首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have presented a new generation mechanism of slow spiking or repetitive discharges with extraordinarily long inter-spike intervals using the modified Hodgkin-Huxley equations (Doi and Kumagai, 2001). This generation process of slow firing is completely different from that of the well-known potassium A-current in that the steady-state current-voltage relation of the neuronal model is monotonic rather than the N-shaped one of the A-current. In this paper, we extend the previous results and show that the very slow spiking generically appears in both the three-dimensional Hodgkin-Huxley equations and the three dimensional Bonhoeffer-van der Pol (or FitzHugh-Nagumo) equations. The generation of repetitive discharges or the destabilization of the unique equilibrium point (resting potential) is a simple Hopf bifurcation. We also show that the generation of slow spiking does not depend on the stability of the Hopf bifurcation: supercritical or subcritical. The dynamics of slow spiking is investigated in detail and we demonstrate that the phenomenology of slow spiking can be categorized into two types according to the type of the corresponding bifurcation of a fast subsystem: Hopf or saddle-node bifurcation.  相似文献   

2.
A qualitative analysis of the Hodgkin-Huxley model (Hodgkin and Huxley 1952), which closely mimics the ionic processes at a real nerve membrane, is performed by means of a singular perturbation theory. This was achieved by introducing a perturbation parameter that, if decreased, speeds up the fast variables of the Hodgkin-Huxley equations (membrane potential and sodium activation), whereas it does not affect the slow variables (sodium inactivation and potassium activation). In the most extreme case, if the perturbation parameter is set to zero, the original four-dimensional system degenerates to a system with only two differential equations. This degenerate system is easier to analyze and much more intuitive than the original Hodgkin-Huxley equations. It shows, like the original model, an infinite train of action potentials if stimulated by an input current in a suitable range. Additionally, explanations for the increased sensitivity to depolarizing current steps that precedes an action potential can be found by analysis of the degenerate system. Using the theory of Mishchenko and Rozov (1980) it is shown that the degenerate system does not only represent a simplification of the original Hodgkin-Huxley equations but also gives a valid approximation of the original model at least for stimulating currents that are constant within a suitable range.  相似文献   

3.
We review and extend recent results on the instantaneous firing rate dynamics of simplified models of spiking neurons in response to noisy current inputs. It has been shown recently that the response of the instantaneous firing rate to small amplitude oscillations in the mean inputs depends in the large frequency limit f on the spike initiation dynamics. A particular simplified model, the exponential integrate-and-fire (EIF) model, has a response that decays as 1/f in the large frequency limit and describes very well the response of conductance-based models with a Hodgkin-Huxley type fast sodium current. Here, we show that the response of the EIF instantaneous firing rate also decays as 1/f in the case of an oscillation in the variance of the inputs for both white and colored noise. We then compute the initial transient response of the firing rate of the EIF model to a step change in its mean inputs and/or in the variance of its inputs. We show that in both cases the response speed is proportional to the neuron stationary firing rate and inversely proportional to a spike slope factor T that controls the sharpness of spike initiation: as 1/T for a step change in mean inputs, and as 1/T2 for a step change in the variance in the inputs.  相似文献   

4.
The influence of sodium current activation on the value of nerve excitation conduction velocity is investigated on the basis of Hodgkin-Huxley model. The potassium activation and sodium inactivation are considered as slow processes which do not develop to an appreciable extent in the region of conduction velocity formation. The system of equations was derived and solved analytically after neglecting the dependency of sodium relaxation time on potential; the approximation of steady-state sodium activation was also used with the help of Hevyside function. The algebraic equation for conduction velocity was obtained; its solution has a simple analytical form in two limits of rapid and slow sodium current relaxation. The comparison with the experimental data has shown that at not very high temperatures the slow (compared to the potential dynamics) sodium current relaxation approximation is more appropriate. The dependency of impulse velocity on capacitance and conductance of the fiber was analyzed.  相似文献   

5.
The (standard) FitzHugh reduction of the Hodgkin-Huxley equations for the propagation of nerve impulses ignores the dynamics of the activation gates. This assumption is invalid and leads to an over-estimation of the wave speed by a factor of 5 and the wrong dependence of wave speed on sodium channel conductance. The error occurs because a non-dimensional parameter, which is assumed to be small in the FitzHugh reduction, is in fact large (≈18). We analyse the Hodgkin-Huxley equations for propagating nerve impulses in the limit that this non-dimensional parameter is large, and show that the analytical results are consistent with numerical simulations of the Hodgkin-Huxley equations.  相似文献   

6.
7.
Significant error is made by using a point voltage clamp to measure active ionic current properties in poorly space-clamped cells. This can even occur when there are no obvious signs of poor spatial control. We evaluated this error for experiments that employ an isochronal I(V) approach to analyzing clamp currents. Simulated voltage clamp experiments were run on a model neuron having a uniform distribution of a single voltage-gated inactivating ionic current channel along an elongate, but electrotonically compact, process. Isochronal Boltzmann I(V) and kinetic parameter values obtained by fitting the Hodgkin-Huxley equations to the clamp currents were compared with the values originally set in the model. Good fits were obtained for both inward and outward currents for moderate channel densities. Most parameter errors increased with conductance density. The activation rate parameters were more sensitive to poor space clamp than the I(V) parameters. Large errors can occur despite normal-looking clamp curves.  相似文献   

8.
Activation kinetics of the sodium and potassium conductances were re-examined in fresh axons of Loligo forbesi exhibiting very little if any potassium accumulation and a very small leak conductance, special attention being paid to the initial lag phase which precedes the turning-on of the conductances. The axons were kept intact and voltage-clamped at 2–3°C.In all cases, the rising phase of the currents could be fitted with very good accuracy using the Hodgkin-Huxley (1952) equations although, in most cases, the turning-on of the conductance did not coincide with the beginning of the depolarizing test pulse. The delay which separates the change in potential and the turning-on of current (the activation delay) was analyzed quantitatively for different prepulse and pulse potentials. The measured activation delay differed significantly from the delay predicted by the original HH equations. This difference (the non-HH delay) varied with prepulse and pulse potentials. For the potassium current, the relationship between the non-HH delay and pulse potential for a constant prepulse was bell shaped, the maximum value (0.7 ms for a prepulse to –80 mV) being reached for about 0 mV For this same current, the relationship between the non-HH delay and the prepulse potential for a constant pulse potential was sigmoidal, starting from a minimum value of around 0.5 ms at –100 mV and rising to 5 ms at –15 mV Essentially similar results were obtained for the sodium current although the non-HH delay was three to five times smaller and the dependency upon prepulse potential not significant. These results are in agreement with previous observations on squid axons and frog nodes of Ranvier and suggest that the opening of an ionic channel is preceded by a short but essential voltage-dependent conformational change of the channel protein. Offprint requests to: Y. Pichon  相似文献   

9.
Summary Measurements were made of the kinetic and steadystate characteristics of the potassium conductance in the giant axon of the crabCarcinus maenas. These measurements were made in the presence of tetrodotoxin, using the feedback amplifier concept introduced by Dodge and Frankenhaeuser (J. Physiol. (London) 143:76–90). The conductance increase during depolarizing voltage-clamp pulses was analyzed assuming that two separate potassium channels exist in these axons. The first potassium channel exhibited activation and fast inactivation gating which could be fitted using them 3 h, Hodgkin-Huxley formalism. The second potassium channel exhibited the standardn 4 Hodgkin-Huxley kinetics. These two postulated channels are blocked by internal application of caesium, tetraethylammonium and sodium ions. External application of 4 amino-pyridine also blocks these channels.  相似文献   

10.
A quantitative analysis of the time- and voltage-dependent kinetics of the guard cell anion channel (GCAC1) current in guard cell protoplasts from Vicia faba was analyzed using the whole-cell patch clamp technique. The voltage-dependent steady-state activation of GCAC1 current followed a Boltzmann distribution. For the corresponding steady-state value of the activation variable a power of two was derived which yielded suitable fits of the time course of voltage-dependent current activation. The GCAC1 mediated chloride current could successfully be described in terms of the Hodgkin-Huxley equations commonly evoked for the Na channel in nerve. After step depolarizations from a potential in the range of the resting potential to potentials above the equilibrium potential for chloride an activation and also an inactivation could be described. The gating of both processes exhibited an inverse relationship on the polarity of the applied step potentials in the order of milliseconds. Deactivating tail currents decline exponentially. The presented analysis contributes to the understanding of the rising phase of the observed action potentials in guard cells of V. faba. Evidence is presented that the voltage-dependent kinetic properties of the GCAC1 current are different from those properties described for the excitable anion currents in the plasmalemma of Chara corallina (Beilby & Coster, 1979a).The authors gratefully acknowledge the encouragement of Dr. David Colquhoun to apply the Hodgkin-Huxley model to the GCAC1 channel. The work was in part supported by a grant of the Deutsche Forschungsgemeinschaft to R.H. and a grant of the Herman and Lilly Schilling Stiftung to H.-A.K.  相似文献   

11.
We investigate spike initiation and propagation in a model axon that has a slow regenerative conductance as well as the usual Hodgkin-Huxley type sodium and potassium conductances. We study the role of slow conductance in producing repetitive firing, compute the dispersion relation for an axon with an additional slow conductance, and show that under appropriate conditions such an axon can produce a traveling zone of secondary spike initiation. This study illustrates some of the complex dynamics shown by excitable membranes with fast and slow conductances.  相似文献   

12.
 The mechanisms underlying the diverse responses to step current stimuli of models [Edman et al. (1987) J Physiol (Lond) 384: 649–669] of lobster slowly adapting stretch receptor organs (SAO) and fast-adapting stretch receptor organs (FAO) are analyzed. In response to a step current, the models display three distinct types of firing reflecting the level of adaptation to the stimulation. Low-amplitude currents evoke transient firing containing one to several action potentials before the system stabilizes to a resting state. Conversely, high-amplitude stimulations induce a high frequency transient burst that can last several seconds before the model returns to its quiescent state. In the SAO model, the transition between the two regimes is characterized by a sustained pacemaker firing at an intermediate stimulation amplitude. The FAO model does not exhibit such a maintained firing; rather, the duration of the transient firing increases at first with the stimulus intensity, goes through a maximum and then decreases at larger intensities. Both models comprise seven variables representing the membrane potential, the sodium fast activation, fast inactivation, slow inactivation, the potassium fast activation, slow inactivation gating variables, and the intra cellular sodium concentration. To elucidate the mechanisms of the firing adaptations, the seven-variable model for the lobster stretch receptor neuron is first reduced to a three-dimensional system by regrouping variables with similar time scales. More precisely, we substituted the membrane potential V for the sodium fast activation equivalent potential V m , the potassium fast inactivation V n for the sodium fast inactivation V h , and the sodium slow inactivation V l for the potassium slow inactivation V r . Comparison of the responses of the reduced models to those of the original models revealed that the main behaviors of the system were preserved in the reduction process. We classified the different types of responses of the reduced SAO and FAO models to constant current stimulation. We analyzed the transient and stationary responses of the reduced models by constructing bifurcation diagrams representing the qualitatively distinct dynamics of the models and the transitions between them. These revealed that (1) the transient firings prior to reaching the stationary state can be accounted for by the sodium slow inactivation evolving more slowly than the other two variables, so that the changes during the transient firings reflect the bifurcations that the two-dimensional system undergoes when the sodium slow inactivation, considered as a parameter, is varied; and (2) the stationary behaviors of the models are captured by the standard bifurcations of a two-dimensional system formed by the membrane potential and the potassium fast inactivation. We found that each type of firing and the transitions between them is due to the interplay between essentially three variables: two fast ones accounting for the action potential generation and the post-discharge refractoriness, and a third slow one representing the adaptation. Received: 28 February 2000 / Accepted in revised form: 4 October 2000  相似文献   

13.
The Hodgkin-Huxley (HH) model is the basis for numerous neural models. There are two negative feedback processes in the HH model that regulate rhythmic spiking. The first is an outward current with an activation variable n that has an opposite influence to the excitatory inward current and therefore provides subtractive negative feedback. The other is the inactivation of an inward current with an inactivation variable h that reduces the amount of positive feedback and therefore provides divisive feedback. Rhythmic spiking can be obtained with either negative feedback process, so we ask what is gained by having two feedback processes. We also ask how the different negative feedback processes contribute to spiking. We show that having two negative feedback processes makes the HH model more robust to changes in applied currents and conductance densities than models that possess only one negative feedback variable. We also show that the contributions made by the subtractive and divisive feedback variables are not static, but depend on time scales and conductance values. In particular, they contribute differently to the dynamics in Type I versus Type II neurons.  相似文献   

14.
The question of calculating excitation propagation velocity is analyzed on the basis of the Hodgkin-Huxley model. The activation of the sodium current is assumed to be rapid as compared to the rate of potential variation. Because of slow variation of potassium activation and sodium inactivation the dynamics of these processes is assumed to be of negligible effect in the region of impulse velocity formation. By means of pieace-wise linear approximation of thus obtained voltage-current characteristics the characteristics the analytical solution of the problem was found. In two limiting cases this solution coincides with the solutions of Kolmogorov and Scott. The dependence of impulse velocity on parameters is analyzed and illustrated graphically.  相似文献   

15.
We analyze a system of ordinary differential equations modeling haplotype frequencies at a physically linked pair of loci, one selected and one neutral, in a population consisting of two demes with divergent selection regimes. The system is singularly perturbed, with the migration rate m between the demes serving as a small parameter. We use geometric singular perturbation theory to show that when m is sufficiently small, each solution not initially fixed for the same selected allele in both demes approaches one of a 1-dimensional continuum of equilibria. We then obtain asymptotic expansions of the solutions and show their validity on arbitrarily long finite time intervals. From these expansions we obtain formulas for the transient dynamics of F ST (a measure of population structure) at both loci, as well as for the rate of genotyping error if the allelic state at the selected locus is inferred from that at the neutral (marker) locus. We examine two cases in detail, one modeling two populations in secondary contact after a period of evolution in allopatry, and the other modeling the origination and spread of a resistance allele.Electronic supplementary material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00285-006-0038-6 and is accessible for authorized users.  相似文献   

16.
 The Hodgkin-Huxley equations (HH) are parameterized by a number of parameters and shows a variety of qualitatively different behaviors depending on the parameter values. We explored the dynamics of the HH for a wide range of parameter values in the multiple-parameter space, that is, we examined the global structure of bifurcations of the HH. Results are summarized in various two-parameter bifurcation diagrams with I ext (externally applied DC current) as the abscissa and one of the other parameters as the ordinate. In each diagram, the parameter plane was divided into several regions according to the qualitative behavior of the equations. In particular, we focused on periodic solutions emerging via Hopf bifurcations and identified parameter regions in which either two stable periodic solutions with different amplitudes and periods and a stable equilibrium point or two stable periodic solutions coexist. Global analysis of the bifurcation structure suggested that generation of these regions is associated with degenerate Hopf bifurcations. Received: 23 April 1999 / Accepted in revised form: 24 September 1999  相似文献   

17.
 We studied the influence of noisy stimulation on the Hodgkin-Huxley neuron model. Rather than examining the noise-related variability of the discharge times of the model – as has been done previously – our study focused on the effect of noise on the stationary distributions of the membrane potential and gating variables of the model. We observed that a gradual increase in the noise intensity did not result in a gradual change of the distributions. Instead, we could identify a critical intermediate noise range in which the shapes of the distributions underwent a drastic qualitative change. Namely, they moved from narrow unimodal Gaussian-like shapes associated with low noise intensities to ones that spread widely at large noise intensities. In particular, for the membrane potential and the sodium activation variable, the distributions changed from unimodal to bimodal. Thus, our investigation revealed a noise-induced transition in the Hodgkin-Huxley model. In order to further characterize this phenomenon, we considered a reduced one-dimensional model of an excitable system, namely the active rotator. For this model, our analysis indicated that the noise-induced transition is associated with a deterministic bifurcation of approximate equations governing the dynamics of the mean and variance of the state variable. Finally, we shed light on the possible functional importance of this noise-induced transition in neuronal coding by determining its effect on the spike timing precision in models of neuronal ensembles. Received: 19 September 2000 / Accepted in revised form: 4 March 2001  相似文献   

18.
Nonlinear gain mediating cortical stimulus-response relations   总被引:7,自引:0,他引:7  
Single isolated neurons show a nonlinear increase in likelihood of firing in response to random input, when they are biased toward threshold by steady-state depolarization. It is postulated that this property holds for neurons in the olfactory bulb, a specialized form of cortex in which the steady state is under centrifugal control. A model for this non-linearity is based on two first order differential equations that interrelate three state variables: activity density in the pulse mode p of a local population (subset) of neurons; activity density in the wave mode u (mean dendritic current); and an intervening variable m that may be thought to represent the average subthreshold value in the subset for the sodium activation factor as defined in the Hodgkin-Huxley equations. A stable steady state condition is posited at (p 0, u 0, m 0). It is assumed that: (a) the nonlinearity is static; (b) m increases exponentially with u; (c) p approaches a maximum p m asymptotically as m increases; (d) p0; and (e) the steady state values of p 0, u 0, and m 0 are linearly proportional to each other. The model is tested and evaluated with data from unit and EEG recording in the olfactory bulb of anesthetized and waking animals. It has the following properties. (a) There is a small-signal near-linear input-output range. (b) There is bilateral saturation for large input, i.e. the gain defined as dp/du approaches zero for large |u|. (c) The asymptotes for large input±u are asymmetric. (d) The range of output is variable depending on u 0. (e) Most importantly, the maximal gain occurs for u>u 0, so that positive (excitatory) input increases the output and also the gain in a nonlinear manner. It is concluded that large numbers of neurons in the olfactory bulb of the waking animal are maintained in a sensitive nonlinear state, that corresponds to the domain of the subthreshold local response of single axons, as it is defined by Rushton and Hodgkin.Supported by a grant MH 06686 from the National Institute of Mental Health, and by a Research Professorship from the Miller Institute  相似文献   

19.
《Biophysical journal》2022,121(18):3499-3507
It has been demonstrated experimentally that slow and fast conduction waves with distinct conduction velocities can occur in the same nerve system depending on the strength or the form of the stimulus, which give rise to two modes of nerve functions. However, the mechanisms remain to be elucidated. In this study, we use computer simulations of the cable equation with modified Hodgkin-Huxley kinetics and analytical solutions of a simplified model to show that stimulus-dependent slow and fast waves recapitulating the experimental observations can occur in the cable, which are the two stable conduction states of a bistable conduction behavior. The bistable conduction is caused by a positive feedback loop of the wavefront upstroke speed, mediated by the sodium channel inactivation properties. Although the occurrence of bistable conduction only requires the presence of the sodium current, adding a calcium current to the model further promotes bistable conduction by potentiating the slow wave. We also show that the bistable conduction is robust, occurring for sodium and calcium activation thresholds well within the experimentally determined ones of the known sodium and calcium channel families. Since bistable conduction can occur in the cable equation of Hodgkin-Huxley kinetics with a single inward current, i.e., the sodium current, it can be a generic mechanism applicable to stimulus-dependent fast and slow conduction not only in the nerve systems but also in other electrically excitable systems, such as cardiac muscles.  相似文献   

20.
A network of two neurons mutually coupled through inhibitory synapses that display short-term synaptic depression is considered. We show that synaptic depression expands the number of possible activity patterns that the network can display and allows for co-existence of different patterns. Specifically, the network supports different types of n-m anti-phase firing patterns, where one neuron fires n spikes followed by the other neuron firing m spikes. When maximal synaptic conductances are identical, n-n anti-phase firing patterns are obtained and there are conductance intervals over which different pairs of these solutions co-exist. The multitude of n-m anti-phase patterns and their co-existence are not found when the synapses are non-depressing. Geometric singular perturbation methods for dynamical systems are applied to the original eight-dimensional model system to derive a set of one-dimensional conditions for the existence and co-existence of different anti-phase solutions. The generality and validity of these conditions are demonstrated through numerical simulations utilizing the Hodgkin-Huxley and Morris-Lecar neuronal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号