing chemokine CXCL10 bound to both cell wall and cell membrane. Clinical samples from patients infected with S. aureus and samples from a mouse model of CA-MRSA skin abscess all contained extracellular SPA. Further, SPA-releasing chemokines were present in mouse skin lesions infected with CA-MRSA. Our data identify a potential new mode of immune evasion, in which the pathogen exploits a host defense factor to release a virulence factor; moreover, chemokine binding may serve a scavenging function in immune evasion by S. aureus.  相似文献   

9.
The host cell cytoskeleton is known to play a vital role in the life cycles of several pathogenic intracellular microorganisms by providing the basis for a successful invasion and by promoting movement of the pathogen once inside the host cell cytoplasm. McCoy cells infected with Chlamydia trachomatis serovars E or L2 revealed, by indirect immunofluorescence microscopy, collocation of microtubules and Chlamydia -containing vesicles during the process of migration from the host cell surface to a perinuclear location. The vast majority of microtubule-associated Chlamydia vesicles also collocated with tyrosine-phosphorylated McCoy cell proteins. After migration, the Chlamydia -containing vesicles were positioned exactly at the centre of the microtubule network, indicating a microtubule-dependent mode of chlamydial redistribution. Inhibition of host cell dynein, a microtubule-dependent motor protein known to be involved in directed vesicle transport along microtubules, was observed to have a pronounced effect on C. trachomatis infectivity. Furthermore, dynein was found to collocate with perinuclear aggregates of C. trachomatis E and L2 but not C. pneumoniae VR-1310, indicating a marked difference in the cytoskeletal requirements for C. trachomatis and C. pneumoniae during early infection events. In support of this view, C. pneumoniae VR-1310 was shown to induce much less tyrosine phosphorylation of HeLa cell proteins during uptake than that seen for C. trachomatis .  相似文献   

10.
Phospholipases are a diverse class of enzymes produced both by eukaryotic hosts and their pathogens. Major insights into action pathways of bacterial phospholipases have been provided during the last years. On the one hand bacterial phospholipases act as potent membrane destructors and on the other hand they manipulate and initiate host signalling paths, such as chemokine expression or the inflammatory cascade. Reaction products of bacterial phospholipases may potentially influence many more host cell processes, such as cell respreading, lamellopodia formation, cell migration and membrane traffic. Phospholipases play a dominant role in the biology of the lung pathogen Legionella pneumophila. So far, 15 different phospholipase A-encoding genes have been identified in the L. pneumophila genome. These phospholipases can be divided into three major groups, the GDSL, the patatin-like and the PlaB-like enzymes. The first two lipase families are also found in higher plants (such as flowering plants) and the second family shows similarities to eukaryotic cytosolic phospholipases A. Therefore, when those enzymes are injected or secreted by the bacterium into the host cell they may mimic eukaryotic phospholipases. The current knowledge on L. pneumophila phospholipases is summarised here with emphasis on their activity, mode of secretion, localisation, expression and importance for host cell infections.  相似文献   

11.
As reported in the accompanying paper, a number of mutants of the ColVBtrp plasmid that can not be maintained stably in the host cell of Escherichia coli have been isolated. Each of the mutated plasmids has been transferred to an isogenic Col minus strain, and the resulting Col+ strains were studied to examine the effects of plasmid mutations on some properties of the host bacteria. Many of the strains harboring a mutated plasmid were thus found to be temperature sensitive; they failed to grow and divide normally at high temperatures. Some of them formed "filaments" under these conditions. These abnormal growth characteristics were accompanied by an increased susceptibility to sodium deoxycholate and methylene blue, suggesting that the cytoplasmic membrane has been altered. Moreover, studies of temperature-independent revertants obtained from two of these temperature-sensitive Col+ strains suggested that a single mutation on the plasmid is responsible for the pleiotropic effects exerted on the host cell. The bearing of these findings on the mode of replication and segregated of stringent-type plasmids such as ColVBtrp in the host bacteria is discussed.  相似文献   

12.
Coiled Flow Inverter Reactor (CFIR) has recently been explored for facilitating continuous operation of several unit operations involved in downstream processing of biopharmaceuticals such as viral inactivation and protein refolding. The application of CFIR for continuous precipitation of clarified cell culture supernatant has been explored. The pH based precipitation is optimized in the batch mode and then in the continuous mode in CFIR using a design of experiments (DOE) study. Improved clearance of host cell DNA (52× vs. 39× in batch), improved clearance of host cell proteins (HCP) (7× vs. 6× in batch) and comparable recovery (90 vs. 91.5 % in batch) are observed along with six times higher productivity. To further demonstrate wider applicability of CFIR in performing continuous precipitation, two more case studies involving use of two different precipitation protocols (CaCl2 based and caprylic acid based) are also performed. In both cases, clearance of host cell DNA, HCP, and product recovery are found to be comparable or better in CFIR than in batch operations. Moreover, increase in productivity of 16 times (CaCl2 based) and eight times (caprylic acid based) is obtained for the two precipitation protocols, respectively. The data clearly demonstrate that CFIR can be seamlessly integrated into a continuous bioprocess train for performing continuous precipitation of clarified cell culture supernatant. To our knowledge this is the first report of such use.  相似文献   

13.
Interaction of chlamydiae and host cells in vitro.   总被引:74,自引:2,他引:72       下载免费PDF全文
The obligately intracellular bacteria of the genus Chlamydia, which is only remotely related to other eubacterial genera, cause many diseases of humans, nonhuman mammals, and birds. Interaction of chlamydiae with host cells in vitro has been studied as a model of infection in natural hosts and as an example of the adaptation of an organism to an unusual environment, the inside of another living cell. Among the novel adaptations made by chlamydiae have been the substitution of disulfide-bond-cross-linked polypeptides for peptidoglycans and the use of host-generated nucleotide triphosphates as sources of metabolic energy. The effect of contact between chlamydiae and host cells in culture varies from no effect at all to rapid destruction of either chlamydiae or host cells. When successful infection occurs, it is usually followed by production of large numbers of progeny and destruction of host cells. However, host cells containing chlamydiae sometimes continue to divide, with or without overt signs of infection, and chlamydiae may persist indefinitely in cell cultures. Some of the many factors that influence the outcome of chlamydia-host cell interaction are kind of chlamydiae, kind of host cells, mode of chlamydial entry, nutritional adequacy of the culture medium, presence of antimicrobial agents, and presence of immune cells and soluble immune factors. General characteristics of chlamydial multiplication in cells of their natural hosts are reproduced in established cell lines, but reproduction in vitro of the subtle differences in chlamydial behavior responsible for the individuality of the different chlamydial diseases will require better in vitro models.  相似文献   

14.
Enteropathogenic Escherichia coli (EPEC) is an important, generally non-invasive, bacterial pathogen that causes diarrhea in humans. The microbe infects mainly the enterocytes of the small intestine. Here we have applied our newly developed infrared surface plasmon resonance (IR-SPR) spectroscopy approach to study how EPEC infection affects epithelial host cells. The IR-SPR experiments showed that EPEC infection results in a robust reduction in the refractive index of the infected cells. Assisted by confocal and total internal reflection microscopy, we discovered that the microbe dilates the intercellular gaps and induces the appearance of fluid-phase-filled pinocytic vesicles in the lower basolateral regions of the host epithelial cells. Partial cell detachment from the underlying substratum was also observed. Finally, the waveguide mode observed by our IR-SPR analyses showed that EPEC infection decreases the host cell''s height to some extent. Together, these observations reveal novel impacts of the pathogen on the host cell architecture and endocytic functions. We suggest that these changes may induce the infiltration of a watery environment into the host cell, and potentially lead to failure of the epithelium barrier functions. Our findings also indicate the great potential of the label-free IR-SPR approach to study the dynamics of host-pathogen interactions with high spatiotemporal sensitivity.  相似文献   

15.
In a study using scanning electron microscopy (SEM), the mode of hyperparasitism of Coniothyrium minitans on its host Sclerotinia sclerotiorum was investigated. The SEM micrographs confirm previous reports, from light microscopic studies, that hyphal tips of C. minitans invade the host hypha by direct penetration, without developing appressoria, and that indentation of the host cell wall at the point of penetration is often evident. There is no functional distinction between amain branch and a side branch hypha of the hyperparasite and tips of either type of hyphae are capable of invading host hyphae by direct penetration.  相似文献   

16.
Chlamydiae are Gram‐negative, obligate intracellular pathogens that pose a serious threat to public health worldwide. Chlamydial surface molecules are essential for host cell invasion. The first interaction with the host cell is thereby accomplished by the Outer membrane complex protein B (OmcB) binding to heparan sulfate moieties on the host cell surface, followed by the interaction of the chlamydial polymorphic membrane proteins (Pmps) with host cell receptors. Specifically, the interaction of the Pmp21 adhesin and invasin with its human interaction partner, the epidermal growth factor receptor, results in receptor activation, down‐stream signalling and finally internalization of the bacteria. Blocking both, the OmcB and Pmp21 adhesion pathways, did not completely abolish infection, suggesting the presence of additional factors relevant for host cell invasion. Here, we show that the novel surface protein CPn0473 of Chlamydia pneumoniae contributes to the binding and invasion of infectious chlamydial particles. CPn0473 is expressed late in the infection cycle and located on the infectious chlamydial cell surface. Soluble recombinant CPn0473 as well as rCPn0473‐coupled fluorescent latex beads adhere to human epithelial HEp‐2 cells. Interestingly, in classical infection blocking experiments pretreatment of HEp‐2 cells with rCPn0473 does not attenuate adhesion but promotes dose‐dependently internalization by C. pneumoniae suggesting an unusual mode of action for this adhesin. This CPn0473‐dependent promotion of infection by C. pneumoniae depends on two different domains within the protein and requires intact lipid rafts. Thus, inhibition of the interaction of CPn0473 with the host cell could provide a way to reduce the virulence of C. pneumoniae.  相似文献   

17.
Viruses from several different families are able to exploit their host''s cell death programmes so as to maximize viral fitness. Consideration of the evolution of such strategies has lead to the suggestion that the virus should inhibit apoptosis, in order to prolong the life of the cell and thereby maximize the number of progeny virions. The host, on the other hand, should stimulate apoptosis thereby inhibiting viral growth and blocking viral spread. For example, the function of the latent membrane protein I (LMPI) of the Epstein-Barr virus and the bcl-2 homologue gene A179L of African swine fever virus is to inhibit apoptosis. However, in other cases it is the virus that stimulates cell death or the host that benefits from inhibiting apoptosis, such as in fatal alphavirus encephalitis. This has been explained by assuming that virus-induced apoptosis in non-regenerating cells would be detrimental to the host. We present a mathematical framework for understanding virus-induced apoptosis which accounts for these two opposite solutions to virus infection with respect to the mode of virus replication and the life cycle of the target cell.  相似文献   

18.
毒素-抗毒素系统(toxin-antitoxin system,TAS)广泛存在于细菌染色体及质粒上,是细菌中含量丰富的小型遗传元件。TAS通常由两个紧密相连的基因组成,分别编码毒素(toxin)和抗毒素(antitoxin),稳定的毒素能够损伤宿主细胞,不稳定的抗毒素能够保护宿主细胞免于毒素的损伤作用。依据其性质和作用方式,目前已经发现三种型别的TAS。TAS具有多种生物学作用,如诱导程序性细胞死亡(programmed cell death,PCD),应激条件下介导持留菌形成(persistence),稳定基因大片段等。本文就近几年TAS在应激条件下的生物学作用的研究进展做一综述。  相似文献   

19.
Malaria infection is initiated when Anopheles mosquitoes inject Plasmodium sporozoites into the skin. Sporozoites subsequently reach the liver, invading and developing within hepatocytes. Sporozoites contact and traverse many cell types as they migrate from skin to liver; however, the mechanism by which they switch from a migratory mode to an invasive mode is unclear. Here, we show that sporozoites of the rodent malaria parasite Plasmodium berghei use the sulfation level of host heparan sulfate proteoglycans (HSPGs) to navigate within the mammalian host. Sporozoites migrate through cells expressing low-sulfated HSPGs, such as those in skin and endothelium, while highly sulfated HSPGs of hepatocytes activate sporozoites for invasion. A calcium-dependent protein kinase is critical for the switch to an invasive phenotype, a process accompanied by proteolytic cleavage of the sporozoite's major surface protein. These findings explain how sporozoites retain their infectivity for an organ that is far from their site of entry.  相似文献   

20.
M G Rossmann 《FASEB journal》1989,3(12):2335-2343
The 3-dimensional structures of a number of small animal RNA viruses are now known to near-atomic resolution. All these viruses have similar structures and have, in all probability, diverged from a common ancestral virus able to infect a variety of organisms. The structures have elucidated the site of attachment to host cell receptors and the mode of protection of this site against host immune pressure. An internal hydrophobic pocket in rhinoviruses is the site for binding of antiviral drugs that inhibit uncoating and can inhibit attachment in some viruses. The pocket is probably a functional necessity, and thus is a suitable target for well-designed antiviral agents in many viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号