首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach to the study of glucose phosphorylation in brain slices is described. It is based on timed incubation with nonradioactive 2-deoxyglucose (DG), after which the tissue levels of DG and 2-deoxyglucose-6-phosphate (DG6P) are measured separately with sensitive enzymatic methods applied to specific small subregions. The smallest samples had dry weights of approximately 0.5 microgram. Direct measurements in different regions of hippocampal slices showed that within 6 min after exposure to DG, the ratios of DG to glucose in the tissue were almost the same as in the incubation medium, which simplifies the calculation of glucose phosphorylation rates and increases their reliability. Data are given for ATP, phosphocreatine, sucrose space, and K+ in specific subregions of the slices. DG6P accumulation proceeded at a constant rate for at least 10 min, even when stimulated by 10 mM glutamate in the medium. The calculated control rate of glucose phosphorylation was 2 mmol/kg (dry weight)/min. In the presence of 10 mM glutamate it was twice as great. The response to 10 mM glutamate of different regions of the slice was not uniform, ranging from 164% of control values in the molecular layer of CA1 to 256% in the stratum radiatum of CA1. There was a profound fall in phosphocreatine levels (75%) in response to 10 mM glutamate despite a 2.4-fold increase in glucose phosphorylation. Even in the presence of 1 mM glutamate, the increase in glucose phosphorylation (50%) was not great enough to prevent a significant drop in phosphocreatine content.  相似文献   

2.
We studied the uptake of [3H]2-deoxyglucose [( 3H]2DG) by slices of rat cerebral cortex in vitro as a model of glucose transport by brain. Slices were incubated with [3H]2DG, or with L-[3H]glucose as a marker for diffusion; the difference between [3H]2DG uptake and L-[3H]glucose uptake was defined as net [3H]2DG transport. Net [3H]2DG transport was a function of incubation temperature, with an estimated temperature coefficient of 1.87 from 15 degrees C to 25 degrees C. The net uptake of [3H]2DG was not inhibited by phlorizin or phloretin in concentrations well above the reported Ki of these inhibitors for hexose uptake in other systems. To examine the hypothesis that [3H]2DG transport by brain slices is dependent on mitochondrial energy, we studied net [3H]2DG uptake by slices which had been preincubated in media designed to alter intracellular ATP stores. The transport process was very sensitive to inhibition by DNP, but the correlation between [3H]2DG transport and ATP levels was unclear. In contrast to our published hypothesis that the transport process required mitochondrial energy, these data indicate that dependence on energy is not absolute.  相似文献   

3.
The transport of [3H]2-deoxyglucose by brain slices was studied. Cerebral cortex slices were incubated in vitro in the presence of [3H]2-deoxyglucose, orl-[3H] glucose as a marker for diffusion. Transport was defined as the difference between [3H]2DG uptake andl-[3H]glucose uptake. Half-maximal velocity was seen at 2.0 mM 2DG and [3H]2DG transport was not inhibited by 20-fold higher concentrations ofl-glucose. Net [3H]2DG transport was unchanged in media deficient in Na+, K+, Mg2+, Ca2+ or Cl. Uptake was significantly inhibited by 1.0 mM 2,4-DNP and a suggestion of inhibition by azide was seen. These data are consistent with a hypothesis that hexose transport in the brain depends to some extent upon mitochondrial energy.  相似文献   

4.
14C-2-deoxyglucose (DG), currently employed in in vivo studies of brain glucose metabolism, has been used for determination of glucose consumption in the in vitro developing chick embryo. DG, presented in traces, accumulates in the embryo in proportion with incubation time. Analysis of tissue homogenates shows that the accumulated radioactivity is due to both phosphorylated (DGP) and nonphosphorylated DG. As it is only the radioactivity originating from the DGP that is proportional to glucose utilization, the nonphosphorylated DG must be washed out. The washout shows two distinct kinetics: a fast one corresponding to DG that has entered the cells but has not yet been phosphorylated and a slow one that is probably due to a dephosphorylated DGP coming from a different cellular compartment. On the basis of these results the optimal experimental conditions have been defined, allowing quantitative studies of glucose metabolism during the first day of development of the chicken embryo. From 18 to 24 hr of incubation (end of gastrulation), total glucose consumption increases from 50 nmol X h-1 at stage 3-4 to 90 nmol X h-1 at stage 6-7. This increase mainly reflects the growth of the blastodisc. Comparison with the values of O2 uptake measured at the same period of development suggests that only a fraction of the glucose consumed is oxidized, the major part being converted aerobically to lactate.  相似文献   

5.
An enzymatic assay adapted to photometric analysis with 96-well microplates was evaluated for the measurement of 2-deoxyglucose (2DG) uptake in insulin-responsive tissues and differentiated 3T3-L1 adipocytes. For in vivo measurements, a small amount of nonradiolabeled 2DG was injected into mice without affecting glucose metabolism. For photometric quantification of the small amount of 2-deoxyglucose 6-phosphate (2DG6P) that accumulates in cells, we introduced glucose-6-phosphate dehydrogenase, glutathione reductase, and 5,5′-dithiobis(2-nitrobenzoic acid) to the recycling amplification reaction of NADPH. We optimized the enzyme reaction for complete oxidation of endogenous glucose 6-phosphate (G6P) and glucose in mouse tissues in vivo and serum as well as in 3T3-L1 adipocytes in vitro. All reactions are performed in one 96-well microplate by consecutive addition of reagents, and the assay is able to quantify 2DG and 2DG6P in the range of 5–80 pmol. The results obtained with the assay for 2DG uptake in vitro and in vivo in the absence or presence of insulin stimulation was similar to those obtained with the standard radioisotopic method. Thus, the enzymatic assay should prove to be useful for measurement of 2DG uptake in insulin-responsive tissues in vivo as well as in cultured cells.  相似文献   

6.
We investigated a nonradioisotope method for the evaluation of glucose uptake activity using enzymatic measurement of 2-deoxyglucose 6-phosphate (2DG6P) content in isolated rat soleus muscle in vitro and in vivo. The 2DG6P content in isolated rat soleus muscle after incubation with 2-deoxyglucose (2DG) was increased in a dose-dependent manner by insulin (ED(50) = 0.6 mU/ml), the maximum response being about 5 times that of the basal content in vitro. This increment was completely abolished by wortmannin (100 nM), with no effect on basal 2DG6P content. An insulin-mimetic compound, vanadium, also increased 2DG6P content in a dose-dependent manner. In isolated soleus muscle of Zucker fa/fa rats, well known as an insulin-resistant model, insulin did not increase 2DG6P content. The 2DG6P content in rat soleus muscle increased after 2DG (3 mmol/kg) injection in vivo, and conversely, the 2DG concentration in plasma was decreased in a dose-dependent manner by insulin (ED(50) = 0.11 U/kg). The maximum response of the accumulation of 2DG6P in soleus muscle was about 4 times that of the basal content. This method could be useful for evaluating glucose uptake (transport plus phosphorylation) activity in soleus muscle in vitro and in vivo without using radioactive materials.  相似文献   

7.
Enzymatic assays for 2-deoxyglucose and 2-deoxyglucose 6-phosphate   总被引:4,自引:0,他引:4  
Methods for 2-deoxyglucose (2-DG) and 2-deoxyglucose 6-phosphate (DG6P) are described which are based on the fact that DG6P is oxidized by glucose-6-phosphate dehydrogenase (G6PDH), but at a rate 1000-fold slower than for glucose 6-phosphate, whereas hexokinase phosphorylates 2DG and glucose at comparable rates. Therefore, by adding the two enzymes in a suitable order, and in appropriate concentrations, 2DG, glucose, DG6P, and glucose 6-P can all be separately measured. To avoid a side reaction from the use of a high level of G6PDH, when measuring DG6P, glucose is first removed with glucose oxidase plus aldose reductase.  相似文献   

8.
Abstract— The uptake into the non-raffinose space of cerebral cortex slices of a number of 14C-labelled glucose analogues has been studied. Evidence on competition with glucose for the transport process has been used to derive information on the substrate specificity of sugar uptake to the brain. The kinetic properties of the uptake of 2-deoxygIucose indicate that the transport is a facilitated process rather than diffusion. Classical competition between glucose and 2-deoxyglucose for transport is shown and arguments are advanced for regarding glucose as a competitive inhibitor of 2-deoxyglucose transport. The apparent Km for deoxyglucose is 10 mM and for glucose is suggested to be of the order of 5 mm , The value of such a kinetic approach to sugar transport in various conditions is discussed.  相似文献   

9.
One of the biochemical "hallmarks" of malignancy is enhanced tumor glycolysis, which is primary due to the overexpression of glucose transporters (GLUTs) and the increased activity of mitochondria-bound hexokinase in tumors. Easy methods for assessing glucose utilization in vitro and in vivo should find widespread application in biological and biomedical studies, as illustrated by the adoption of FDG PET imaging in medicine. We have recently synthesized a new NIR fluorescent pyropheophorbide conjugate of 2-deoxyglucose (2DG), Pyro-2DG, as a GLUT-targeted photosensitizer. In this study, we have evaluated the in vivo uptake of Pyro-2DG and found that Pyro-2DG selectively accumulated in two tumor models, 9L glioma in the rat and c-MYC-induced mammary tumor in the mouse, compared to surrounding normal muscle tissues at a ratio of about 10:1. By simultaneously performing redox ratio and fluorescence imaging, a high degree of correlation between the PN/(Fp+PN) redox ratio, where PN denotes reduced pyridine nucleotides (NADH) and Fp denotes oxidized flavoproteins, and the Pyro-2DG uptake was found in both murine tumor models, indicating that Pyro-2DG could serve as an extrinsic NIR fluorescent metabolic index for the tumors. The fact that only a low level of correlation was observed between the redox ratio and the uptake of Pyro-acid (the free fluorophore without the 2-deoxyglucose moiety) supports the hypothesis that Pyro-2DG is an index of the mitochondrial status (extent of PN reduction) of a tumor.  相似文献   

10.
Abstract: A nontracer amount of 2-deoxyglucose (DG) was intravenously injected into rats, which were frozen 2 and 4 min later in liquid nitrogen. The freeze-dried samples of cell bodies of anterior horn cells, dorsal root ganglion cells, and cerebellar Purkinje cells, as well as the neuropil adjacent to anterior horn cell bodies, were prepared. Their contents of glucose, glucose 6-phosphate, DG, and 2-deoxyglucose 6-phosphate were microassayed using an enzymatic amplification reaction, NADP cycling. Based on the resulting data and theoretical equations previously described, glucose utilization rate (GUR) and apparent distribution volumes (DVs) of glucose and DG were determined. Anterior horn cell bodies had the highest GUR and their neuropil the lowest, although apparent DVs of glucose and DG were similar in both. This indicates that the glucose supply was equally balanced in all, but that the cell bodies had higher functional activity supported by hexokinase (and other enzymes) related to their energy demands. Dorsal root ganglion cells showed the lowest 2-deoxyglucose 6-phosphate formation rate, but their GUR was slightly higher than that of neuropil because of their markedly large DV of glucose, thus demonstrating that the abundant glucose supply supports the neuronal function. Purkinje cells indicated GUR and apparent DVs similar to molecular and granular layers.  相似文献   

11.
Ischemia is reported to stimulate glucose uptake, but the signaling pathways involved are poorly understood. Modulation of glucose transport could be important for the cardioprotective effects of brief intermittent periods of ischemia and reperfusion, termed ischemic preconditioning. Previous work indicates that preconditioning reduces production of acid and lactate during subsequent sustained ischemia, consistent with decreased glucose utilization. However, there are also data that preconditioning enhances glucose uptake. The present study examines whether preconditioning alters glucose transport and whether this is mediated by either phosphatidylinositol 3-kinase (PI3K) or p38 MAP kinase. Langendorff-perfused rat hearts were preconditioned with 4 cycles of 5 min of ischemia and 5 min of reperfusion, with glucose as substrate. During the last reflow, glucose was replaced with 5 mM acetate and 5 mM 2-deoxyglucose (2DG), and hexose transport was measured from the rate of production of 2-deoxyglucose 6-phosphate (2DG6P), using (31)P nuclear magnetic resonance. Preconditioning stimulated 2DG uptake; after 15 min of perfusion with 2DG, 2DG6P levels were 165% of initial ATP in preconditioned hearts compared with 96% in control hearts (p < 0.05). Wortmannin, an inhibitor of PI3K, did not block the preconditioning induced stimulation of 2DG6P production, but perfusion with SB202190, an inhibitor of p38 MAP kinase, did attenuate 2DG6P accumulation (111% of initial ATP, p < 0. 05 compared with preconditioned hearts). SB202190 had no effect on 2DG6P accumulation in nonpreconditioned hearts. Preconditioning stimulation of translocation of GLUT4 to the plasma membrane was not inhibited by wortmannin. The data demonstrate that ischemic preconditioning increases hexose transport and that this is mediated by p38 MAP kinase and is PI3K-independent.  相似文献   

12.
Measurement of 2-deoxyglucose and 2-deoxyglucose 6-phosphate in tissues   总被引:7,自引:0,他引:7  
The enzymatic methods previously described for 2-deoxyglucose (DG) and 2-deoxyglucose 6-phosphate have been refined and adapted to measurements of brain samples ranging from 50 mg wet weight to less than a microgram dry weight. Procedures for preparing such samples for assay are described. Analytical properties of the enzymes employed are given together with means for overcoming their possible short comings. Emphasis is placed on information useful for employing DG to assess rapid changes in glucose metabolism.  相似文献   

13.
Abstract: Recent studies indicate the lumped constant (LC), which defines the relative rates of brain utilization of glucose and 2-deoxyglucose (2-DG), doubles to values > 1.0 under conditions of hypoglycemia. Since changes in the LC should be predictable given the kinetic parameters of blood-brain barrier (BBB) transport and brain phosphorylation of glucose and 2-DG, the present studies were designed to measure the necessary kinetic parameters. The carotid injection technique was used to determine cerebral blood flow and the Km , Vmax, and K D of glucose and 2-DG transport through the BBB in seven brain regions in rats anesthetized with 50 mg/kg i.p. pentobarbital. Regional glucose transport through the BBB was characterized by an average Km = 6.3 m m , average Vmax = 0.53 μmol min−1g−1, and average K D= 0.022 ml min−1g−1. The nonsaturable route of transport of glucose represented on the average 40% of the total glucose influx into brain regions at an arterial glucose concentration of 10 m m . In addition, the rate constants of phosphorylation of glucose and 2-DG were measured for each region. Substitutions of the measured kinetic parameters for sugar transport and phosphorylation into equations defining the LC confirm the observation that the LC would be expected to vary under extreme conditions such as hypoglycemia and to exceed values of 1.0 under these conditions.  相似文献   

14.
Slices from the forebrains of day-old chicks represent a highly active in vitro protein-synthesising system. The in vitro incorporation of L-[14C]leucine into protein of slices was estimated to be 2.5 mmol/mg protein/h. Incorporation was linear over 90 min of incubation and was suppressed by 92% by 1 mM cycloheximide. The highest incorporation was into microsomal and cell-soluble fractions. Under the electron microscope, slices appeared vacuolated near the cut surfaces, but well preserved internally (greater than 40 micron from the edge). Autoradiography showed that radioactivity was incorporated evenly across the slice with no decrease in label in the central part of the tissue. The rate of incorporation was only weakly dependent on leucine concentration in the medium (0.04-1 mM). Addition of a mixture of unlabelled amino acids (1 mM) produced a 20-50% inhibition of incorporation of radioactive L-leucine depending on the amino acids involved. In slices prepared from chicks 1 h after training on a one-trial passive avoidance paradigm, L-[14C]leucine incorporation was 23% higher (p less than 0.01) in the forebrain roof than in slices from control chicks. This figure is comparable to the one previously reported in vivo. Subcellular fractionation of incubated slices from the forebrain roof of trained and control birds revealed that the increased protein synthesis was due mainly to an elevated leucine incorporation into the soluble fraction.  相似文献   

15.
Previously, we developed a microplate assay to quantitate 2-deoxyglucose (2DG) and 2-deoxyglucose-6-phosphate in samples for in vitro and in vivo use. In this assay system, four different reaction mixtures were used, and the difference in the reactivity of the two types of glucose-6-phosphate dehydrogenase (G6PDH) variants was used. Because G6PDH from tolura yeast was no longer available, we modified our assay system for the use of G6PDH from Leuconostoc. Using this improved assay system, concentrations of glucose, 2DG, glucose-6-phosphate, and 2-deoxyglucose-6-phosphate were easily measured. This assay may be useful for measuring uptake of 2DG without the use of radioisotopes.  相似文献   

16.
We have developed a rapid nonradioisotope chemiluminescent assay adapted to high-throughput screening experiments, to evaluate glucose uptake activity in cultured cells. For chemiluminescence quantification of 2-deoxyglucose, we used a luminol oxidation reaction after an enzymatic dephosphorylation of 2-deoxyglucose-6-phosphate. All reactions were performed at 37 °C by consecutive addition of reagents, and the assay is able to quantify 2DG in picomole per well. To confirm the reliability of this method, we have evaluated the dose–effect of insulin, GLUT4 inhibitors and insulin-sensitizing agent on 2DG uptake into 3T3-L1 cells. The results obtained with the assay for 2DG uptake in vitro in the absence or presence of insulin stimulation, were similar to those obtained by the previous radioisotopic and enzymatic methods. We have also used this assay to evaluate the effect of various reactive carbonyl and oxygen species on insulin-stimulated 2DG-uptake into adipocytes. All reactive carbonyl species tested decreased insulin-stimulated glucose uptake in a time- and dose-dependent manner without affecting basal glucose uptake in 3T3-L1 cells. 4-hydroxynonenal was found to be the most potent in the impairment of glucose uptake. This new enzymatic chemiluminescent assay is rapid and useful for measurement of 2DG uptake in insulin-responsive in cultured cells.  相似文献   

17.
In an attempt to develop a technique which would allow early assessment of the functional state of explanted brain tissue, (K+)e was measured in the CA1 region of rat hippocampal slices using K+-selective microelectrodes. In slices (450 micron) maintained at the boundary between the incubation medium and 95% O2/5% CO2 atmosphere, (K+)e was highest (up to 25-30 mmol/l) immediately below the exposed surface and gradually decreased with depth to (K+) of the bathing fluid (5 mmol/l). (K+)e below the exposed surface remained high throughout the 2 h of incubation. In submersed slices, (K+)e was the highest in the center of the slice (200 micron, 10 mmol/l) and decreased towards both surfaces. During 2 h incubation, (K+)e decreased in the center of the slice to 6 mmol/l in viable preparations remaining high in the deteriorating ones. Electrical stimulation of Schaffer's collaterals (15 V; 0.2 ms; 10 Hz) increased (K+)e of viable slices 200 micron below the surface by 2-3 mmol/l. Similar but slower (K+)e changes were elicited by brief (3 min) anoxic episodes (perfusion with incubation medium equilibrated with 95% N2/5% CO2). It is concluded that submersed slices have a more uniform (K+)e profile as compared to the exposed ones and that low (K+)e in the early phase of incubation is a good predictor of slice viability.  相似文献   

18.
M D Berliner 《Microbios》1975,12(50):209-218
The glucose analogue, 2-deoxyglucose (2DG), enhances both the fungistatic and the fungicidal action of amphotericin B in Fungizone (Squibb) against Histoplasma capsulatum yeasts in vitro. This synergistic effect is more pronounced when the test substances are incorporated in double-diffusion agar plates than in liquid medium. Minimum inhibitory concentrations for 2DG and amphotericin B in Fungizone have been established. The effects of components of Fungizone other than amphotericin B as clinically administered were also studied. Neither sodium desoxycholate nor phosphate buffer had any effect on the test organisms when used in recommended clinical concentrations. The 5% glucose infusion solution greatly enhanced the growth of the pathogen and markedly decreased the effectiveness of amphotericin B. H. capsulatum yeasts quickly became resistant to stepwise increases of Fungizone but not of 2DG. Susceptibility to amphotericin B and to 2DG increased with time within certain limits of exposure. The A (albino) phenotype of H. capsulatum is considerably more resistant to amphotericin B than the B (brown) phenotype, but there are no differences in susceptibilities to 2DG. The potential clinical applications of these studies are discussed, since experimental animals and man are reported to tolerate large amounts of 2DG. The incorporation of 2DG in the polyene antibiotic preparation would render it more effective at lower doses and would decrease clinical toxicity.  相似文献   

19.
Six sites of 2-deoxyglucose (2DG)–induced lysis on three yeasts (Schizosaccharomyces pombe, Pichia farinosa, and Saccharomyces cerevisiae) coincided with the regions of growth of their glucan layers. Identification of the glucan layer as the site of lysis suggests a mechanism of attack by 2DG or by its derivatives. It is proposed that the glucan layer grows by addition of glucose into internal breaks of polysaccharide molecules. 2DG inhibited resynthesis (insertion of glucose) of the broken glycosidic linkage.  相似文献   

20.
Quantitative glucose and lactate metabolism was assessed in continuously perfused organotypic hippocampal slices under control conditions and during exposure to glutamate and drugs that interfere with aerobic and anaerobic metabolism. On-line detection was possible with a system based on slow perfusion rates, a half-open (medium/air interface) tissue chamber and a flow injection analytic system equipped with biosensors for glucose and lactate. Under basal conditions about 50% of consumed glucose was converted to lactate in hippocampal slice cultures. Using medium containing lactate (5 mm) instead of glucose (5 mm) significant lactate uptake was observed, but this uptake was less than the net uptake of lactate equivalents in glucose-containing medium. Glucose deprivation experiments suggested lactate efflux from glycogen stores. The effects of drugs compromising or stimulating energy metabolism, i.e. 2-deoxyglucose, 3-nitropropionic acid, alpha-cyano-4-hydroxycinnamate, l-glutamate, d-asparate, ouabain and monensin, were tested in this flow system. The data show that maintaining Na+ and K+ gradients consumed much of the energy but do not support the hypothesis that l-glutamate stimulates glycolysis in hippocampal slice cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号