首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hopelessly queenless honeybee colony has only one reproductive option: some workers must produce sons before the colony dies. This requires the workers to curtail egg policing (removal of worker-produced eggs), rendering the colony vulnerable to non-natal reproductive parasitism. In the Western honeybee, Apis mellifera, guarding (prevention of foreign workers from entering a colony) increases in queenless colonies, providing a defence against non-natal parasitism. However, in the closely related Eastern honeybee A. cerana, queenless colonies appear to be more tolerant of bees from other colonies. We presented guards of four A. cerana colonies with three types of workers: nestmate returning foragers, non-nestmate returning foragers and non-nestmates from a laying-worker colony. The latter are likely to have active ovaries, allowing us to test whether guard bees can detect which potential invaders are more likely to be reproductive parasites. After assessing guards’ reactions, we recaptured test bees and dissected them to determine levels of ovary activation. We found that nestmates were accepted significantly more frequently than the other two types of workers. However, there was no difference in the overall acceptance rates of non-nestmate returning foragers and bees from within laying-worker colonies. In addition, ovary-activated workers were no less likely to be accepted than those with inactive ovaries. Interestingly, colonies were more accepting of all three types of test bee after being made queenless. We conclude that, as has been previously suggested, guarding has no specific role in the prevention of non-natal parasitism in A. cerana.  相似文献   

2.
Nestmate recognition was studied in the Southeast Asian stingless beeTrigona (Tetragonula) minangkabau, a species in which worker oviposition has not been observed in queenright or queenless colonies. When conspecific non-nestmate foragers from queenright and queenless colonies were introduced to the observed colony, they were all rejected by guards. Foragers of a different species (Trigona (Tetragonisca) angustula) were also completely rejected. However, conspecific non-nestmate callows were accepted as often as were nestmate callows, although guards recognized the difference. Accepted non-nestmate callows exchanged food with guards equally as much as nestmate callows did.  相似文献   

3.
Colony usurpations by newly mated queens of Polyergus samurai were observed under artificial conditions. Newly mated queens of P. samurai were introduced into three kinds of Formica japonica host colonies: queenright, queenless (artificially orphaned), and workerless (only a queen remaining) colonies. In the queenright condition, the P. samurai queen intruded into the host nest and killed the host queen, and was subsequently adopted by the host workers. In all queenright and queenless host colonies, seven of 13 queens of P. samurai succeeded in colony usurpation, although the starting time of grooming, a nestmate behavior, by host workers in the queenright condition occurred earlier than in the queenless condition. In workerless conditions, four of five P. samurai queens ignored the F. japonica queen. The results suggest that while host-queen killing is not necessary, it is important to win acceptance by host workers.  相似文献   

4.
We examined worker reproduction in queenless and queenright Apis cerana colonies to determine if they are parasitized by workers from other nests. The results demonstrate that 2-6% of workers in queenright colonies are from another nest (non-natal), but these workers are not statistically more likely to have activated ovaries than natal workers, and are therefore unlikely to be active parasites. However, in queenless colonies we found a significant difference between the proportion of non-natal (72.7%) and natal (36.3%) workers with activated ovaries. Non-natal workers also had significantly higher reproductive success than natal workers: 1.8% of workers were non-natal, but these laid 5.2% of the eggs and produced 5.5% of the pupae. Unlike A. florea, the proportion of non-natal workers does not increase in queenless nests.  相似文献   

5.
Nestmate recognition in Apis cerana and Apis mellifera was studied by introducing sealed queen cells heterospecifically between queenless colonies. No A. cerana queens were accepted by queenless A. mellifera; but A. mellifera queens were accepted in queenless A. cerana colonies. A. mellifera queens oviposited in queenless A. cerana colonies, but A. cerana workers removed most eggs. In time, egg removals declined, and some A. mellifera larvae that hatched from these eggs reached adulthood, and eventually about half of the workers were newly emerged A. mellifera. Eventually, the colonies consisted only of A. mellifera after A. cerana workers died by attrition. A. mellifera workers are more sensitive to nestmate recognition and killed the A. cerana virgin queens. In mixed-species colonies, after newly emerged A. mellifera workers matured, they removed eggs laid by the A. cerana queens until there were no workers to replace the old ones.  相似文献   

6.
When a honeybee colony loses its queen, workers activate their ovaries and begin to lay eggs. This is accompanied by a shift in their pheromonal bouquet, which becomes more queen like. Workers of the Asian hive bee Apis cerana show unusually high levels of ovary activation and this can be interpreted as evidence for a recent evolutionary arms race between queens and workers over worker reproduction in this species. To further explore this, we compared the rate of pheromonal bouquet change between two honeybee sister species of Apis cerana and Apis mellifera under queenright and queenless conditions. We show that in both species, the pheromonal components HOB, 9-ODA, HVA, 9-HDA, 10-HDAA and 10-HDA have significantly higher amounts in laying workers than in non-laying workers. In the queenright colonies of A. mellifera and A. cerana, the ratios (9-ODA)/(9-ODA + 9-HDA + 10-HDAA + 10-HDA) are not significantly different between the two species, but in queenless A. cerana colonies the ratio is significant higher than in A. mellifera, suggesting that in A. cerana, the workers’ pheromonal bouquet is dominated by the queen compound, 9-ODA. The amount of 9-ODA in laying A. cerana workers increased by over 585% compared with the non-laying workers, that is 6.75 times higher than in A. mellifera where laying workers only had 86% more 9-ODA compared with non-laying workers.  相似文献   

7.
Summary In queenright colonies of Apis mellifera, worker policing normally eliminates worker-laid eggs thereby preventing worker reproduction. However, in queenless colonies that have failed to rear a replacement queen, worker reproduction is normal. Worker policing is switched off, many workers have active ovaries and lay eggs, and the colony rears a last batch of male brood before dying out. Here we report a colony which, when hopelessly queenless, did not stop policing although a high proportion of workers had active ovaries (12.6%) and many eggs were laid. However, all these eggs and also worker-laid eggs transferred from another colony were policed. This unusual pattern was repeated eight weeks later by a second queenless colony made using worker bees from the same mother colony, which strongly suggests genetic determination.Received 19 May 2003; revised 11 September 2003; accepted 23 September 2003.  相似文献   

8.
If a honey bee (Apis spp.) colony becomes queenless, about 1/3 of young workers activate their ovaries and produce haploid male-producing eggs. In doing so queenless workers maximize their inclusive fitness because the normal option of vicarious production of relatives via their queen’s eggs is no longer available. But if many workers are engaged in reproduction, how does a queenless colony continue to feed its brood and forage? Here we show that in the Asian hive bee Apis cerana hypopharyngeal gland (HPG) size is larger in queenless workers than in queenright workers and that bees undertaking brood-rearing tasks have larger HPG than same-aged bees that are foraging. In queenless colonies, workers with a smaller number of ovarioles are more likely to have activated ovaries. This reinforces the puzzling observation that a large number of ovarioles reduces reproductive success in queenless A. cerana. It further suggests that reproductive workers either avoid foraging or transition to foraging later in life than non-reproductive workers. Finally, our study also showed that ovary activation and larger-than-average numbers of ovarioles had no statistically detectable influence on foraging specialization for pollen or nectar.  相似文献   

9.
The truce between honey bee (Apis spp.) workers over reproduction is broken in the absence of their queen. Queenright workers generally abstain from personal reproduction, raising only the queen’s offspring. Queenless workers activate their ovaries, produce eggs, and reduce the rate at which they destroy worker-laid eggs, so that some eggs are reared to maturity. Reduced policing of worker-laid eggs renders queenless nests vulnerable to worker reproductive parasitism (WRP), and may result in the colony raising eggs of unrelated (non-natal) workers that parasitize it. Queenless colonies of A. florea are heavily parasitized with the eggs of non-natal workers. However, queenless colonies often abscond upon disturbance and build a small comb in which to rear their own male offspring. We investigated three naturally occurring orphaned colonies to determine if they are also parasitized. We show that WRP is present in orphaned colonies, and non-natal workers have significantly higher rates of ovary activation than natal workers. In contrast to experimentally manipulated colonies, in our samples, natal and non-natal workers had statistically equal reproductive success, but this may have been due to the small number of non-natals present.  相似文献   

10.
Social parasitism is widespread in the eusocial insects. Although social parasites often show a reduced worker caste, unmated workers can also parasitize colonies. Cape honeybee workers, Apis mellifera capensis, can establish themselves as social parasites in host colonies of other honeybee subspecies. However, it is unknown whether social parasitism by laying workers also occurs among Cape honeybee colonies. In order to address this question we genotyped worker offspring of six queenless A. m. capensis colonies and determined the maternity of the reproducing workers. We found that three non-nestmate workers dominated reproduction in a host colony and produced 62.5% of the progeny. Our results show that social parasitism by laying workers is a naturally occurring part of the biology of Cape honeybees. However, such social parasitism is not frequently found (6.41% of the total worker offspring) probably due to co-evolutionary processes among A. m. capensis resulting in an equilibrium between selection for reproductive dominance in workers, colony maintenance and queen adaptation. Received 28 July 2005; revised 19 September and 11 November 2005; accepted 16 November 2005.  相似文献   

11.
In Polistes, nestmate recognition relies on the learning of recognition cues from the nest. When wasps recognize nestmates, they match the template learned with the odor of the encountered wasp. The social wasp Polistes biglumis use the homogeneous odor of their colony to recognize nestmates. When these colonies become host colonies of the social parasite P. atrimandibularis, colony odor is no longer homogeneous, as the parasite offspring have an odor that differs from that of their hosts. In trying to understand how the mechanism of nestmate recognition works in parasitized colonies and why parasite offspring are accepted by hosts, we tested the responses of resident Polistes biglumis wasps from parasitized and unparasitized colonies to newly emerged parasites and to nestmate and non-nestmate conspecifics. The experiments indicate that immediately upon eclosion both young parasites and young hosts lack a colony odor and that colony odor can be soon acquired from the accepting colony. In addition, while residents of nonparasitized colonies recognize only the odor of their species, resident hosts of parasitized colonies have learned a template that fits the odors of two species.  相似文献   

12.
Polyandry in honeybee queens (Apis) causes many patrilines (subfamilies) within a colony, which may lead to a potential conflict of interest among workers. This may be most apparent during queen rearing when nepotistic worker behavior could influence the genetics of future generations. Several studies have searched for such conflict in European honeybees (A. mellifera), but studies on other Apis species remain lacking. We investigated the presence of reproductive conflict in A. cerana japonica by comparing the patriline proportion of queen larvae to that of adult workers. We determined the patrilines of 272 workers and 57 queen larvae using four polymorphic microsatellite markers that were sampled from queenless colonies originally derived from four naturally mated queen-right colonies. The number of patrilines in each colony was 9, 12, 8, and 7, respectively, which is lower than that observed in continental Asia. We found no difference in patriline proportion between adult workers and queen larvae. Our data support neither genetic variance for royalty or existence of worker nepotism in A. cerana japonica.  相似文献   

13.
In many species of eusocial Hymenoptera, conflict about the production of males is resolved through “policing.” Recent studies in wasps and the ant Temnothorax unifasciatus suggest that in these species policing workers are dominant themselves and selfishly increase their own chances of later becoming fertile. Policing may therefore to some extent be associated with dominance and selfishness, and dominance and policing behaviour are indeed difficult to distinguish and often not mutually exclusive. Moreover, selfish policing requires that workers form rank orders already in the presence of the queen. Here, we try to allocate aggressiveness by workers towards policing and/or dominance behaviour and investigate whether hierarchies based on subtle, non-aggressive interactions exist in queenright colonies of the ant T. unifasciatus. We either split colonies into a queenright and queenless halve or temporarily removed the queen from complete colonies, which in both cases allows a few dominant workers to lay eggs in the queenless colony. Reunification of colony halves and return of the queen to orphaned colonies led to aggression against those workers that had become fertile during the absence of the queen. Dominant workers in reunited, split colonies were more severely attacked than those in orphaned colonies after return of the queen. Furthermore, we observed that workers, which later became dominant egg layers under queenless conditions, have more contact with the queen than other workers. Both results corroborate the existence of rank relationships among workers in queenright colonies and show that results from policing experiments may be affected by the disturbance of pre-existing hierarchies through colony splitting.  相似文献   

14.
The removal of small hive beetle [=SHB] eggs and larvae was studied in queenright and recently queenless Cape honeybee, Apis mellifera capensis, colonies over a range of phenotypes. The overall removal efficiency was not influenced by phenotypes or queenstate, because all introduced eggs and larvae were removed within 24 hours. Queenless colonies removed them merely slower than queenright ones. The latter ones rejected up to 300 larvae within one hour. However, colonies undergoing preparation for absconding did not completely remove SHB offspring, suggesting that removal efficiency was reduced. Since even small and recently queenless colonies effectively removed immature SHB, and no differences in the overall efficiency was found compared to A. m. scutellata we conclude that this defense behavior is well developed in African honeybees.  相似文献   

15.
Juvenile hormone synthesis in adult worker honey bees was measured by an in vitro corpora allata bioassay. Adult queenless workers exhibit higher rates of juvenile hormone biosynthesis than queenright workers. Hormone synthesis is not correlated with the volume of the glands. Extract of queen mandibular glands, applied to a dummy, reduces juvenile hormone biosynthesis in caged queenless workers to the level of queenright workers. The same result was obtained with synthetic (E)-9-oxo-2-decenoic acid, the principal component of the queen mandibular gland secretion. This pheromonal primer effect may function as a key regulating element in maintaining eusocial colony homeostasis. The presence of brood does not affect the hormone production of the corpora allata.Abbreviations BSA bovine serum albumin - CA Corpora allata - JH juvenile hormone - 9-ODA (E)-9-oxo-2-decnoic acid  相似文献   

16.
The dwarf honey bees Apis florea and A. andreniformis are sympatric in southeast Asia. We translocated eight A. florea colonies and four A. andreniformis colonies to an orchard near Sai Yoke, Thailand. After 2 days, we dequeened half of the colonies. Microsatellite genotyping showed that a queenless A. florea colony merged with a queenright A. florea colony, and a queenless A. andreniformis colony merged with a queenright A. florea colony. The inter-specific merger in particular shows that colonies can combine without direct kin benefits, and that colony mergers probably arise through strong queen attraction.  相似文献   

17.
The ability to discriminate between nestmates and non-nestmates is an important prerequisite for the evolution of eusociality. Indeed, social insect workers are typically able to discriminate between nestmate and non-nestmate workers. Adult non-nestmate workers are readily detected and rejected from the colony. Whether social insects can discriminate between nestmate and non-nestmate brood, however, is less clear. Here, we show that workers of the leaf-cutting ant Acromyrmex echinatior discriminate between nestmate and non-nestmate brood, and among brood of different stages. Initially, non-nestmate brood is attacked, but it is adopted after a delay. Adoption could occur due to inefficiency of the recognition system, or it could be adaptive because it is an inexpensive way to increase the workforce. Our results suggest that brood adoption may occur accidentally. We also report how workers replace fungal hyphae on the brood’s surface before transporting the brood into their fungus garden.  相似文献   

18.
Social insect societies are considered to be composed of many extremely cooperative individuals. While workers are traditionally believed to behave altruistically, recent studies have revealed behaviors that are more selfish. One such example is intraspecific social parasitism, where workers invade conspecific colonies and produce male offspring that are reared by unrelated host workers. Such intraspecific parasitism has been reported in honeybees (Apis cerana, and A. florea) and “semi-wild” bumblebee colonies of Bombus terrestris. Here we report on intraspecific social parasitism by workers in “wild” colonies of the bumblebee B. deuteronymus. Three of the 11 B. deuteronymus colonies studied were invaded by non-natal workers, of which 75% became reproductive and produced 19% of the adult males. The invading non-natal workers produced significantly more males than resident natal workers and the non-natal brood was not discriminated against by the natal workers.  相似文献   

19.
Reproductive partitioning among group members is a key feature in social Hymenoptera. We investigated the genetic colony structure of a tropical paper wasp Polistes olivaceus, with an emphasis on variation in the number of queens and reproductive sharing among queens. Among 22 P. olivaceus colonies, 6 were monogynous, 9 polygynous, and 7 were queenless. Adults and brood (eggs and larvae) were genotyped based on six polymorphic microsatellite loci. In each of the polygynous colonies, progenies were assigned to their mothers using maximum-likelihood methods. Nestmate queens were full sisters. The vast majority of reproduction appeared to be monopolized by the dominant queen (α), and the overall reproductive skews were 0.63 ± 0.04 (B index) and 0.97 ± 0.02 (S c index). Although all nestmate queens had equal reproductive potential, the high magnitude of reproductive skew was enigmatic in this species. Although 9.55 ± 2.07 workers contained developed ovaries in 11 of 15 queen-right colonies, they were unrelated to the nestmate queens but related to each other as full sisters, suggesting that they were the remaining offspring of superseded queens. In 2 of the 11 colonies, we detected male eggs produced by reproductive workers. On average, 7.27 % of the total genotyped male eggs were derived from reproductive workers among the colonies. These results suggest three possibilities regarding the presence of reproductive workers in the P. olivaceus colonies: drifting between colonies, putative remaining offspring from superseded queens, and the offspring of unrelated females who joined the colonies and reproduced there. We found no worker-derived larvae or adult males, suggesting that male eggs were removed by nestmates at some point between oviposition and hatching.  相似文献   

20.
We investigated the relative contribution of the queen and workers to colony nestmate recognition cues and on colony insularity in the Carpenter ant Camponotus fellah. Workers were either individually isolated, preventing contact with both queen and workers (colonial deprived, CD), kept in queenless groups, allowing only worker-worker interactions (queen deprived, QD) or in queenright (QR) groups. Two weeks post-separation QD and QR workers were amicable towards each other but both rejected their CD nestmates, which suggests that the queen does not measurably influence the colony recognition cues. By contrast, aggression between QD and QR workers from the same original colony was apparent only after six months of separation. This clearly demonstrates the power of the Gestalt and indicates that the queen is not a dominant contributor to the nestmate recognition cues in this species. Aggression between nestmates was correlated with a greater hydrocarbon (HC) profile divergence for CD than for QD and QR workers, supporting the importance of worker-worker interactions in maintaining the colony Gestalt odour. While the queen does not significantly influence nestmate recognition cues, she does influence colony insularity since within 3 days QD (queenless for six months) workers from different colony origins merged to form a single queenless colony. By contrast, the corresponding QR colonies maintained their territoriality and did not merge. The originally divergent cuticular and postpharyngeal gland HC profiles became congruent following the merger. Therefore, while workers supply and blend the recognition signal, the queen affects worker-worker interaction by reducing social motivation and tolerance of alien conspecifics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号