首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatakia SN  Costanzi S  Chow CC 《PloS one》2011,6(11):e27813
G protein-coupled receptors (GPCRs) are a superfamily of integral membrane proteins vital for signaling and are important targets for pharmaceutical intervention in humans. Previously, we identified a group of ten amino acid positions (called key positions), within the seven transmembrane domain (7TM) interhelical region, which had high mutual information with each other and many other positions in the 7TM. Here, we estimated the evolutionary selection pressure at those key positions. We found that the key positions of receptors for small molecule natural ligands were under strong negative selection. Receptors naturally activated by lipids had weaker negative selection in general when compared to small molecule-activated receptors. Selection pressure varied widely in peptide-activated receptors. We used this observation to predict that a subgroup of orphan GPCRs not under strong selection may not possess a natural small-molecule ligand. In the subgroup of MRGX1-type GPCRs, we identified a key position, along with two non-key positions, under statistically significant positive selection.  相似文献   

2.
Class A G-protein-coupled receptors (GPCRs) constitute the largest family of transmembrane receptors in the human genome. Understanding the mechanisms which drove the evolution of such a large family would help understand the specificity of each GPCR sub-family with applications to drug design. To gain evolutionary information on class A GPCRs, we explored their sequence space by metric multidimensional scaling analysis (MDS). Three-dimensional mapping of human sequences shows a non-uniform distribution of GPCRs, organized in clusters that lay along four privileged directions. To interpret these directions, we projected supplementary sequences from different species onto the human space used as a reference. With this technique, we can easily monitor the evolutionary drift of several GPCR sub-families from cnidarians to humans. Results support a model of radiative evolution of class A GPCRs from a central node formed by peptide receptors. The privileged directions obtained from the MDS analysis are interpretable in terms of three main evolutionary pathways related to specific sequence determinants. The first pathway was initiated by a deletion in transmembrane helix 2 (TM2) and led to three sub-families by divergent evolution. The second pathway corresponds to the differentiation of the amine receptors. The third pathway corresponds to parallel evolution of several sub-families in relation with a covarion process involving proline residues in TM2 and TM5. As exemplified with GPCRs, the MDS projection technique is an important tool to compare orthologous sequence sets and to help decipher the mutational events that drove the evolution of protein families.  相似文献   

3.
The consistent observation across all kingdoms of life that highly abundant proteins evolve slowly demonstrates that cellular abundance is a key determinant of protein evolutionary rate. However, other empirical findings, such as the broad distribution of evolutionary rates, suggest that additional variables determine the rate of protein evolution. Here, we report that under the global selection against the cytotoxic effects of misfolded proteins, folding stability (ΔG), simultaneous with abundance, is a causal variable of evolutionary rate. Using both theoretical analysis and multiscale simulations, we demonstrate that the anticorrelation between the premutation ΔG and the arising mutational effect (ΔΔG), purely biophysical in origin, is a necessary requirement for abundance-evolutionary rate covariation. Additionally, we predict and demonstrate in bacteria that the strength of abundance-evolutionary rate correlation depends on the divergence time separating reference genomes. Altogether, these results highlight the intrinsic role of protein biophysics in the emerging universal patterns of molecular evolution.  相似文献   

4.
The amino acid sequences of 369 human nonolfactory G-protein-coupled receptors (GPCRs) have been aligned at the seven transmembrane domain (TM) and used to extract the nature of 30 critical residues supposed--from the X-ray structure of bovine rhodopsin bound to retinal--to line the TM binding cavity of ground-state receptors. Interestingly, the clustering of human GPCRs from these 30 residues mirrors the recently described phylogenetic tree of full-sequence human GPCRs (Fredriksson et al., Mol Pharmacol 2003;63:1256-1272) with few exceptions. A TM cavity could be found for all investigated GPCRs with physicochemical properties matching that of their cognate ligands. The current approach allows a very fast comparison of most human GPCRs from the focused perspective of the predicted TM cavity and permits to easily detect key residues that drive ligand selectivity or promiscuity.  相似文献   

5.
Interspecific comparisons of protein sequences can reveal regions of evolutionary conservation that are under purifying selection because of functional constraints. Interpreting these constraints requires combining evolutionary information with structural, biochemical, and physiological data to understand the biological function of conserved regions. We take this integrative approach to investigate the evolution and function of the nuclear-encoded subunits of cytochrome c oxidase (COX). We find that the nuclear-encoded subunits evolved subsequent to the origin of mitochondria and the subunit composition of the holoenzyme varies across diverse taxa that include animals, yeasts, and plants. By mapping conserved amino acids onto the crystal structure of bovine COX, we show that conserved residues are structurally organized into functional domains. These domains correspond to some known functional sites as well as to other uncharacterized regions. We find that amino acids that are important for structural stability are conserved at frequencies higher than expected within each taxon, and groups of conserved residues cluster together at distances of less than 5 A more frequently than do randomly selected residues. We, therefore, suggest that selection is acting to maintain the structural foundation of COX across taxa, whereas active sites vary or coevolve within lineages.  相似文献   

6.
G protein-coupled receptors (GPCRs) are key players in cell communication. Several classes of such receptors have been identified. Although all GPCRs possess a heptahelical domain directly activating G proteins, important structural and sequence differences within receptors from different classes suggested distinct activation mechanisms. Here we show that highly conserved charged residues likely involved in an interaction network between transmembrane domains (TM) 3 and 6 at the cytoplasmic side of class C GPCRs are critical for activation of the gamma-aminobutyric acid type B receptor. Indeed, the loss of function resulting from the mutation of the conserved lysine residue into aspartate or glutamate in the TM3 of gamma-aminobutyric acid type B(2) can be partly rescued by mutating the conserved acidic residue of TM6 into either lysine or arginine. In addition, mutation of the conserved lysine into an acidic residue leads to a nonfunctional receptor that displays a high agonist affinity. This is reminiscent of a similar ionic network that constitutes a lock stabilizing the inactive state of many class A rhodopsin-like GPCRs. These data reveal that despite their original structure, class C GPCRs share with class A receptors at least some common structural feature controlling G protein activation.  相似文献   

7.
A key question associated with topology predictions for membrane proteins is whether there is sufficient variation in the biophysical properties of residues at the membrane interface to enable identification of TM spans in a robust and efficient manner using relatively simple methods of analysis. Here, a test for the homogeneity of multinomial populations is used to identify statistical differences between the residue compositions of windows within datasets of aligned non-homologous TM α-helices. Using this approach, the accuracy and robustness of the predicted boundaries for datasets of uncleaved signal (US) sequences and stop transfer sequences (ST) is tested. The validity of the 21 residue length, which is generally assumed for TM spans in membrane protein topology prediction is also investigated and it is suggested that ST sequences may be better represented by a length of 22 residues.  相似文献   

8.
G-protein-coupled receptors (GPCRs) are a large family of remarkably versatile membrane proteins that are attractive therapeutic targets because of their involvement in a vast range of normal physiological processes and pathological diseases. Upon activation, intracellular domains of GPCRs mediate signaling to G-proteins, but these domains have yet to be effectively exploited as drug targets. Cell-penetrating lipidated peptides called pepducins target specific intracellular loops of GPCRs and have recently emerged as effective allosteric modulators of GPCR activity. The lipid moiety facilitates translocation across the plasma membrane, where pepducins then specifically modulate signaling of their cognate receptor. To date, pepducins and related lipopeptides have been shown to specifically modulate the activity of diverse GPCRs and other membrane proteins, including protease-activated receptors (PAR1, PAR2, and PAR4), chemokine receptors (CXCR1, CXCR2, and CXCR4), sphingosine 1-phosphate receptor-3 (S1P3), the melanocortin-4 receptor, the Smoothened receptor, formyl peptide receptor-2 (FPR2), the relaxin receptor (LGR7), G-proteins (Gα(q/11/o/13)), muscarinic acetylcholine receptor and vanilloid (TRPV1) channels, and the GPIIb integrin. This minireview describes recent advances made using pepducin technology in targeting diverse GPCRs and the use of pepducins in identifying potential novel drug targets.  相似文献   

9.
Receptor Tyrosine Kinases (RTKs) conduct biochemical signals via lateral dimerization in the plasma membrane, and defects in their dimerization lead to unregulated signaling and disease. RTK transmembrane (TM) domains are proposed to play an important role in the process, underscored by the finding that single amino acids mutations in the TM domains can induce pathological phenotypes. Therefore, many important questions pertaining to the mode of signal transduction and the mechanism of pathology induction could be answered by studying the chemical-physical basis behind RTK TM domain dimerization and the interactions of RTK TM domains with lipids in model bilayer systems. As a first step towards this goal, here we report the synthesis of the TM domain of fibroblast growth factor receptor 3 (FGFR3), an RTK that is crucial for skeletal development. We have used solid phase peptide synthesis to produce two peptides: one corresponding to the membrane embedded segment and the naturally occurring flanking residues at the N- and C-termini (TMwt), and a second one in which the flanking residues have been substituted with diLysines at the termini (TMKK). We have demonstrated that the hydrophobic FGFR3 TM domain can be synthesized for biophysical studies with high yield. The protocol presented in the paper can be applied to the synthesis of other RTK TM domains. As expected, the Lys flanks decrease the hydrophobicity of the TM domain, such that TMKK elutes much earlier than TMwt during reverse phase HPLC purification. The Lysines have no effect on peptide solubility in SDS and on peptide secondary structure, but they abolish peptide dimerization on SDS gels. These results suggest that caution should be exercised when modifying RTK TM domains to render them more manageable for biophysical studies.  相似文献   

10.
The activity of G protein-coupled receptors (GPCRs) can be modulated by a diverse spectrum of drugs ranging from full agonists to partial agonists, antagonists, and inverse agonists. The vast majority of these ligands compete with native ligands for binding to orthosteric binding sites. Allosteric ligands have also been described for a number of GPCRs. However, little is known about the mechanism by which these ligands modulate the affinity of receptors for orthosteric ligands. We have previously reported that Zn(II) acts as a positive allosteric modulator of the beta(2)-adrenergic receptor (beta(2)AR). To identify the Zn(2+) binding site responsible for the enhancement of agonist affinity in the beta(2)AR, we mutated histidines located in hydrophilic sequences bridging the seven transmembrane domains. Mutation of His-269 abolished the effect of Zn(2+) on agonist affinity. Mutations of other histidines had no effect on agonist affinity. Further mutagenesis of residues adjacent to His-269 demonstrated that Cys-265 and Glu-225 are also required to achieve the full allosteric effect of Zn(2+) on agonist binding. Our results suggest that bridging of the cytoplasmic extensions of TM5 and TM6 by Zn(2+) facilitates agonist binding. These results are in agreement with recent biophysical studies demonstrating that agonist binding leads to movement of TM6 relative to TM5.  相似文献   

11.
G protein-coupled receptors (GPCRs) can form dimeric or oligomeric complexes in vivo. However, the functions and mechanisms of oligomerization remain poorly understood for most GPCRs, including the alpha-factor receptor (STE2 gene product) of the yeast Saccharomyces cerevisiae. Here we provide evidence indicating that alpha-factor receptor oligomerization involves a GXXXG motif in the first transmembrane domain (TM1), similar to the transmembrane dimerization domain of glycophorin A. Results of fluorescence resonance energy transfer, fluorescence microscopy, endocytosis assays of receptor oligomerization in living cells, and agonist binding assays indicated that amino acid substitutions affecting the glycine residues of the GXXXG motif impaired alpha-factor receptor oligomerization and biogenesis in vivo but did not significantly impair agonist binding affinity. Mutant receptors exhibited signaling defects that were not due to impaired cell surface expression, indicating that oligomerization promotes alpha-factor receptor signal transduction. Structure-function studies suggested that the GXXXG motif in TM1 of the alpha-factor receptor promotes oligomerization by a mechanism similar to that used by the GXXXG dimerization motif of glycophorin A. In many mammalian GPCRs, motifs related to the GXXXG sequence are present in TM1 or other TM domains, suggesting that similar mechanisms are used by many GPCRs to form dimers or oligomeric arrays.  相似文献   

12.
The EGFR/HER receptor family of an epidermal growth factor represents an important class of the receptor tyrosine kinases playing the key role in the control of cell growth and differentiation in mammalian cells, as well as in the development of a number of pathological processes, including oncogenesis. Binding of a ligand to the extracellular domains initiates switching of the EGFR/HER receptor between the alternative dimeric states that causes the allosteric activation of kinase domains in cell cytoplasm. The transmembrane (TM) domain and adjacent flexible regions alternatively interacting with either membrane surface or kinase domains are directly involved in the complex conformational transition in EGFR/HERs. Here we report on a highly efficient system of the cell free production of the EGFR/HER TM domains with functionally important juxtamembrane (JM) regions for the investigation of the molecular basis of biochemical signal transduction across the cell membrane. To increase the efficiency of synthesis of the EGFR/HER TM-JM fragments of the receptors, we used two N-terminal expression tags, which significantly increased the protein yield. In the case of the TM-JM fragments of EGFR (residues 638–692) and HER2 (residues 644–700), the method allowed us to obtain milligram quantities of the 13C,15N-labeled protein for structural and biophysical investigations in the membrane-mimicking environments using high-resolution heteronuclear NMR spectroscopy.  相似文献   

13.
Sperm morphological traits are highly variable among species and are commonly thought to evolve by post‐copulatory sexual selection. However, little is known about the evolutionary dynamics of sperm morphology, and whether rates of evolutionary change are variable over time and among taxonomic groups. Here, we examine sperm morphology from 21 species of Old World leaf warblers (Phylloscopidae), a group of generally dull, sexually monochromatic birds, which are known to have high levels of extra‐pair paternity. We found that sperm length differs markedly across species, spanning about 40% of the range observed across a larger selection of passerine birds. Furthermore, we found strong support for an ‘early‐burst’ model of trait evolution, implying that the majority of divergence in sperm length has occurred early in the evolutionary history of this clade with subsequent evolutionary stasis. This large early divergence matches the early divergence reported in ecological traits (i.e. body size and feeding behaviour). Our findings demonstrate that rates of evolution in sperm morphology can change over time in passerine taxa, and that evolutionary stasis in sperm traits can occur even in species exhibiting characteristics consistent with moderate‐to‐high levels of sperm competition. It remains a major challenge to identify the selection mechanisms and possible constraints responsible for these variable rates of sperm evolution.  相似文献   

14.
The striking diversity of sperm shape across the animal kingdom is still poorly understood. Postcopulatory sexual selection is an important factor driving the evolution of sperm size and shape. Interestingly, morphometric sperm traits, such as the length of the head, midpiece and flagellum, exhibit a strong positive phenotypic correlation across species. Here we used recently developed comparative methods to investigate how such phenotypic correlations between morphometric sperm traits may evolve. We compare allometric relationships and evolutionary trajectories of three morphometric sperm traits (length of head, midpiece and flagellum) in passerine birds. We show that these traits exhibit strong phenotypic correlations but that allometry varies across families. In addition, the evolutionary trajectories of the midpiece and flagellum are similar while the trajectory for head length differs. We discuss our findings in the light of three scenarios accounting for correlated trait evolution: (i) genetic correlation; (ii) concerted response to selection acting simultaneously on different traits; and (iii) phenotypic correlation between traits driven by mechanistic constraints owing to selection on sperm performance. Our results suggest that concerted response to selection is the most likely explanation for the phenotypic correlation between morphometric sperm traits.  相似文献   

15.
Receptor Tyrosine Kinases (RTKs) conduct biochemical signals via lateral dimerization in the plasma membrane, and defects in their dimerization lead to unregulated signaling and disease. RTK transmembrane (TM) domains are proposed to play an important role in the process, underscored by the finding that single amino acids mutations in the TM domains can induce pathological phenotypes. Therefore, many important questions pertaining to the mode of signal transduction and the mechanism of pathology induction could be answered by studying the chemical-physical basis behind RTK TM domain dimerization and the interactions of RTK TM domains with lipids in model bilayer systems. As a first step towards this goal, here we report the synthesis of the TM domain of fibroblast growth factor receptor 3 (FGFR3), an RTK that is crucial for skeletal development. We have used solid phase peptide synthesis to produce two peptides: one corresponding to the membrane embedded segment and the naturally occurring flanking residues at the N- and C-termini (TMwt), and a second one in which the flanking residues have been substituted with diLysines at the termini (TMKK). We have demonstrated that the hydrophobic FGFR3 TM domain can be synthesized for biophysical studies with high yield. The protocol presented in the paper can be applied to the synthesis of other RTK TM domains. As expected, the Lys flanks decrease the hydrophobicity of the TM domain, such that TMKK elutes much earlier than TMwt during reverse phase HPLC purification. The Lysines have no effect on peptide solubility in SDS and on peptide secondary structure, but they abolish peptide dimerization on SDS gels. These results suggest that caution should be exercised when modifying RTK TM domains to render them more manageable for biophysical studies.  相似文献   

16.
Proteins involved in sperm-egg binding have been shown to evolve rapidly in several groups of invertebrates and vertebrates. Mammalian SED1 (secreted protein containing N-terminal Notch-like type II epidermal growth factor (EGF) repeats and C-terminal discoidin/F5/8 C domains) is a recently identified sperm surface protein that binds the egg zona pellucida and facilitates sperm-egg adhesion. SED1-null male mice are subfertile. Here we examine the SED1 gene from 11 mammalian species and provide evidence that it underwent accelerated evolution in ancestral primates, most likely driven by positive selection. Specifically, the intensity of the positive selection across various protein domains of SED1 was heterogeneous. Although one of the 2 Notch-like EGF domains, which mediate protein-protein binding, was lost in primate SED1, the second EGF domain evolved under strong positive selection favoring polar to nonpolar amino acid replacements. By contrast, the 2 discoidin/F5/8 type C domains, which are involved in protein-cell membrane binding, do not show definite signs of positive selection. The structural modification and occurrence of directional selection in ancestral primates but not any other lineage suggest that the function of SED1 may have changed during primate evolution. These results reveal a different evolutionary pattern of SED1 from that of many other sperm-egg-binding proteins, which often show diversifying selection occurring in multiple lineages.  相似文献   

17.
Scientific views of cell membrane organization are presently changing. Rather than serving only as the medium through which membrane proteins diffuse, lipid bilayers have now been shown to form compartmentalized domains with different biophysical properties (rafts/caveolae). For membrane proteins such as the G protein coupled receptors (GPCRs), a raft domain provides a platform for the assembly of signaling complexes and prevents cross-talk between pathways. Lipid composition also has a strong influence on the conformational activity of GPCRs. For certain GPCRs, such as the cannabinoid receptors, the lipid bilayer has additional significance. Endocannabinoids such as anandamide (AEA) are created in a lipid bilayer from lipid and act at the membrane embedded CB1 receptor. Endocannabinoids exiting the CB1 receptor are transported either by a carrier-mediated or a simple diffusion process to the membrane of the postsynaptic cell. Following cellular uptake, perhaps via caveolae/lipid raft-related endocytosis, AEA is rapidly metabolized by a membrane-associated enzyme, fatty acid amide hydrolase (FAAH) located in the endoplasmic reticulum. The entry point for AEA into FAAH appears to be from the lipid bilayer. This review explores the importance of lipid composition and lipid rafts to GPCR signaling and then focuses on the intimate relationship that exists between the lipid environment and the endocannabinoid system.  相似文献   

18.
G-protein coupled receptors (GPCRs) are ubiquitous membrane proteins allowing intracellular responses to extracellular factors that range from photons of light to small molecules to proteins. Despite extensive exploitation of GPCRs as therapeutic targets, biophysical characterization of GPCR-ligand interactions remains challenging. In this minireview, we focus on techniques that have been successfully used for structural and biophysical characterization of peptide ligands binding to their cognate GPCRs. The techniques reviewed include solution-state nuclear magnetic resonance (NMR) spectroscopy, solid-state NMR, X-ray diffraction, fluorescence spectroscopy and single-molecule fluorescence methods, flow cytometry, surface plasmon resonance, isothermal titration calorimetry, and atomic force microscopy. The goal herein is to provide a cohesive starting point to allow selection of techniques appropriate to the elucidation of a given GPCR-peptide interaction.  相似文献   

19.
Functionally equivalent genes may evolve heterogeneously across closely related taxa as a consequence of lineage-specific selective pressures. Such disparate evolutionary modes are especially prevalent in genes that encode postcopulatory reproductive proteins, presumably as a result of sexual selection. We might therefore expect genes that mediate reproduction prior to insemination to evolve in a similar manner. Plethodontid receptivity factor (PRF), a proteinaceous salamander pheromone produced by the male, increases female receptivity during courtship interactions. To test for lineage-specific differences in PRF's evolution, we intensively sampled PRF genes across the eastern Plethodon phylogeny (27 spp.; 34 populations) to compare gene diversification, rates of evolution, modes of selection, and types of amino acid substitution. Our analyses indicate that PRF evolutionary dynamics vary considerably from lineage to lineage. Underlying this heterogeneity, however, are two well-defined transitions in evolutionary mode. The first mode is representative of a typical protein profile, wherein neutral divergence and purifying selection are the dominant features. The second mode is characterized by incessant, cyclical evolution driven by positive selection. In this mode, the positively selected sites are bound by a limited assortment of acceptable amino acids that appear to evolve independently of other sites, resulting in a tremendous number of unique PRF alleles. Several of these selected sites are implicated in receptor binding. These sites are apparently involved in a molecular tango in which the male signal and female receptors coevolve within a confined molecular space. PRF's lineage-specific evolutionary dynamics, in combination with evidence of a molecular tango, highlight the molecular action of sexual selection on a chemical signal that is used during courtship.  相似文献   

20.
The structural dynamics of three different ligand-activated G-protein coupled receptors (GPCRs) and the photoreactive receptor rhodopsin from mammals were comparatively studied. As a result, diagrams demonstrating the main structural differences between the studied membrane receptors were obtained. These diagrams represent the projection of the crystal structures of rhodopsin photointermediates and ligand-activated receptors onto the plane defined by the principal components. Thus, we were able to associate the activation process of the receptors with large-scale movements of their individual transmembrane (TM) domains. In addition, the dynamics of extracellular loops of ligand-activated receptors responsible for recognition and initial binding of ligands was studied. Based on these results, two parameters of functionally significant structural dynamics of membrane receptors can be thoroughly analyzed simultaneously — movements of individual TM helices and of extracellular loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号