首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gu  X; Li  WH 《Molecular biology and evolution》1996,13(10):1375-1383
The statistical properties of the paralinear and LogDet distances under nonstationary nucleotide frequencies were studied. First, we developed formulas for correcting the estimation biases of the paralinear and LogDet distances, i.e., the bias-corrected distance is estimated by dc = d - 2var(d), where d and var(d) are the estimated distance and sampling variance, respectively. The performances of these formulas and the formulas for sampling variances were examined by computer simulation. Second, we developed a method for estimating the variance- covariance matrix of paralinear distances, so that statistical tests of DNA phylogenies can be conducted in the nonstationary case. Third, a new LogDet-based method for testing the molecular clock hypothesis was developed under nonstationary nucleotide frequencies.   相似文献   

3.
Abstract The theory of ‘punctuated equilibrium’ hypothesises that most morphological change in species takes place in rapid bursts triggered by speciation. Eldregde and Gould postulated the theory in 1972, as an alternative to the idea that morphological change slowly accumulates in the course of time, a then common belief they dubbed ‘phyletic gradualism’. Ever since its introduction the theory of punctuated equilibrium has been the subject of speculation rather than empirical validation. Here I present a method to detect punctuated evolution without reference to fossil data, based on the phenotypes of extant species and on their relatedness as revealed by molecular phylogeny. The method involves a general mathematical model describing morphological differentiation of two species over time. The two parameters in the model, the rates of punctual (cladogenetic) and gradual (anagenetic) change, are estimated from plots of morphological diversification against time since divergence of extant species.  相似文献   

4.
Evolutionary and biogeographic studies increasingly rely on calibrated molecular clocks to date key events. Although there has been significant recent progress in development of the techniques used for molecular dating, many issues remain. In particular, controversies abound over the appropriate use and placement of fossils for calibrating molecular clocks. Several methods have been proposed for evaluating candidate fossils; however, few studies have compared the results obtained by different approaches. Moreover, no previous study has incorporated the effects of nucleotide saturation from different data types in the evaluation of candidate fossils. In order to address these issues, we compared three approaches for evaluating fossil calibrations: the single-fossil cross-validation method of Near, Meylan, and Shaffer (2005. Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. Am. Nat. 165:137-146), the empirical fossil coverage method of Marshall (2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat. 171:726-742), and the Bayesian multicalibration method of Sanders and Lee (2007. Evaluating molecular clock calibrations using Bayesian analyses with soft and hard bounds. Biol. Lett. 3:275-279) and explicitly incorporate the effects of data type (nuclear vs. mitochondrial DNA) for identifying the most reliable or congruent fossil calibrations. We used advanced (Caenophidian) snakes as a case study; however, our results are applicable to any taxonomic group with multiple candidate fossils, provided appropriate taxon sampling and sufficient molecular sequence data are available. We found that data type strongly influenced which fossil calibrations were identified as outliers, regardless of which method was used. Despite the use of complex partitioned models of sequence evolution and multiple calibrations throughout the tree, saturation severely compressed basal branch lengths obtained from mitochondrial DNA compared with nuclear DNA. The effects of mitochondrial saturation were not ameliorated by analyzing a combined nuclear and mitochondrial data set. Although removing the third codon positions from the mitochondrial coding regions did not ameliorate saturation effects in the single-fossil cross-validations, it did in the Bayesian multicalibration analyses. Saturation significantly influenced the fossils that were selected as most reliable for all three methods evaluated. Our findings highlight the need to critically evaluate the fossils selected by data with different rates of nucleotide substitution and how data with different evolutionary rates affect the results of each method for evaluating fossils. Our empirical evaluation demonstrates that the advantages of using multiple independent fossil calibrations significantly outweigh any disadvantages.  相似文献   

5.
Dating nodes on molecular phylogenies: a critique of molecular biogeography   总被引:8,自引:0,他引:8  
Taxa have been dated using three methods: equating their age with the age of the oldest known fossil, with the age of strata the taxa are endemic to, and with the age of paleogeographic events. All three methods have been adopted as methods of dating nodes in molecular phylogenies. The first method has been the most popular, but both this and the second method involve serious difficulties. Studies often, correctly, introduce oldest known fossils as providing minimum ages for divergences. However, in the actual analyses these ages, and ages derived from them, are often treated as absolute ages and earlier geological events are deemed irrelevant to the phylogeny. In fact, only younger geological events can be irrelevant. Studies correlating the age of nodes with age of volcanic islands often overlook the fact that these islands have been produced at subduction zones or hot spots where small, individually ephemeral islands are constantly being produced and disappearing, and a metapopulation can survive indefinitely. Correlating the age of taxa with that of associated paleogeographic events is probably the most promising method but has often been used in a simplistic way, for example in assuming that all divergence across the Isthmus of Panama dates to its final rise. Most workers now agree that a global molecular clock does not exist, and that rates can change between lineages and within a lineage over time. New methods of estimating branch lengths do not assume a strict clock, but the number of models for molecular evolution is then effectively infinite. Problems with calibrating the nodes, as well as with substitution models, mean that phylogeography's claim to be able to test between vicariance and dispersal is not justified. © The Willi Hennig Society 2005.  相似文献   

6.
The branching times of molecular phylogenies allow us to infer speciation and extinction dynamics even when fossils are absent. Troublingly, phylogenetic approaches usually return estimates of zero extinction, conflicting with fossil evidence. Phylogenies and fossils do agree, however, that there are often limits to diversity. Here, we present a general approach to evaluate the likelihood of a phylogeny under a model that accommodates diversity-dependence and extinction. We find, by likelihood maximization, that extinction is estimated most precisely if the rate of increase in the number of lineages in the phylogeny saturates towards the present or first decreases and then increases. We demonstrate the utility and limits of our approach by applying it to the phylogenies for two cases where a fossil record exists (Cetacea and Cenozoic macroperforate planktonic foraminifera) and to three radiations lacking fossil evidence (Dendroica, Plethodon and Heliconius). We propose that the diversity-dependence model with extinction be used as the standard model for macro-evolutionary dynamics because of its biological realism and flexibility.  相似文献   

7.
8.
9.
10.
Comparing fluctuating asymmetry (FA) between different traits can be difficult because traits vary at different scales. FA is generally quantified either as the variance of the difference between left and right (σ2L?R) or the mean of the absolute value of this difference (μ|R?L|). Corrections for scale differences are obtained by dividing by trait size mean. We show that a third index, one minus the correlation coefficient between left and right (1 ? rL,R), is equivalent to σ2L?R standardized by trait size variance. The indices are compared with Monte‐Carlo simulations. All achieve the expected correction for scale differences. High type I error rates (false indication of differences) occur only for σ2L?R and μ|R?L| if trait sizes close to or below 0 occur. 1 ? rL,R with a bootstrap test has always low error rates. Recommendation of the index to be used should be based on whether standardization of FA by trait size mean or trait size variance is preferred. A survey of 36 traits in the Speckled Wood Butterfly (Pararge aegeria) indicated that σ2L?R is slightly higher correlated to trait size variance than to trait size mean. Thus 1 ? rL,R seems to be the superior index and should be reported when FA of different traits is compared.  相似文献   

11.
Molecular clocks, molecular phylogenies and the origin of phyla   总被引:3,自引:0,他引:3  
Erwin, Douglas H. 1989 07 15: Molecular clocks, molecular phylogenies and the origin of phyla. Lethaia , Vol. 22, pp. 251–257. Oslo. ISSN 0024–1164.
Protein, RNA and DNA sequences have been widely used to construct phylogenies and to calculate divergence times using a molecular clock. Reliance on molecular information is particularly attractive when fossil evidence is missing or equivocal, as in the Cambrian metazoan radiation. I consider the applicability of molecular clocks and phylogenetic analysis of molecular data to the origin of metazoan phyla, and conclude that molecular information is often ambiguous or misleading. Amino acid sequences are of limited use because the redundancy of the genetic code masks patterns of descent, while in a nucleotide sequence only four potential states exist at each site (the four nucleotide bases). In each case, homoplasy may often go undetected. The application of a molecular clock to resolve the timing of the metazoan radiation is unwarranted, while molecular phylogenetic reconstruction should be approached with care. A potentially more useful technique for phylogenetic reconstruction would be the use of patterns of genome structure and organization as characters. * Molecular clock, phylogenetics, metazoan radiation, origin of phyla .  相似文献   

12.
In the late 1980s, researchers began applying molecular sequencing tools to questions of deep animal phylogeny. These advances in sequencing were accompanied with improvements in computation and phylogenetic methods, and served to significantly reshape our understanding of metazoan evolution. Prior to this time, researchers asserted phylogenetic hypotheses based on their experience with taxa and to some degree, their authority. Molecular phylogenetic tools provided discrete methods and objective characters for reconstructing phylogeny. Nonetheless, major changes to widely accepted views, such as animal phylogeny, take time to be accepted. Development and acceptance of our current understanding of animal evolution occurred in three main phases: initial hypotheses based on 18S data, confirmation with additional molecular markers, and continued refinement with phylogenomics. With the advent of ideas such as Lophotrochozoa and Ecdysozoa, flaws in the traditional view became apparent. We now understand that complex morphological and embryological features (e.g., segmentation, coelom formation, development of body cavities) are much more evolutionarily plastic than previously recognized. Here, I explore how the transition from the traditional to the modern phylogenetic understanding of animal phylogeny occurred and examine some implications of this change in understanding. As the field moves forward, the utility of morphological and embryological characters for reconstruction of deep animal phylogeny should be discouraged. Instead, these characters should be interpreted in the light of independent phylogeny.  相似文献   

13.
14.
15.
Abstract.— Molecular evolution has been considered to be essentially a stochastic process, little influenced by the pace of phenotypic change. This assumption was challenged by a study that demonstrated an association between rates of morphological and molecular change estimated for "total-evidence" phylogenies, a finding that led some researchers to challenge molecular date estimates of major evolutionary radiations. Here we show that Omland's (1997) result is probably due to methodological bias, particularly phylogenetic nonindependence, rather than being indicative of an underlying evolutionary phenomenon. We apply three new methods specifically designed to overcome phylogenetic bias to 13 published phylogenetic datasets for vertebrate taxa, each of which includes both morphological characters and DNA sequence data. We find no evidence of an association between rates of molecular and morphological rates of change.  相似文献   

16.
The rise of cladistics in ichthyology has dramatically improved our knowledge of teleostean basal interrelationships. However, some questions have remained open, among them the reliability of the Otocephala, a clade grouping clupeomorphs and ostariophysans, and the relationships of the Esocoidei. These two questions have been investigated in the light of new DNA sequences (from 28S and rhodopsin genes) and sequences from data banks (cytochrome b, 12-16S, 18S, MLL and RAG1). The ability of each of these markers to resolve basal teleostean interrelationships is assessed, and the cytochrome b was not found appropriate. Practical (i.e. different taxonomic samplings) and epistemological grounds led us to perform multiple separated phylogenetic analyses, in order to estimate the reliability of the above clades from their repeatability among trees from independent sequence data. The Otocephala are found monophyletic from most of the datasets; otherwise, they are not significantly contradicted from the others, which exhibit unresolved relationships. We conclude that the evidence provided here favours the sister-group relationship of clupeomorphs and ostariophysans. Morphological evidence including fossils is discussed, concluding that morphological works have not yet provided sufficient data to support this group. Salmonids and esocoids are found sister-groups from every molecular dataset in which these groups were sampled. Based on these convincing results, the Protacanthopterygii of Johnson and Patterson [1] are redefined, including the Esocoidei.  相似文献   

17.
18.
An early burst of speciation followed by a subsequent slowdown in the rate of diversification is commonly inferred from molecular phylogenies. This pattern is consistent with some verbal theory of ecological opportunity and adaptive radiations. One often-overlooked source of bias in these studies is that of sampling at the level of whole clades, as researchers tend to choose large, speciose clades to study. In this paper, we investigate the performance of common methods across the distribution of clade sizes that can be generated by a constant-rate birth-death process. Clades which are larger than expected for a given constant-rate branching process tend to show a pattern of an early burst even when both speciation and extinction rates are constant through time. All methods evaluated were susceptible to detecting this false signature when extinction was low. Under moderate extinction, both the [Formula: see text]-statistic and diversity-dependent models did not detect such a slowdown but only because the signature of a slowdown was masked by subsequent extinction. Some models which estimate time-varying speciation rates are able to detect early bursts under higher extinction rates, but are extremely prone to sampling bias. We suggest that examining clades in isolation may result in spurious inferences that rates of diversification have changed through time.  相似文献   

19.
Phadwal K 《Gene》2005,345(1):35-43
Phylogenetic analysis of carotenoid biosynthetic pathway genes and their evolutionary rate variations were studied among eubacterial taxa. The gene sequences for the enzymes involved in this pathway were obtained for major phylogenetic groups of eubacteria (green sulfur bacteria, green nonsulphur bacteria, Gram-positive bacteria, proteobacteria, flavobacteria, cyanobacteria) and archeabacteria. These gene datasets were distributed under five major steps of carotenoid biosynthesis in eubacteria; isoprenoid precursor biosynthesis, phytoene synthesis, dehydrogenation of phytoene, lycopene cyclization, formation of acyclic xanthophylls, formation of cyclic xanthophylls and carotenoid biosynthesis regulation. The NJ algorithm was used on protein coding DNA sequences to deduce the evolutionary relationship for the respective crt genes among different eubacterial lineages. The rate of nonsynonymous nucleotide substitutions per nonsynonymous site (d(N)) and synonymous nucleotide substitutions per synonymous site (d(S)) were calculated for different clades of the respective phylogenetic tree for specific crt genes. The phylogenetic analysis suggests that evolutionary pattern of crt genes in eubacteria is characterized by lateral gene transfer and gene duplication events. The d(N) values indicate that carotenoid biosynthetic genes are more conserved in proteobacteria than in any other eubacterial phyla. Furthermore, of the genes involved in carotenoid biosynthesis pathway, structural genes evolve slowly than the regulatory genes in eubacteria.  相似文献   

20.
MOTIVATION: TipDate is a program that will use sequences that have been isolated at different dates to estimate their rate of molecular evolution. The program provides a maximum likelihood estimate of the rate and also the associated date of the most recent common ancestor of the sequences, under a model which assumes a constant rate of substitution (molecular clock) but which accommodates the dates of isolation. Confidence intervals for these parameters are also estimated. Results: The approach was applied to a sample of 17 dengue virus serotype 4 sequences, isolated at dates ranging from 1956 to 1994. The rate of substitution for this serotype was estimated to be 7.91 x 10(-4) substitutions per site per year (95% confidence intervals of 6.07 x 10(-4), 9.86 x 10(-4)). This is compatible with a date of 1922 (95% confidence intervals of 1900-1936) for the most recent common ancestor of these sequences. AVAILABILITY: TipDate can be obtained by WWW from http://evolve.zoo. ox.ac.uk/software. The package includes the source code, manual and example files. Both UNIX and Apple Macintosh versions are available from the same site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号