共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a variant of the intermediate sequence search method (ISS(new)) for detection and alignment of weakly similar pairs of protein sequences. ISS(new) relates two query sequences by an intermediate sequence that is potentially homologous to both queries. The improvement was achieved by a more robust overlap score for a match between the queries through an intermediate. The approach was benchmarked on a data set of 2369 sequences of known structure with insignificant sequence similarity to each other (BLAST E-value larger than 0.001); 2050 of these sequences had a related structure in the set. ISS(new) performed significantly better than both PSI-BLAST and a previously described intermediate sequence search method. PSI-BLAST could not detect correct homologs for 1619 of the 2369 sequences. In contrast, ISS(new) assigned a correct homolog as the top hit for 121 of these 1619 sequences, while incorrectly assigning homologs for only nine targets; it did not assign homologs for the remainder of the sequences. By estimate, ISS(new) may be able to assign the folds of domains in approximately 29,000 of the approximately 500,000 sequences unassigned by PSI-BLAST, with 90% specificity (1 - false positives fraction). In addition, we show that the 15 alignments with the most significant BLAST E-values include the nearly best alignments constructed by ISS(new). 相似文献
2.
Löytynoja A Goldman N 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1512):3913-3919
We have developed a phylogeny-aware progressive alignment method that recognizes insertions and deletions as distinct evolutionary events and thus avoids systematic errors created by traditional alignment methods. We now extend this method to simultaneously model regional heterogeneity and evolution. This novel method can be flexibly adapted to alignment of nucleotide or amino acid sequences evolving under processes that vary over genomic regions and, being fully probabilistic, provides an estimate of regional heterogeneity of the evolutionary process along the alignment and a measure of local reliability of the solution. Furthermore, the evolutionary modelling of substitution process permits adjusting the sensitivity and specificity of the alignment and, if high specificity is aimed at, leaving sequences unaligned when their divergence is beyond a meaningful detection of homology. 相似文献
3.
Structural alignments often reveal relationships between proteins that cannot be detected using sequence alignment alone. However, profile search methods based entirely on structural alignments alone have not been found to be effective in finding remote homologs. Here, we explore the role of structural information in remote homolog detection and sequence alignment. To this end, we develop a series of hybrid multidimensional alignment profiles that combine sequence, secondary and tertiary structure information into hybrid profiles. Sequence-based profiles are profiles whose position-specific scoring matrix is derived from sequence alignment alone; structure-based profiles are those derived from multiple structure alignments. We compare pure sequence-based profiles to pure structure-based profiles, as well as to hybrid profiles that use combined sequence-and-structure-based profiles, where sequence-based profiles are used in loop/motif regions and structural information is used in core structural regions. All of the hybrid methods offer significant improvement over simple profile-to-profile alignment. We demonstrate that both sequence-based and structure-based profiles contribute to remote homology detection and alignment accuracy, and that each contains some unique information. We discuss the implications of these results for further improvements in amino acid sequence and structural analysis. 相似文献
4.
STRUCTFAST is a novel profile-profile alignment algorithm capable of detecting weak similarities between protein sequences. The increased sensitivity and accuracy of the STRUCTFAST method are achieved through several unique features. First, the algorithm utilizes a novel dynamic programming engine capable of incorporating important information from a structural family directly into the alignment process. Second, the algorithm employs a rigorous analytical formula for profile-profile scoring to overcome the limitations of ad hoc scoring functions that require adjustable parameter training. Third, the algorithm employs Convergent Island Statistics (CIS) to compute the statistical significance of alignment scores independently for each pair of sequences. STRUCTFAST routinely produces alignments that meet or exceed the quality obtained by an expert human homology modeler, as evidenced by its performance in the latest CAFASP4 and CASP6 blind prediction benchmark experiments. 相似文献
5.
Embedding strategies for effective use of information from multiple sequence alignments. 总被引:4,自引:0,他引:4 下载免费PDF全文
S. Henikoff J. G. Henikoff 《Protein science : a publication of the Protein Society》1997,6(3):698-705
We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain. 相似文献
6.
An algorithm was developed to locally optimize gaps from the FSSP database. Over 2 million gaps were identified from all versus all FSSP structure comparisons, and datasets of non-identical gaps and flanking regions comprising between 90,000 and 135,000 sequence fragments were extracted for statistical analysis. Relative to background frequencies, gaps were enriched in residue types with small side chains and high turn propensity (D, G, N, P, S), and were depleted in residue types with hydrophobic side chains (C, F, I, L, V, W, Y). In contrast, regions flanking a gap exhibited opposite trends in amino acid frequencies, i.e., enrichment in hydrophobic residues and a high degree of secondary structure. Log-odds scores of residue type as a function of position in or around a gap were derived from the statistics. Three simple experiments demonstrated that these scores contained significant predictive information. First, regions where gaps were observed in single sequences taken from HOMSTRAD structure-based multiple sequence alignments generally scored higher than regions where gaps were not observed. Second, given the correct pairwise-aligned cores, the actual positions of gaps could be reproduced from sequence more accurately using the structurally-derived statistics than by using random pairwise alignments. Finally, revision of the Clustal-W residue-specific gap opening parameters with this new information improved the agreement of Clustal-W alignments with the structure-based alignments. At least three applications for these results are envisioned: improvement of gap penalties in pairwise (or multiple) sequence alignment, prediction of regions of single sequences likely (or unlikely) to contain indels, and more accurate placement of gaps in automated pairwise structure alignment. 相似文献
7.
Identification of related proteins with weak sequence identity using secondary structure information 下载免费PDF全文
Geourjon C Combet C Blanchet C Deléage G 《Protein science : a publication of the Protein Society》2001,10(4):788-797
Molecular modeling of proteins is confronted with the problem of finding homologous proteins, especially when few identities remain after the process of molecular evolution. Using even the most recent methods based on sequence identity detection, structural relationships are still difficult to establish with high reliability. As protein structures are more conserved than sequences, we investigated the possibility of using protein secondary structure comparison (observed or predicted structures) to discriminate between related and unrelated proteins sequences in the range of 10%-30% sequence identity. Pairwise comparison of secondary structures have been measured using the structural overlap (Sov) parameter. In this article, we show that if the secondary structures likeness is >50%, most of the pairs are structurally related. Taking into account the secondary structures of proteins that have been detected by BLAST, FASTA, or SSEARCH in the noisy region (with high E: value), we show that distantly related protein sequences (even with <20% identity) can be still identified. This strategy can be used to identify three-dimensional templates in homology modeling by finding unexpected related proteins and to select proteins for experimental investigation in a structural genomic approach, as well as for genome annotation. 相似文献
8.
Dynamic programming (DP) and its heuristic algorithms are the most fundamental methods for similarity searches of amino acid sequences. Their detection power has been improved by including supplemental information, such as homologous sequences in the profile method. Here, we describe a method, probabilistic alignment (PA), that gives improved detection power, but similarly to the original DP, uses only a pair of amino acid sequences. Receiver operating characteristic (ROC) analysis demonstrated that the PA method is far superior to BLAST, and that its sensitivity and selectivity approach to those of PSI-BLAST. Particularly for orphan proteins having few homologues in the database, PA exhibits much better performance than PSI-BLAST. On the basis of this observation, we applied the PA method to a homology search of two orphan proteins, Latexin and Resuscitation-promoting factor domain. Their molecular functions have been described based on structural similarities, but sequence homologues have not been identified by PSI-BLAST. PA successfully detected sequence homologues for the two proteins and confirmed that the observed structural similarities are the result of an evolutional relationship. 相似文献
9.
Clustal W—蛋白质与核酸序列分析软件 总被引:2,自引:1,他引:2
蛋白质与核酸的序列分析在现代生物学和生物信息学中发挥着重要作用,新的算法和软件层出不穷,本文介绍一个可运行在PC机上的完全免费的多序列比较软件-ClustalW,它不但可以进行蛋白质与核酸的多序列比较,分析不同序列之间的相似性关系,还可以绘制进化树。由于其灵活的输入输出格式、方便的参数设定和选择、详尽的在线帮助以及良好的可移植性,使得ClustalW在蛋白质与核酸的序列分析中得到了广泛应用。 相似文献
10.
Structures of 79 proteins involved in human diseases were predicted by sequence alignments with structural templates. The
predicted structures for ALDP and CSA, proteins responsible for adrenoleukodystrophy and the Cockayne syndrome, respectively,
were analyzed to elucidate the molecular basis of disease mutations. In particular we positioned residue P484 of ALDP in the
homodimer interface. This positioning is consistent with a recent experimental finding that the mutation P484R significantly
decreases the self-interaction of ALDP and suggests that the disease mechanism of this mutation lies in the impaired ALDP
dimerization. We identified two new WD repeats in CSA and suggest that one of these forms part of the interaction surface
with other proteins. 相似文献
11.
Comparing the 3D structures of proteins is an important but computationally hard problem in bioinformatics. In this paper, we propose studying the problem when much less information or assumptions are available. We model the structural alignment of proteins as a combinatorial problem. In the problem, each protein is simply a set of points in the 3D space, without sequence order information, and the objective is to discover all large enough alignments for any subset of the input. We propose a data-mining approach for this problem. We first perform geometric hashing of the structures such that points with similar locations in the 3D space are hashed into the same bin in the hash table. The novelty is that we consider each bin as a coincidence group and mine for frequent patterns, which is a well-studied technique in data mining. We observe that these frequent patterns are already potentially large alignments. Then a simple heuristic is used to extend the alignments if possible. We implemented the algorithm and tested it using real protein structures. The results were compared with existing tools. They showed that the algorithm is capable of finding conserved substructures that do not preserve sequence order, especially those existing in protein interfaces. The algorithm can also identify conserved substructures of functionally similar structures within a mixture with dissimilar ones. The running time of the program was smaller or comparable to that of the existing tools. 相似文献
12.
I. I. Litvinov M. Yu. Lobanov A. A. Mironov A. V. Finkelshtein M. A. Roytberg 《Molecular Biology》2006,40(3):474-480
The most popular algorithms employed in the pairwise alignment of protein primary structures (Smith-Watermann (SW) algorithm, FASTA, BLAST, etc.) only analyze the amino acid sequence. The SW algorithm is the most accurate, yielding alignments that agree best with superimpositions of the corresponding spatial structures of proteins. However, even the SW algorithm fails to reproduce the spatial structure alignment when the sequence identity is lower than 30%. The objective of this work was to develop a new and more accurate algorithm taking the secondary structure of proteins into account. The alignments generated by this algorithm and having the maximal weight with the secondary structure considered proved to be more accurate than SW alignments. With sequences having less than 30% identity, the accuracy (i.e., the portion of reproduced positions of a reference alignment obtained by superimposing the protein spatial structures) of the new algorithm is 58 vs. 35% of the SW algorithm. The accuracy of the new algorithm is much the same with secondary structures established experimentally or predicted theoretically. Hence, the algorithm is applicable to proteins with unknown spatial structures. The program is available at ftp://194.149.64.196/STRUSWER/. 相似文献
13.
Pascale Jean Joël Pothier Patrick M. Dansette Daniel Mansuy Alain Viari 《Proteins》1997,28(3):388-404
A computational strategy for homology modeling, using several protein structures comparison, is described. This strategy implies a formalized definition of structural blocks common to several protein structures, a new program to compare these structures simultaneously, and the use of consensus matrices to improve sequence alignment between the structurally known and target proteins. Applying this method to cytochromes P450 led to the definition of 15 substructures common to P450cam, P450BM3, and P450terp, and to proposing a 3D model of P450eryF. Proteins 28:388–404, 1997 © 1997 Wiley-Liss, Inc. 相似文献
14.
Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. 相似文献
15.
An algorithm is presented for the accurate and rapid generation of multiple protein sequence alignments from tertiary structure comparisons. A preliminary multiple sequence alignment is performed using sequence information, which then determines an initial superposition of the structures. A structure comparison algorithm is applied to all pairs of proteins in the superimposed set and a similarity tree calculated. Multiple sequence alignments are then generated by following the tree from the branches to the root. At each branchpoint of the tree, a structure-based sequence alignment and coordinate transformations are output, with the multiple alignment of all structures output at the root. The algorithm encoded in STAMP (STructural Alignment of Multiple Proteins) is shown to give alignments in good agreement with published structural accounts within the dehydrogenase fold domains, globins, and serine proteinases. In order to reduce the need for visual verification, two similarity indices are introduced to determine the quality of each generated structural alignment. Sc quantifies the global structural similarity between pairs or groups of proteins, whereas Pij' provides a normalized measure of the confidence in the alignment of each residue. STAMP alignments have the quality of each alignment characterized by Sc and Pij' values and thus provide a reproducible resource for studies of residue conservation within structural motifs. 相似文献
16.
17.
The present study is an attempt to develop a neural network-based method for predicting the real value of solvent accessibility from the sequence using evolutionary information in the form of multiple sequence alignment. In this method, two feed-forward networks with a single hidden layer have been trained with standard back-propagation as a learning algorithm. The Pearson's correlation coefficient increases from 0.53 to 0.63, and mean absolute error decreases from 18.2 to 16% when multiple-sequence alignment obtained from PSI-BLAST is used as input instead of a single sequence. The performance of the method further improves from a correlation coefficient of 0.63 to 0.67 when secondary structure information predicted by PSIPRED is incorporated in the prediction. The final network yields a mean absolute error value of 15.2% between the experimental and predicted values, when tested on two different nonhomologous and nonredundant datasets of varying sizes. The method consists of two steps: (1) in the first step, a sequence-to-structure network is trained with the multiple alignment profiles in the form of PSI-BLAST-generated position-specific scoring matrices, and (2) in the second step, the output obtained from the first network and PSIPRED-predicted secondary structure information is used as an input to the second structure-to-structure network. Based on the present study, a server SARpred (http://www.imtech.res.in/raghava/sarpred/) has been developed that predicts the real value of solvent accessibility of residues for a given protein sequence. We have also evaluated the performance of SARpred on 47 proteins used in CASP6 and achieved a correlation coefficient of 0.68 and a MAE of 15.9% between predicted and observed values. 相似文献
18.
Friedberg I Kaplan T Margalit H 《Protein science : a publication of the Protein Society》2000,9(11):2278-2284
The PSI-BLAST algorithm has been acknowledged as one of the most powerful tools for detecting remote evolutionary relationships by sequence considerations only. This has been demonstrated by its ability to recognize remote structural homologues and by the greatest coverage it enables in annotation of a complete genome. Although recognizing the correct fold of a sequence is of major importance, the accuracy of the alignment is crucial for the success of modeling one sequence by the structure of its remote homologue. Here we assess the accuracy of PSI-BLAST alignments on a stringent database of 123 structurally similar, sequence-dissimilar pairs of proteins, by comparing them to the alignments defined on a structural basis. Each protein sequence is compared to a nonredundant database of the protein sequences by PSI-BLAST. Whenever a pair member detects its pair-mate, the positions that are aligned both in the sequential and structural alignments are determined, and the alignment sensitivity is expressed as the percentage of these positions out of the structural alignment. Fifty-two sequences detected their pair-mates (for 16 pairs the success was bi-directional when either pair member was used as a query). The average percentage of correctly aligned residues per structural alignment was 43.5+/-2.2%. Other properties of the alignments were also examined, such as the sensitivity vs. specificity and the change in these parameters over consecutive iterations. Notably, there is an improvement in alignment sensitivity over consecutive iterations, reaching an average of 50.9+/-2.5% within the five iterations tested in the current study. 相似文献
19.
Database of homology-derived protein structures and the structural meaning of sequence alignment 总被引:85,自引:0,他引:85
The database of known protein three-dimensional structures can be significantly increased by the use of sequence homology, based on the following observations. (1) The database of known sequences, currently at more than 12,000 proteins, is two orders of magnitude larger than the database of known structures. (2) The currently most powerful method of predicting protein structures is model building by homology. (3) Structural homology can be inferred from the level of sequence similarity. (4) The threshold of sequence similarity sufficient for structural homology depends strongly on the length of the alignment. Here, we first quantify the relation between sequence similarity, structure similarity, and alignment length by an exhaustive survey of alignments between proteins of known structure and report a homology threshold curve as a function of alignment length. We then produce a database of homology-derived secondary structure of proteins (HSSP) by aligning to each protein of known structure all sequences deemed homologous on the basis of the threshold curve. For each known protein structure, the derived database contains the aligned sequences, secondary structure, sequence variability, and sequence profile. Tertiary structures of the aligned sequences are implied, but not modeled explicitly. The database effectively increases the number of known protein structures by a factor of five to more than 1800. The results may be useful in assessing the structural significance of matches in sequence database searches, in deriving preferences and patterns for structure prediction, in elucidating the structural role of conserved residues, and in modeling three-dimensional detail by homology. 相似文献
20.
Protein structure prediction is based mainly on the modeling of proteins by homology to known structures; this knowledgebased approach is the most promising method to date. Although it is used in the whole area of protein research, no general rules concerning the quality and applicability of concepts and procedures used in homology modeling have been put forward yet. Therefore, the main goal of the present work is to provide tools for the assessment of accuracy of modeling at a given level of sequence homology. A large set of known structures from different conformational and functional classes, but various degrees of homology was selected. Pairwise structure superpositions were performed. Starting with the definition of the structurally conserved regions and determination of topologically correct sequence alignments, we correlated geometrical properties with sequence homology (defined by the 250 PAM Dayhoff Matrix) and identity. It is shown that both the topological differences of the protein backbones and the relative positions of corresponding side chains diverge with decreasing sequence identity. Below 50% identity, the deviation in regions that are structurally not conserved continually increases, thus implying that with decreasing sequence identity modeling has to take into account more and more structurally diverging loop regions that are difficult to predict. © 1993 Wiley-Liss, Inc. 相似文献