共查询到20条相似文献,搜索用时 0 毫秒
1.
DeWitte-Orr SJ Bols NC 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2005,141(2):157-167
Epithelial (CHSE-214), fibroblast (RTG-2) and macrophage (RTS11) cell lines from Chinook salmon and rainbow trout were tested for their sensitivity to gliotoxin, a fungal metabolite. Gliotoxin treatment for 6 or 24 h caused cell viability to decrease in a dose-dependent manner, with effective concentrations (EC50s) being similar for the three cell lines but varying with exposure time. Under some exposure conditions, hallmarks of apoptosis were detected. Apoptosis was evaluated by the appearance of fragmented nuclei upon H33258 staining and of genomic DNA laddering into 180 bp oligomers. Gliotoxin induced cell detachment in RTG-2 and CHSE-214 cultures, under some conditions. These were the only cultures of these two cell lines in which apoptosis was detected, and apoptotic cells appeared more frequent in the detached population. At the highest concentration, 15 microM, the cells died by an alternative mode, likely necrosis. By contrast, in RTS11 cultures cell detachment was not observed, and apoptosis occurred over a wider concentration range, even 15 microM, reaching levels of over 90%. The preferential death by necrosis for epithelial cells (CHSE-214) and by apoptosis for macrophages (RTS11) could be a beneficial host response to gliotoxin-producing fungi, leading respectively to the development and then resolution of inflammation. 相似文献
2.
Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria 总被引:20,自引:0,他引:20
Nitric oxide (NO) can trigger either necrotic or apoptotic cell death. We have used PC12 cells to investigate the extent to which NO-induced cell death is mediated by mitochondria. Addition of NO donors, 1 mM S-nitroso-N-acetyl-DL-penicillamine (SNAP) or 1 mM diethylenetriamine-NO adduct (NOC-18), to PC12 cells resulted in a steady-state level of 1-3 microM: NO, rapid and almost complete inhibition of cellular respiration (within 1 min), and a rapid decrease in mitochondrial membrane potential within the cells. A 24-h incubation of PC12 cells with NO donors (SNAP or NOC-18) or specific inhibitors of mitochondrial respiration (myxothiazol, rotenone, or azide), in the absence of glucose, caused total ATP depletion and resulted in 80-100% necrosis. The presence of glucose almost completely prevented the decrease in ATP level and the increase in necrosis induced by the NO donors or mitochondrial inhibitors, suggesting that the NO-induced necrosis in the absence of glucose was due to the inhibition of mitochondrial respiration and subsequent ATP depletion. However, in the presence of glucose, NO donors and mitochondrial inhibitors induced apoptosis of PC12 cells as determined by nuclear morphology. The presence of apoptotic cells was prevented completely by benzyloxycarbonyl-Val-Ala-fluoromethyl ketone (a nonspecific caspase inhibitor), indicating that apoptosis was mediated by caspase activation. Indeed, both NO donors and mitochondrial inhibitors in PC12 cells caused the activation of caspase-3- and caspase-3-processing-like proteases. Caspase-1 activity was not activated. Cyclosporin A (an inhibitor of the mitochondrial permeability transition pore) decreased the activity of caspase-3- and caspase-3-processing-like proteases after treatment with NO donors, but was not effective in the case of the mitochondrial inhibitors. The activation of caspases was accompanied by the release of cytochrome c from mitochondria into the cytosol, which was partially prevented by cyclosporin A in the case of NO donors. These results indicate that NO donors (SNAP or NOC-18) may trigger apoptosis in PC12 cells partially mediated by opening the mitochondrial permeability transition pores, release of cytochrome c, and subsequent caspase activation. NO-induced apoptosis is blocked completely in the absence of glucose, probably due to the lack of ATP. Our findings suggest that mitochondria may be involved in both types of cell death induced by NO donors: necrosis by respiratory inhibition and apoptosis by opening the permeability transition pore. Further, our results indicate that the mode of cell death (necrosis versus apoptosis) induced by either NO or mitochondrial inhibitors depends critically on the glycolytic capacity of the cell. 相似文献
3.
Previous in vivo and in vitro analyses have shown that both necrosis and apoptosis are involved in neuronal cell death induced by energy impairment caused by mitochondrial dysfunction. However, little is known about the key factors that determine whether the cells undergo necrosis or apoptosis. In the present study, we analyzed neuronal cell death induced by 3-nitropropionic acid (3-NP), an irreversible inhibitor of mitochondrial complex II, in a primary culture system of rat cortical neurons. The neurons were maintained for a week in coculture with astroglial cells, and then they were treated with 3-NP in the presence or absence of astroglial cells. As judged from morphological (Hoechst 33258 staining) and biochemical (DNA fragmentation and caspase activation) analyses, the cortical neurons appeared to die through an apoptotic process after 3-NP treatment in the presence of astroglial cells. However, caspase inhibitors did not suppress the 3-NP-induced cell death, suggesting the involvement of a caspase-independent pathway of 3-NP-induced neuronal cell death in the presence of astroglial cells. On the other hand, 3-NP induced necrotic cell death within 1 day in the absence of astroglial cells, following a rapid decrease in intracellular ATP level. These changes were attenuated by the presence of astroglial cells or the addition of astroglial conditioned medium. These results suggest that astroglial trophic support influences the alteration of the intracellular energy state in 3-NP-treated neurons and consequently determines the type of neuronal cell death, apoptosis or necrosis. 相似文献
4.
Simon R Dunn John C BythellMartin D.A Le Tissier William J BurnettJeremy C Thomason 《Journal of experimental marine biology and ecology》2002,272(1):29-53
Different cell death pathways were investigated during bleaching in the sea anemone Aiptasia sp. in response to hyperthermic treatment. Using a suite of techniques, (haematoxylin and eosin staining of paraffin wax-embedded tissue sections, in-situ end labelling (ISEL) of fragmented DNA, agarose gel electrophoresis electron microscopy) both necrotic and programmed cell death (PCD) activity were indicated. After a treatment period of 4 days, the host endoderm tissues underwent necrotic cell death. This was indicated by widespread cellular degradation, dilation of cell cytoplasm and organelles, cell swelling and rupture, irregular pyknotic condensation of nuclear chromatin, and abundant cell debris. Host cell necrosis was associated with the release of zooxanthellae with a normal, healthy appearance into the coelenteron. Longer periods of hyperthermic treatment (7 days) were correlated with further animal cell degradation and the in-situ degradation of zooxanthellae remaining within the degraded endoderm. Within the same degraded endoderm tissue, the degradation of zooxanthellae resulted from two forms of cell death occurring simultaneously, which were identified as programmed cell death and cell necrosis. Programmed cell death of zooxanthellae was characterised by condensation of the cytoplasm and organelles, cell shrinkage, formation of accumulation bodies at the periphery of the cell wall, and DNA fragmentation. Cell necrosis of zooxanthellae was characterised by dilation of the cytoplasm and organelles, cell swelling and lysis, dispersion of cell component debris, and DNA fragmentation. The existence of a programmed cell death pathway within zooxanthellae is important to the understanding of coral bleaching events, raising interesting questions regarding the evolution of this process and the activation of the cellular trigger mechanisms involved. 相似文献
5.
The tumor necrosis factor (TNF) superfamily member TNF-like weak inducer of apoptosis (TNFSF12, CD255) (TWEAK) can stimulate apoptosis in certain cancer cells. Previous studies suggest that TWEAK activates cell death indirectly, by inducing TNFα-mediated autocrine signals. However, the underlying death-signaling mechanism has not been directly defined. Consistent with earlier work, TWEAK assembled a proximal signaling complex containing its cognate receptor FN14, the adaptor TRAF2, and cellular inhibitor of apoptosis protein 1 (cIAP1). Neither the death domain adaptor Fas-associated death domain nor the apoptosis-initiating protease caspase-8 associated with this primary complex. Rather, TWEAK induced TNFα secretion and TNF receptor 1-dependent assembly of a death-signaling complex containing receptor-interacting protein 1 (RIP1), FADD, and caspase-8. Knockdown of RIP1 by siRNA prevented TWEAK-induced association of FADD with caspase-8 but not formation of the FN14-TRAF2-cIAP1 complex and inhibited apoptosis activation. Depletion of the RIP1 E3 ubiquitin ligase cIAP1 enhanced assembly of the RIP1-FADD-caspase-8 complex and augmented cell death. Conversely, knockdown of the RIP1 deubiquitinase CYLD inhibited these functions. Depletion of FADD, caspase-8, BID, or BAX and BAK but not RIP3 attenuated TWEAK-induced cell death. Pharmacologic inhibition of the NF-κB pathway or siRNA knockdown of RelA attenuated TWEAK induction of TNFα and association of RIP1 with FADD and caspase-8. These results suggest that TWEAK triggers apoptosis by promoting assembly of a RIP1-FADD-caspse-8 complex via autocrine TNFα-TNFR1 signaling. The proapoptotic activity of TWEAK is modulated by cIAP1 and CYLD and engages both the extrinsic and intrinsic signaling pathways. 相似文献
6.
Opening of high conductance permeability transition pores in mitochondria initiates onset of the mitochondrial permeability transition (MPT). The MPT is a causative event, leading to necrosis and apoptosis in hepatocytes after oxidative stress, Ca(2+) toxicity, and ischemia/reperfusion. CsA blocks opening of permeability transition pores and protects cell death after these stresses. In contrast to necrotic cell death which is a consequence of ATP depletion, ATP is required for the development of apoptosis. Reperfusion and the return of normal pH after ischemia initiate the MPT, but the balance between ATP depletion after the MPT and ATP generation by glycolysis determines whether the fate of cells will be apoptotic or necrotic death. Thus, the MPT is a common pathway leading to both necrotic and apoptotic cell death after ischemia/reperfusion. 相似文献
7.
To test the role of caspase 3 in apoptosis and in overall cell lethality caused by the protein kinase inhibitor staurosporine, we compared the responses of MCF-7c3 cells that express a stably transfected CASP-3 gene to parental MCF-7:WS8 cells transfected with vector alone and lacking procaspase-3 (MCF-7v). Cells were exposed to increasing doses (0.15-1 microM) of staurosporine for periods up to 19 h. Apoptosis was efficiently induced in MCF-7c3 cells, as demonstrated by cytochrome c release, processing of procaspase-3, procaspase-8, and Bid, increase in caspase-3-like DEVDase activity, cleavage of the enzyme poly(ADP-ribose) polymerase, DNA fragmentation, changes in nuclear morphology, and TUNEL assay and flow cytometry. For all of these measures except cytochrome c release, little or no activity was detected in MCF-7v cells, confirming that caspase-3 is essential for efficient induction of apoptosis by staurosporine, but not for mitochondrial steps that occur earlier in the pathway. MCF-7c3 cells were more sensitive to staurosporine than MCF-7v cells when assayed for loss of viability by reduction of a tetrazolium dye. However, the two cell lines were equally sensitive to killing by staurosporine when evaluated by a clonogenic assay. A similar distinction between apoptosis and loss of clonogenicity was observed for the cancer chemotherapeutic agent VP-16. These results support our previous conclusions with photodynamic therapy: (a) assessing overall reproductive death of cancer cells requires a proliferation-based assay, such as clonogenicity; and (b) the critical staurosporine-induced lethal event is independent of those mediated by caspase-3. 相似文献
8.
Linde Duprez Ellen Wirawan Tom Vanden Berghe Peter Vandenabeele 《Microbes and infection / Institut Pasteur》2009,11(13):1050-1062
Cell death is a crucial process during development, homeostasis and immune regulation of multicellular organisms, and its dysregulation is associated with numerous pathologies. Cell death is often induced upon pathogen infection as part of the defense mechanism, and pathogens have evolved strategies to modulate host cell death. In this review, we will discuss the molecular mechanisms and physiological relevance of four major types of programmed cell death, namely apoptosis, necrosis, autophagic cell death and pyroptosis. 相似文献
9.
Analysis of aclarubicin-induced cell death in human fibroblasts 总被引:1,自引:0,他引:1
In the present study we investigated the mode of cell death induced by aclarubicin (ACL) in trisomic (BB) and normal (S-2) human fibroblasts. Cells were incubated with ACL for 2h and then cultured in drug-free medium for up to 96h. Using fluorescence microscopy, agarose gel electrophoresis and comet assay we demonstrate that ACL induced time-dependent morphological and biochemical changes in both cell types. The population of apoptotic cells, analysed by acridine orange and ethidium bromide nuclear staining reached its maximum at 24-48h. Prolonged post-treatment time progressively increased the level of necrotic cells. At 24-48h time points we also observed a significant increase in caspase-3 activity, oligonucleosomal DNA fragmentation and DNA strand breaks. Cotreatment of cells with the specific caspase-3 inhibitor Ac-DEVD-CHO partly reduced the extent of apoptosis and necrosis and DNA degradation. In conclusion, trisomic and normal fibroblasts demonstrate similar response to aclarubicin treatment. Drug induced the apoptotic and necrotic pathway of cell death that was mediated by caspase-3. 相似文献
10.
Hypoxia-induced cell death of HepG2 cells involves a necrotic cell death mediated by calpain 总被引:2,自引:0,他引:2
Kim MJ Oh SJ Park SH Kang HJ Won MH Kang TC Hwang IK Park JB Kim JI Kim J Lee JY 《Apoptosis : an international journal on programmed cell death》2007,12(4):707-718
To elucidate mechanism of cell death in response to hypoxia, we attempted to compare hypoxia-induced cell death of HepG2 cells
with cisplatin-induced cell death, which has been well characterized as a typical apoptosis. Cell death induced by hypoxia
turned out to be different from cisplatin-mediated apoptosis in cell viability and cleavage patterns of caspases. Hypoxia-induced
cell death was not associated with the activation of p53 while cisplatin-induced apoptosis is p53 dependent. In order to explain
these differences, we tested involvement of μ-calpain and m-calpain in hypoxia-induced cell death. Calpains, especially μ-calpain,
were initially cleaved by hypoxia, but not by cisplatin. Interestingly, the treatment of a calpain inhibitor restored PARP
cleavage that was absent during hypoxia, indicating the recovery of activated caspase-3. The inhibition of calpains prevented
proteolysis induced by hypoxia. In addition, hypoxia resulted in a necrosis-like morphology while cisplatin induced an apoptotic
morphology. The calpain inhibitor prevented necrotic morphology induced by hypoxia and converted partially to apoptotic morphology
with nuclear segmentation. Our result suggests that calpains are involved in hypoxia-induced cell death that is likely to
be necrotic in nature and the inhibition of calpain switches hypoxia-induced cell death to apoptotic cell death without affecting
cell viability. 相似文献
11.
12.
Anticancer drugs induce necrosis of human endothelial cells involving both oncosis and apoptosis 总被引:6,自引:0,他引:6
Mailloux A Grenet K Bruneel A Bénéteau-Burnat B Vaubourdolle M Baudin B 《European journal of cell biology》2001,80(6):442-449
The endothelium is the first physiological barrier between blood and tissues and can be injured by physical or chemical stress, particularly by the drugs used in cancer therapy. We found that four anticancer agents: etoposide, doxorubicin, bleomycin and paclitaxel induced apoptosis in human umbilical vein endothelial cells (HUVECs) (as judged by DNA fragmentation) with a time- and concentration-dependent decrease in bcl-2 protein but without the involvement of p53. As revealed by immunoblotting, bax protein was expressed in HUVECs treated with 1 mg/ml etoposide whereas bcl-2 protein disappeared. Oncosis occurred parallel to apoptosis with the release of lactate dehydrogenase into the supernatant, and, for doxorubicin and etoposide with the inversion of the distribution of angiotensin I-converting enzyme between supernatant and cells. Among the four tested anticancer drugs, only doxorubicin induced an oxidative stress, with significative malondialdehyde production. Thus, human endothelial cells in confluent cultures seem to be in an equilibrium of resistance to apoptosis related to bcl-2 expression; this equilibrium can be disrupted by a chemical stress, such as the antiproliferative drugs known as pro-apoptotic for tumour cells. For doxorubicin and bleomycin, this cellular toxicity can be related to their unwanted effects in human cancer therapy. Low doses of doxorubicin, paclitaxel or etoposide, however, could induce apoptosis of endothelial cells of new vessels surrounding the tumour, thus leading to specific vessel regression with minimal toxic effects for the endothelium of the other vessels. These findings provide evidence of relationships between endothelial toxicity of anticancer drugs and the key role of bcl-2 for resistance of endothelium cells toward apoptosis; moreover lack of p53 and bax in quiescent cells contributes to resistance of endothelial cells to DNA-damaging agents. 相似文献
13.
RIP5 is a RIP-homologous inducer of cell death 总被引:2,自引:0,他引:2
Zha J Zhou Q Xu LG Chen D Li L Zhai Z Shu HB 《Biochemical and biophysical research communications》2004,319(2):298-303
Members of the RIP serine/threonine kinase family are involved in activation of NF-kappaB, JNK, and p38, and induction of apoptosis. Here we report the identification of a novel RIP-homologous protein designated as RIP5. The C-terminus of RIP5 contains a kinase domain, which is mostly homologous with the kinase domain of RIP. RIP5 also contains a large unconserved N-terminal domain. Overexpression of RIP5 induces cell death with characteristic apoptotic morphology. Overexpression of RIP5 also induces DNA fragmentation and this is blocked by the caspase inhibitor crmA. However, RIP5-induced apoptotic morphology is not blocked by crmA. These findings suggest that RIP5 may induce both caspase-dependent apoptosis and caspase-independent cell death. 相似文献
14.
The effects of mild hyperthermia on bovine mammary epithelial cells exposed to 40 °C for 1 h were studied. The results showed that cell viability, ultrastructural features as well as mitochondrial function were significantly influenced by the mild heat treatment (40 °C). There was a considerate decrease in cell viability accompanied by cell loss resulting from apoptosis and necrosis followed by G2/M arrest. Cell death followed the typical cascade, namely decrease in the ratio of Bcl-2/Bax and mitochondrial membrane potential (ΔΨm), mitochondrial swelling and caspase-3 activities dramatically increased; DNA was also damaged. In conclusion, hyperthermia depresses cell viability and induces bovine mammary cell apoptosis and necrosis through the mitochondrial-triggered cell death pathway. 相似文献
15.
Yoshiya Ohno Masanori Nakamura Yoshiyuki Hashimoto 《Biochemical and biophysical research communications》2008,367(4):775-781
Programmed cell death (PCD) is categorized as apoptotic, autophagic, or necrosis-like. Although the possibility that plural (two or three) death signals could be induced by a given stimulus has been reported, the precise mechanisms regulating PCD are not well understood. Recently, we have obtained two anti-chicken transferrin receptor (TfR) monoclonal antibodies (mAbs; D18 and D19) inducing a unique cell death. Although the cell death had several features of apoptosis, autophagic and necrosis-like morphological alterations were simultaneously observed in electron microphotographs. In addition to cells with condensed chromatin and an intact plasma membrane (apoptotic cells), cells having many vacuoles in the cytoplasm (autophagic cells), and enlarged cells with ruptured plasma membranes (necrosis-like cells) were observed in DT40 cells treated with the mAbs, however, the latter two types of dead cells were not detected upon treatment with staurosporine, a typical apoptosis inducer. In autophagic cells, numerous membrane-bound vesicles occupying most of the cytoplasmic space, which frequently contained electron-dense materials from cytoplasmic fragments and organelles, were observed. The simultaneous induction of multiple death signals from a stimulus via the TfR is of great interest to those researching cell death. In addition, activation of caspases was observed in DT40 cells treated with D19, however, the cell death was not inhibited with z-VAD-fmk, a pan-caspase inhibitor, suggesting that at least in part, a caspase-independent pathway is involved in the TfR-mediated cell death. 相似文献
16.
Yamanaka K Saito Y Yamamori T Urano Y Noguchi N 《The Journal of biological chemistry》2011,286(28):24666-24673
24(S)-Hydroxycholesterol (24S-OHC) produced by cholesterol 24-hydroxylase expressed mainly in neurons plays an important physiological role in the brain. Conversely, it has been reported that 24S-OHC possesses potent cytotoxicity. The molecular mechanisms of 24S-OHC-induced cell death have not yet been fully elucidated. In this study, using human neuroblastoma SH-SY5Y cells and primary cortical neuronal cells derived from rat embryo, we characterized the form of cell death induced by 24S-OHC. SH-SY5Y cells treated with 24S-OHC exhibited neither fragmentation of the nucleus nor caspase activation, which are the typical characteristics of apoptosis. 24S-OHC-treated cells showed necrosis-like morphological changes but did not induce ATP depletion, one of the features of necrosis. When cells were treated with necrostatin-1, an inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK1) required for necroptosis, 24S-OHC-induced cell death was significantly suppressed. The knockdown of RIPK1 by transfection of small interfering RNA of RIPK1 effectively attenuated 24S-OHC-induced cell death. It was found that neither SH-SY5Y cells nor primary cortical neuronal cells expressed caspase-8, which was regulated for RIPK1-dependent apoptosis. Collectively, these results suggest that 24S-OHC induces neuronal cell death by necroptosis, a form of programmed necrosis. 相似文献
17.
Jeffrey W. Pollard John Pacey Shirley V. Y. Cheng E. Gwyn Jordan 《Cell and tissue research》1987,249(3):533-540
Summary The luminal epithelium of adult ovariectomized mice responds to estradiol-17 with a synchronised wave of DNA synthesis and mitosis. Estriol, however, although producing a similar DNA-synthetic and mitotic response fails to cause an increase in cell number owing to a wave of cell death occurring at mitosis. In the present study it was shown that cells died by two different routes. The majority died by apoptosis but, unusually, a minority also died by necrosis. In the apoptotic cells the cytoplasm became dense, the endoplasmic reticulum and nuclear cisternae dilated; chromatin became marginated the nucleus shrank and became deeply infolded and contorted. Apoptosis, however, was uncharacteristic in that the nucleus failed to fragment, form caps or show disruption before the cells died by membrane rupture. Furthermore, the cells were frequently lost in sheets from the epithelium into the lumen. Part of the biochemical explanation for this onset of cell death comes from the accelerated loss from the tissue of estriol when compared to estradiol-17. This resulted in a decline in protein and rRNA biosynthesis and a failure to complete ribosomal maturation. Evidence in favour of this explanation came from experiments that showed a return to the estradiol-17 level of response and an inhibition of cell death when the occupancy of the estriol receptor was maintained. 相似文献
18.
Silva MT do Vale A dos Santos NM 《Apoptosis : an international journal on programmed cell death》2008,13(4):463-482
In metazoans apoptosis is a major physiological process of cell elimination during development and in tissue homeostasis and
can be involved in pathological situations. In vitro, apoptosis proceeds through an execution phase during which cell dismantling
is initiated, with or without fragmentation into apoptotic bodies, but with maintenance of a near-to-intact cytoplasmic membrane,
followed by a transition to a necrotic cell elimination traditionally called “secondary necrosis”. Secondary necrosis involves
activation of self-hydrolytic enzymes, and swelling of the cell or of the apoptotic bodies, generalized and irreparable damage
to the cytoplasmic membrane, and culminates with cell disruption. In vivo, under normal conditions, the elimination of apoptosing
cells or apoptotic bodies is by removal through engulfment by scavengers prompted by the exposure of engulfment signals during
the execution phase of apoptosis; if this removal fails progression to secondary necrosis ensues as in the in vitro situation.
In vivo secondary necrosis occurs when massive apoptosis overwhelms the available scavenging capacity, or when the scavenger
mechanism is directly impaired, and may result in leakage of the cell contents with induction of tissue injury and inflammatory
and autoimmune responses. Several disorders where secondary necrosis has been implicated as a pathogenic mechanism will be
reviewed. 相似文献
19.
Junying Yuan 《Apoptosis : an international journal on programmed cell death》2009,14(4):469-477
It has been a major challenge to develop effective therapeutics for stroke, a leading cause of death and serious debilitation.
Intensive research in the past 15 years have implicated many regulators and the related mechanisms by which neuronal cell
death is regulated. It is now clear that even a brief ischemic stroke may trigger complex cellular events that lead to both
apoptotic and necrotic neuronal cell death in a progressive manner. Although efforts at developing specific chemical inhibitors
for validated targets have been successful for in vitro enzymatic assays, the development of some of such inhibitors into
human therapy has been often hindered by their in vivo bioavailability profile. Considerations for the ability to chemically
target a cellular mechanism in manner compatible with disease targets in vivo might be emphasized early in the development
process by putting a priority on identifying key targets that can be effectively targeted chemically. Thorough interrogation
of cellular pathways by saturation chemical genetics may provide a novel strategy to identify multiple key molecular entities
that can be targeted chemically in order to select a target suitable for the treatment of intended human diseases such as
stroke. 相似文献
20.
Lu X Lamontagne J Lu F Block TM 《Apoptosis : an international journal on programmed cell death》2008,13(4):483-494
Serine protease dependent cell apoptosis (SPDCA) is a recently described caspase independent innate apoptotic pathway. It
differs from the traditional caspase dependent apoptotic pathway in that serine proteases, not caspases, are critical to the
apoptotic process. The mechanism of SPDCA is still unclear and further investigation is needed to determine any role it may
play in maintaining cellular homeostasis and development of disease. The current knowledge about this pathway is limited only
to the inhibitory effects of some serine protease inhibitors. Synthetic agents such as pefabloc, AEBSF and TPCK can inhibit
this apoptotic process in cultured cells. There is little known, however, about biologically active agents available in the
cell which can inhibit SPDCA. Here, we show that over-expression of a cellular protein called serine protease inhibitor Kazal
(SPIK/TATI/PSTI) results in a significant decrease in cell susceptibility to SPDCA, suggesting that SPIK is an apoptosis inhibitor
suppressing this pathway of apoptosis. Previous work has associated SPIK and cancer development, indicating that this finding
will help to open the doorway for further study on the mechanism of SPDCA and the role it may play in cancer development. 相似文献