首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Applying sewage sludges to agricultural land is a widespread practice because of the sludges’ agronomic value as a source of plant nutrients and organic matter. Nevertheless, sludges often contain micropollutants that can constitute a menace for health and the environment. Arbuscular mycorrhizal fungi are sensitive to sewage sludges that have been spiked, or not, with metallic trace elements (MTE). Here we have investigated if MTE in sewage sludges could be responsible for effects on mycorrhizal development betweenGlomus mosseae andMedicago truncatula. The impact of a dehydrated or composted urban sewage sludge spiked or not with MTE, was tested on spore germination and root colonization byG. mosseae. The sewage sludges depressed both the presymbiotic andin planta stages of development of the mycorrhizal fungus. This negative effect was more related to the metallic pollutant contents of the sludges than to the presence of antagonistic microorganisms or phosphorus.  相似文献   

2.
Nested PCR is a highly sensitive procedure for monitoring species of arbuscular mycorrhizal (AM) fungi and for determining their abundance in planta and in soil. DNA sequence variability in the D1 and D2 domains of the large ribosomal subunit is sufficient to design primers which discriminate between AM fungi at the species level. The usefulness of this molecular approach is illustrated in the present study on the differential impact of sewage sludges on a community of three AM fungi (Glomus mosseae, Glomus intraradices, Gigaspora rosea). Nested PCR was applied to trypan blue-stained mycorrhizal root fragments and soil mycelium from pot cultures of Medicago truncatula inoculated with the three fungi separately or together, and grown in sand containing sewage sludge that had been enriched or not with metallic or organic pollutants. G. intraradices and Gig. rosea varied in behaviour depending on whether they were inoculated alone or as a mixed community. G. mosseae showed a similar sensitivity towards each sewage sludge whether in community or alone, making it a potential candidate for ecotoxicological tests using M. truncatula to evaluate the quality or potential toxicity of sewage sludges which are widely used as fertilizers in agricultural lands. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Plant-soil microbial interactions have moved into focus as an important mechanism for understanding plant coexistence and composition of communities. Both arbuscular mycorrhizal (AM) as well as other root endophytic fungi co-occur in plant roots, and therefore have the potential to influence relative abundances of plant species in local assemblages. However, no study has experimentally examined how these key root endosymbiont groups might interact and affect plant community composition. Here, using an assemblage of five plant species in mesocosms in a fully factorial experiment, we added an assemblage of AM fungi and/or a mixture of root endophytic fungal isolates, all obtained from the same grassland field site. The results demonstrate that the AM fungi and root endophytes interact to affect plant community composition by changing relative species abundance, and consequently aboveground productivity. Our study highlights the need to explicitly consider interactions of root-inhabiting fungal groups in studies of plant assemblages.  相似文献   

4.
We studied the influence of inoculation with a mixture of three exotic arbuscular mycorrhizal (AM) fungi, Glomus intraradices Schenck & Smith, Glomus deserticola Trappe, Bloss. & Menge and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, and the addition of composted sewage sludge (SS) on the activities of the antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidase (POX) and of shoot and root nitrate reductase (NR, EC 1.6.6.1) in Juniperus oxycedrus L. seedlings, an evergreen shrub, grown in a non-sterile soil under well-watered and drought-stress conditions. Both the inoculation with exotic AM fungi and the addition of composted SS stimulated significantly growth and the N and P contents in shoot tissues of J. oxycedrus with respect to the plants neither inoculated nor treated with composted SS that were either well-watered or droughted. Under drought-stress conditions, only inoculation with exotic AM fungi increased shoot and root NR activity (about 188% and 38%, respectively, with respect to the plants neither inoculated nor treated with composted SS). Drought increased the POX and SOD activities in both shoots of J. oxycedrus seedlings inoculated with exotic AM fungi and grown with composted SS, but the increase was less than in the plants neither inoculated nor treated with SS. Both the plants inoculated with exotic AM fungi and the plants grown with composted SS developed additional mechanisms to avoid oxidative damage produced under water-shortage conditions.  相似文献   

5.
The objective of the present work was to study the short-term stimulation of microbial and enzyme activity in mine soils by application of organic waste materials in lysimeter and mesocosm studies. The mine soils derived from tertiary and quaternary deposits were ameliorated with brown coal filter ash (tertiary deposits) and lime (quaternary deposits). At the beginning of recultivation the soils were treated with varying amounts of sewage sludge, coal sludge, composted sewage sludge and compost to a depth of 30 cm. In the first 2 years after application of organic waste materials we found a very low level of microbial properties especially in the sandy materials from quaternary deposits but a significant increase in microbial respiration, substrate induced respiration and enzyme activities like invertase and alkaline phosphatase with increasing application rates of sewage sludge, compost and sewage sludge mixed with coal sludge. This can be explained by an increase in organic matter and nutrient content of the soils and an improvement of soil physical properties such as water and nutrient retention capacity. Additionally it can be assumed, that constituents of the coal admixtures of tertiary deposits can be mineralised or converted by the soil microorganisms. In the tertiary materials ameliorated with brown coal ash the highest amounts of microbial and enzyme activities were measured after application of nitrogen-rich sewage sludge or very high amounts of mature compost mainly consisting of green waste. Compared with sewage sludge the stimulating effects of composted sewage sludge were quite lower because of organic matter fragmentation and a reduced energy and nutrient supply to soil microorganisms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Lovelock CE  Andersen K  Morton JB 《Oecologia》2003,135(2):268-279
Arbuscular mycorrhizal (AM) fungi are mutualists with plant roots that are proposed to enhance plant community diversity. Models indicate that AM fungal communities could maintain plant diversity in forests if functionally different communities are spatially separated. In this study we assess the spatial and temporal distribution of the AM fungal community in a wet tropical rainforest in Costa Rica. We test whether distinct fungal communities correlate with variation in tree life history characteristics, with host tree species, and the relative importance of soil type, seasonality and rainfall. Host tree species differ in their associated AM fungal communities, but differences in the AM community between hosts could not be generalized over life history groupings of hosts. Changes in the relative abundance of a few common AM fungal species were the cause of differences in AM fungal communities for different host tree species instead of differences in the presence and absence of AM fungal species. Thus, AM fungal communities are spatially distinguishable in the forest, even though all species are widespread. Soil fertility ranging between 5 and 9 Mg/ha phosphorus did not affect composition of AM fungal communities, although sporulation was more abundant in lower fertility soils. Sampling soils over seasons revealed that some AM fungal species sporulate profusely in the dry season compared to the rainy season. On one host tree species sampled at two sites with vastly different rainfall, relative abundance of spores from Acaulospora was lower and that of Glomus was relatively higher at the site with lower and more seasonal rainfall.  相似文献   

7.
We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.  相似文献   

8.
Both deterministic and stochastic processes are expected to drive the assemblages of arbuscular mycorrhizal (AM) fungi, but little is known about the relative importance of these processes during the spreading of toxic plants. Here, the species composition and phylogenetic structure of AM fungal communities colonizing the roots of a toxic plant, Ligularia virgaurea, and its neighborhood plants, were analyzed in patches with different individual densities of L. virgaurea (represents the spreading degree). Community compositions of AM fungi in both root systems were changed significantly by the L. virgaurea spreading, and also these communities fitted the neutral model very well. AM fungal communities in patches with absence and presence of L. virgaurea were phylogenetically random and clustered, respectively, suggesting that the principal ecological process determining AM fungal assemblage shifted from stochastic process to environmental filtering when this toxic plant was present. Our results indicate that deterministic and stochastic processes together determine the assemblage of AM fungi, but the dominant process would be changed by the spreading of toxic plants, and suggest that the spreading of toxic plants in alpine meadow ecosystems might be involving the mycorrhizal symbionts.  相似文献   

9.
A majority of plant species has roots that are colonized by both arbuscular mycorrhizal (AM) and non-mycorrhizal (NM) fungi. The latter group may include plant mutualists, commensals, parasites and pathogens. The co-occurrence of these two broad groups may translate into competition for root volume as well as for plant-derived carbon (C). Here we provide evidence that the relative availability of soil nitrogen (N) and phosphorus (P) (i.e., soil nutrient stoichiometry) controls the competitive balance between these two fungal guilds. A decrease in the soil available N:P ratio resulted in a lower abundance of AM fungi and a corresponding increase in NM fungi. However, when the same fertilization treatments were applied in a soil in which AM fungi were absent, lowering the soil available N:P ratio did not affect NM fungal abundance. Taken collectively, our results suggest that the increase in NM fungal abundance was not a direct response to soil nutrient stoichiometry, but rather a competitive release from AM fungi responding negatively to higher soil P. We briefly discuss the mechanisms that may be responsible for this competitive release.  相似文献   

10.
Given that arbuscular mycorrhizal (AM) fungi are not consistently beneficial to their host plants, it is difficult to explain the evolutionary persistence of this relationship. We tested the hypothesis that increasing either fungal or host biodiversity allows an AM fungus to persist on a host where it shows little benefit. We found that growing such a fungus (an isolate of Glomus custos associating with Plantago laceolata) in combination with certain fungi improved its success as measured by mtLSU DNA abundance. Increasing plant species richness facilitated the spread of this fungus as measured by spore density and fungal colonization; the role of host species richness was not as clear when looking at measures of root abundance. These results indicate that diversity in the AM symbiosis, both plant and fungal, can promote the persistence of low-quality fungi. By existing within a complex mycelial network fungal strains that show little growth benefit to their hosts have a better chance of persisting on that same host. This has the potential to promote selection for heterogeneous AM fungal communities on a small spatial scale.  相似文献   

11.
Leaching column experiments were conducted to determine the degree of mobility and the distribution of zinc (Zn), cadmium (Cd), and lead (Pb) because of an application of spiked sewage sludge in calcareous soils. A total of 20 leaching columns were set up for four calcareous soils. Each column was leached with one of these inflows: sewage sludge (only for two soils), spiked sewage sludge, or artificial well water (control). The columns were irrigated with spiked sewage sludge containing 8.5 mg Zn l?1, 8.5 mg Cd l?1, and 170 mg Pb l?1 and then allowed to equilibrate for 30 days. At the end of leaching experiments, soil samples from each column were divided into 18 layers, each being 1 cm down to 6 cm and 2 cm below that, and analyzed for total and extractable Zn, Cd and Pb. The fractionation of the heavy metals in the top three layers of the surface soil samples was investigated by the sequential extraction method. Spiked sewage sludge had little effect on metal mobility. In all soils, the surface soil layers (0-1 cm) of the columns receiving spiked sewage sludge had significantly higher concentrations of total Zn, Cd and Pb than control soils. Concentration of the heavy metals declined significantly with depth. The mobility of Zn was usually greater than Cd and Pb. The proportion of exchangeable heavy metals in soils receiving spiked sewage sludge was significantly higher than that found in the control columns. Sequential extraction results showed that in native soils the major proportion of Zn and Pb was associated with residual (RES) and organic matter (OM) fractions and major proportion of Cd was associated with carbonate (CARB) fraction, whereas after leaching with spiked sewage sludge, the major proportion of Zn and Pb was associated with Fe-oxcide (FEO), RES, and CARB fractions and major proportion of Cd was associated with CARB, RES and exchangeable (EXCH) fractions. Based on relative percent, Cd in the EXCH fraction was higher than Zn and Pb in soils leached with spiked sewage sludge.  相似文献   

12.
为揭示间作作物种间相互作用对土壤丛枝菌根(AM)真菌的影响,以马铃薯单作(T0)为对照,基于高通量测序平台的方法,研究了连续3年马铃薯‖玉米(T1)、马铃薯‖蚕豆(T2)下马铃薯根际土壤AM真菌群落组成、多样性与土壤环境因子间的相互关系.结果表明:共获得2893个AM真菌操作分类单元(OTUs),分属1门、3纲、4目、...  相似文献   

13.
The utility of an urban solid waste, either freshly composted or vermicomposted, for improvement of plant growth in a soil B horizon was investigated. Growth, mineral nutrition and arbuscular mycorrhizal (AM) colonization of cucumber and red clover plants were studied in an experiment carried out under controlled growing conditions, using different mixtures of soil and composts as plant substrates. Soil inoculation with the AM fungus Acaulospora sp. did not benefit growth of plants when soil was used as the only substrate, possibly due to its poor fertility. Results showed that neither mycorrhizal plant species grew when soil was mixed with composted urban waste or when compost was used as the only substrate. However, amendment of soil with 10 or 50% vermicompost significantly increased dry matter yields of red clover and cucumber plants, compared to treatments where soil was the only substrate. Addition of vermicompost also increased Olsen-P and other mineral elements in soil and shoot P, Ca, Mg, Cu, Mn and Zn concentrations, but caused a significant reduction on root length colonized by AM fungi in red clover plants. It is concluded that application of high amounts of vermicompost from composted urban wastes to soils might cause a significant reduction of activity of AM fungi, which must be taken into account when using these organic amendments in agricultural systems.  相似文献   

14.
Both competition and environmental filtering are expected to influence the community structure of microbes, but there are few tests of the relative importance of these processes because trait data on these organisms is often difficult to obtain. Using phylogenetic and functional trait information, we tested whether arbuscular mycorrhizal (AM) fungal community composition in an old field was influenced by competitive exclusion and/or environmental filtering. Communities at the site were dominated by species from the most speciose family of AM fungi, the Glomeraceae, though species from two other lineages, the Acaulosporaceae and Gigasporaceae were also found. Despite the dominance of species from a single family, AM fungal species most frequently co-existed when they were distantly related and when they differed in the ability to colonize root space on host plants. The ability of AM fungal species to colonize soil did not influence co-existence. These results suggest that competition between closely related and functionally similar species for space on plant roots influences community assembly. Nevertheless, in a substantial minority of cases communities were phylogenetically clustered, indicating that closely related species could also co-occur, as would be expected if i) the environment restricted community membership to single functional type or ii) competition among functionally similar species was weak. Our results therefore also suggest that competition for niche space between closely related fungi is not the sole influence of mycorrhizal community structure in field situations, but may be of greater relative importance than other ecological mechanisms.  相似文献   

15.
We investigated how the application of composted sewage sludge to tailings affects the physiological response of woody plants growing on abandoned coal-mining sites. Twenty seedlings ofBetula schmidtii were transplanted to pots containing various combinations of artificial soil plus nursery soil, tailings, composted soil, or tailings amended with composted soil. Dry weights, shoot to root ratios, relative growth rates (RGR), chlorophyll content and fluorescence, and carbohydrate concentrations were assessed at the end of the experiment. Growth responses differed significantly among soil types. For example, dry weights were greatest for seedlings grown in composted soil and smallest for plants raised in pure tailings. Shoot to root ratios were higher for seedlings in composted soil compared with those in either tailings or nursery soil. Leaf chlorophyll content was twice as high for seedlings from composted soil than for those in the nursery soil or tailings; chlorophyll fluorescence (Fv/Fm) was lower for seedlings in either nursery soil or tailings than for those in composted soil. In contrast, plants grown in either nursery soil or tailings had higher starch concentrations in their stems, whereas the carbohydrate allocation of seedlings in composted soil was highest in the leaves, followed by stems and roots. Overall, the carbohydrate content was highest in the leaves, except for seedlings treated with tailings. Therefore, we believe that composted soil can improve the physiological and biochemical properties of trees growing in tailings when appropriate nutrients are supplemented.  相似文献   

16.
The influence of plant functional groups and moderate seasonality on arbuscular mycorrhizal (AM) fungal status (root colonization and spore density) was investigated during 13 consecutive months in a chronosequence of succession in southern Brazil, consisting of grassland field, scrub vegetation, secondary forest and mature forest, in a region of transition from tropical to subtropical zones. AM root colonization and spore density decreased with advancing succession and were highest in early successional sites with grassland and scrub vegetation, intermediary in the secondary forest and lowest in the mature forest. They were little influenced by soil properties, but were sufficiently influenced by the fine root nutrient status and fine root traits among different functional plant groups. AM root colonization and spore density were higher during the favourable plant growth season (spring and summer) than during the less favourable plant growth season (autumn and winter). Spore density displayed significant seasonal variation at all sites, whilst root colonization displayed significant seasonal variation in grassland, scrub and secondary forest, but not in mature forest. The data suggest that (1) different plant functional groups display different relationships with AM fungi, influencing their abundance differentially; (2) plant species from early successional phases are more susceptible to AM root colonization and maintain higher AM sporulation than late successional species; (3) fine root traits and nutrient status influence these AM fungal attributes; and (4) higher AM spore production and root colonization is associated with the season of higher light incidence and temperature, abundant water in soil and higher plant metabolic activity.  相似文献   

17.
A study was conducted to establish whether the wild thyme [Thymus polytrichus A. Kerner ex Borbás ssp. britannicus (Ronn.) Kerguelen (Lamiaceae)] growing in the metal-contaminated soils along the River South Tyne, United Kingdom, is colonised by arbuscular mycorrhizal (AM) fungi, and whether the degree of colonisation increases (perhaps suggesting increasing mycorrhizal dependence) or decreases (indicating possible inhibition of AM growth) with increasing degree of soil contamination. Seasonal changes in AM colonisation were also assessed. The AM fungal communities colonising T. polytrichus were also investigated, using the polymerase chain reaction with restriction fragment length polymorphism and sequencing of fungal DNA to establish whether AM species richness varied between sites, and whether fungal ecotypes specific to sites with different amounts of metal contamination could be identified. All plants examined were heavily colonised by AM fungi, and mean percentage root length colonised did not increase significantly with increasing soil metal contamination. However, AM vesicle abundance (percentage of mycorrhizal root length containing vesicles) at the most contaminated site was significantly greater than at the other sites. No significant seasonal variation in degree of colonisation or vesicle abundance was found. Glomus was the predominant AM genus detected at all sites. The number of AM genotypes colonising T. polytrichus roots was similar at all sites but, although some were common to all sites, certain strains appeared to be specific to either the most- or the least-contaminated site. This variation in species may account for the difference in vesicle abundance between sites. The consistently heavy AM colonisation of T. polytrichus found suggests that these fungi are not inhibited by soil heavy metals at these sites, and that the host derives some benefit from its AM symbiont.  相似文献   

18.
A microstructure characterization study using transmission electron microscopy (TEM) was conducted to specify organic matter dynamics during the co-composting process of sewage sludge, green waste and barks. TEM results showed that ligneous and polyphenolic compounds brought by barks were not biodegraded during composting. Green waste brought more or less biodegraded ligneous constituents and also an active microbial potential. Chloroplasts and sludge flocs appeared to be relevant indicators of green waste and sewage sludge in composted products, as they were still viewable at the end of the process. TEM characterization of the final product highlighted two main fractions of organic matter, one easily available and a more recalcitrant one, and also a remaining microbial activity. Thus microstructure characterization appeared to be an appropriate way of taking the heterogeneity of the organic constituents' size and composition into account when attempting to specify such compost quality parameters as maturity and stability.  相似文献   

19.
Sequencing of the 5' end of the large ribosomal subunit (LSU rDNA) and quantitative polymerase chain reaction (qPCR) were combined to assess the impact of four annual Medicago species (Medicago laciniata, Medicago murex, Medicago polymorpha and Medicago truncatula) on the genetic diversity of arbuscular mycorrhizal (AM) fungi, and on the relative abundance of representative AM fungal genotypes, in a silty-thin clay soil (Mas d'Imbert, France). Two hundred and forty-six Glomeromycete LSU rDNA sequences from the four plant species and the bulk soil were analysed. The high bootstrap values of the phylogenetic tree obtained allowed the delineation of 12 operational taxonomic units (OTUs), all belonging to Glomus. Specific primers targeting Glomeromycetes and major OTUs were applied to quantify their abundance by qPCR. Glomeromycetes and targeted OTUs were significantly more abundant in the root tissues than in the bulk soil, and the frequencies of three of them differed significantly in the root tissues of the different plant species. These differences indicate that, despite the absence of strict host specificity in mycorrhizal symbiosis, there was a preferential association between some AM fungal and plant genotypes.  相似文献   

20.
Here, we evaluated how the arbuscular mycorrhizal (AM) symbiosis regulates root hydraulic properties and root plasma membrane aquaporins (PIP) under different stresses sharing a common osmotic component. Phaseolus vulgaris plants were inoculated or not with the AM fungus Glomus intraradices, and subjected to drought, cold or salinity. Stress effects on root hydraulic conductance (L), PIP gene expression and protein abundance were evaluated. Under control conditions, L in AM plants was about half that in nonAM plants. However, L was decreased as a result of the three stresses in nonAM plants, while it was almost unchanged in AM plants. At the same time, PIP2 protein abundance and phosphorylation state presented the same trend as L. Finally, the expression of each PIP gene responded differently to each stress and was dependent on the AM fungal presence. Differential expression of the PIP genes studied under each stress depending on the AM fungal presence may indicate a specific function and regulation by the AM symbiosis of each gene under the specific conditions of each stress tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号