共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulfated proteoglycan synthesis by confluent cultures of rabbit costal chondrocytes grown in the presence of fibroblast growth factor 总被引:11,自引:2,他引:11 下载免费PDF全文
We examined the effect of fibroblast growth factor (FGF) on proteoglycan synthesis by rabbit costal chondrocyte cultures maintained on plastic tissue culture dishes. Low density rabbit costal chondrocyte cultures grown in the absence of FGF gave rise at confluency to a heterogeneous cell population composed of fibroblastic cells and poorly differentiated chondrocytes. When similar cultures were grown in the presence of FGF, the confluent cultures organized into a homogenous cartilage-like tissue composed of rounded cells surrounded by a refractile matrix. The cell ultrastructure and that of the pericellular matrix were similar to those seen in vivo. The expression of the cartilage phenotype in confluent chondrocyte cultures grown from the sparse stage in the presence vs. absence of FGF was reflected by a fivefold increase in the rate of incorporation of [35S]sulfate into proteoglycans. These FGF effects were only observed when FGF was present during the cell logarithmic growth phase, but not when it was added after chondrocyte cultures became confluent. High molecular weight, chondroitin sulfate proteoglycans synthesized by confluent chondrocyte cultures grown in the presence of FGF were slightly larger in size than that produced by confluent cultures grown in the absence of FGF. The major sulfated glycosaminoglycans associated with low molecular weight proteoglycan in FGF-exposed cultures were chondroitin sulfate, while in cultures not exposed to FGF they were chondroitin sulfate and dermatan sulfate. Regardless of whether or not cells were grown in the presence or absence of FGF, the 6S/4S disaccharide ratio of chondroitin sulfate chains associated with high and low molecular weight proteoglycans synthesized by confluent cultures was the same. These results provide evidence that when low density chondrocyte cultures maintained on plastic tissue culture dishes are grown in the presence of FGF, it results in a stimulation of the expression and stabilization of the chondrocyte phenotype once cultures become confluent. 相似文献
2.
Expression of several cellular and matrix proteins which increase significantly during the maturation of growth plate cartilage has been shown to be affected by various endocrine and autocrine factors. In the studies reported here, transforming growth factor-beta (TGF-beta 1) and basic fibroblast growth factor (bFGF) were administered to primary cultures of avian growth plate chondrocytes at pre- or post-confluent stages to study the interplay that occurs between these factors in modulating chondrocytic phenotype. Added continuously to pre-confluent chondrocytes, TGF-beta 1 stimulated the cells to produce abundant extracellular matrix and multilayered cell growth; cell morphology was altered to a more spherical configuration. These effects were generally mimicked by bFGF, but cell shape was not affected. Administered together with TGF-beta 1, bFGF caused additive stimulation of protein synthesis, and alkaline phosphatase (AP) activity was markedly, but transiently enhanced. During this pre-confluent stage, TGF-beta 1 also increased fibronectin secretion into the culture medium. Added to post-confluent cells, TGF-beta 1 alone caused a dosage-dependent suppression of AP activity, but bFGF alone did not. Under these conditions, TGF-beta 1 and bFGF had little effect on general protein synthesis, but TGF-beta 1 alone caused large, dosage-dependent increases in synthesis of fibronectin, and to some extent type II and X collagens. Given together with bFGF, TGF-beta 1 synergistically increased secretion of fibronectin. These findings reveal that regulation of phenotypic expression in maturing growth plate chondrocytes involves complex interactions between growth factors that are determined by timing, level, continuity, and length of exposure. 相似文献
3.
The effect of concanavalin A on proteoglycan synthesis by rabbit costal and articular chondrocytes was examined. Chondrocytes were seeded at low density and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of concanavalin A to the culture medium induced a morphologic alteration of the fibroblastic cells to spherical chondrocytes and increased by 3- to 4-fold incorporation of [35S]sulfate and [3H]glucosamine into large chondroitin sulfate proteoglycan that was characteristically found in cartilage. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, as chemical analyses showed a 4-fold increase in the accumulation of macromolecules containing hexuronic acid in concanavalin A-maintained cultures. Furthermore, the effect of concanavalin A on [35S]sulfate incorporation into proteoglycans was greater than that of various growth factors or hormones. However, concanavalin A had smaller effects on [35S]sulfate incorporation into small proteoglycans and [3H]glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant glycosaminoglycans. Since other lectins tested, such as wheat germ agglutinin, lentil lectin, and phytohemagglutinin, had little effect on [35S]sulfate incorporation into proteoglycans, the concanavalin A action on chondrocytes seems specific. Although concanavalin A decreased [3H]thymidine incorporation in chondrocytes, the stimulation of proteoglycan synthesis could be observed in chondrocytes exposed to the inhibitor of DNA synthesis, cytosine arabinoside. These results indicate that concanavalin A is a potent modulator of proteoglycan synthesis by chondrocytes. 相似文献
4.
Stimulation of human arterial smooth muscle cell chondroitin sulfate proteoglycan synthesis by transforming growth factor-beta 总被引:1,自引:0,他引:1
Jan-Kan Chen Hiroyoshi Hoshi Wallace L. McKeehan 《In vitro cellular & developmental biology. Animal》1991,27(1):6-12
Summary Human platelet-derived transforming growth factor-beta (TGF-beta) is a cell-type specific promotor of proteoglycan synthesis
in human adult arterial cells. Cultured human adult arterial smooth muscle cells synthesized chondroitin sulfate, dermatan
sulfate, and heparan sulfate proteoglycans, and the percent composition of these three proteoglycan subclasses varied to some
extent from cell strain to cell strain. However, TGF-beta consistently stimulated the synthesis of chondroitin sulfate proteoglycan.
Both chondroitin 4- and chondroitin 6-sulfate were stimulated by TGF-beta to the same extent. TGF-beta had no stimulatory
effect on either class of [35S]sulfate-labeled proteoglycans which appeared in an approximately 1:1 and 2:1 ratio of heparan sulfate to dermatan sulfate
of the medium and cell layers, respectively, of arterial endothelial cells. Human adult arterial endothelial cells synthesized
little or no chondroitin sulfate proteoglycan. Pulse-chase labeling revealed that the appearance of smooth muscle cell proteoglycans
into the medium over a 36-h period equaled the disappearance of labeled proteoglycans from the cell layer, independent of
TGF-beta. Inhibitors of RNA synthesis blocked TGF-beta-stimulated proteoglycan synthesis in the smooth muscle cells. The incorporation
of [35S]methionine into chondroitin sulfate proteoglycan core proteins was stimulated by TGF-beta. Taken together, the results presented
indicate that TGF-beta stimulates chondroitin sulfate proteoglycan synthesis in human adult arterial smooth muscle cells by
promoting the core protein synthesis.
Supported in part by grants from the Public Health Service, U.S. Department of Health and Human Services, Washington, DC (CA
37589 and HL 33842), RJR Nabisco, Inc., and Chang Gung Biomedical Research Foundation (CMRP 291). 相似文献
5.
Stimulation of normal human fibroblast collagen production and processing by transforming growth factor-beta 总被引:9,自引:0,他引:9
Transforming growth factor-beta (TGF beta) a growth factor with diverse effects on cellular growth and metabolism, caused dramatic stimulation of total protein and collagen synthesis by confluent normal human dermal fibroblasts in culture in a dose-dependent manner. Gel electrophoresis of the newly synthesized macromolecules from the culture media of TGF beta treated cultures demonstrated accelerated procollagen processing. These results indicate that TGF beta is capable of qualitatively and quantitatively influencing the biosynthesis of matrix molecules by fibroblasts, and raise the possibility that TGF may play a role in the development of normal and pathologic fibrogenesis. 相似文献
6.
Stimulation by glucocorticoid of the synthesis of cartilage-matrix proteoglycans produced by rabbit costal chondrocytes in vitro 总被引:6,自引:0,他引:6
The effect of glucocorticoids on sulfated proteoglycan synthesis by rabbit costal chondrocyte cultures exposed to serum-free conditions has been examined. Low density cultures of rabbit costal chondrocytes were maintained on dishes coated with extracellular matrix produced by bovine corneal endothelial cells and exposed to a 9:1 mixture (v/v) of Dulbecco's modified Eagle's medium and Ham's F-12 medium supplemented with transferrin, high density lipoproteins, fibroblast growth factor, and insulin (Medium A). Chondrocytes maintained in the presence of Medium A supplemented with 10(-7) M hydrocortisone reorganized, at confluence, into a homogeneous cartilage-like tissue composed of round cells surrounded by a refractile matrix in which abundant thin collagen fibrils characteristic of type II collagen were observed. The cell ultrastructure and fibrils of the pericellular matrix were similar to those seen in vivo. In contrast, cells maintained in the presence of Medium A alone, once they reached confluence, formed a fibroblastic multilayer and produced thick collagen bundles. The level of 35SO4(2-) incorporated into large cartilage-specific proteoglycans in glucocorticoid-supplemented cultures was 33-fold higher than that of glucocorticoid-free cultures. The level of 35SO4(2-) incorporated into small ubiquitous proteoglycans was only 4-fold higher than that of glucocorticoid-free cultures. On the other hand, the level of [3H]glucosamine incorporated into hyaluronate in glucocorticoid-supplemented cultures was 4.5-fold lower than that of glucocorticoid-free cultures. Within 24 h of their addition to confluent cultures, hydrocortisone or dexamethasone markedly stimulated proteoglycan synthesis. This effect was not mimicked by androgens, estrogens, progesterone, or an inactive form of glucocorticoids such as deoxycorticosterone. This suggests that glucocorticoids have a direct and specific stimulatory effect on cartilage-specific proteoglycan synthesis and are essential for the maintenance of this synthesis in low density chondrocyte cultures. 相似文献
7.
Y Totsuka M Tabuchi I Kojima Y Eto H Shibai E Ogata 《Biochemical and biophysical research communications》1989,158(3):1060-1065
Effects of transforming growth factor-beta (TGF-beta) on insulin secretion were studied in rat pancreatic islets. When islets were incubated in a batch incubation system with various concentrations of TGF-beta in the presence of 2.8 mM glucose, TGF- beta increased insulin release in a concentration-dependent manner. Both TGF- beta 1 and TGF- beta 2 were equally effective. The stimulatory action of TGF- beta was greater in the presence of stimulatory concentration of glucose. In perifusion system, TGF- beta induced an immediate monotonic increase in insulin secretion. These results indicate that TGF- beta is a stimulator of insulin secretion. 相似文献
8.
The effects of transforming growth factor-beta and serum on proteoglycan synthesis by tendon fibrocartilage. 总被引:6,自引:0,他引:6
The effects of transforming growth factor-beta (TGF-beta) and serum on proteoglycan synthesis by tissue explants from the fibrocartilaginous region of adult bovine tendon and by cells in culture from this region were assessed. The most characteristic effect of added TGF-beta on both explant tissue and cells in culture was enhanced synthesis of one small proteoglycan-biglycan. Lowered serum concentration diminished incorporation of Na2 35SO4 into proteoglycans. Added TGF-beta (1 ng/ml) stimulated cell proliferation, increased overall proteoglycan synthesis, and increased the length of glycosaminoglycan chains on all secreted proteoglycans. The effect of TGF-beta on cells in culture was highly consistent whereas explants from different animals showed greater variability in the response. It was concluded that TGF-beta did not specifically promote or maintain the cartilaginous nature of this tissue because supplementing medium with TGF-beta did not significantly alter the ratio of large/small proteoglycans synthesized by tissue explants. However, the observation of enhanced biglycan synthesis by TGF-beta suggests that TGF-beta could be involved in differentiation of regions of tendon subjected to compression, because compressed tendon contains both decorin and biglycan small proteoglycans whereas tensional tendon contains primarily decorin. Excess decorin added to cell culture medium did not affect the ability of TGF-beta to enhance synthesis of biglycan. 相似文献
9.
10.
E Sch?nherr H T J?rvel?inen L J Sandell T N Wight 《The Journal of biological chemistry》1991,266(26):17640-17647
Platelet-derived growth factor (PDGF) and transforming growth factor-beta 1 (TGF-beta 1) increase [35S]sulfate incorporation into proteoglycan (PG) by monkey arterial smooth muscle cells but have opposite effects on cell proliferation. The combination of these two growth regulatory peptides has an additive effect on PG synthesis but no effects on cell proliferation. The time course of sulfate incorporation after stimulation indicates that both growth factors cause maximal incorporation of sulfate into glycosaminoglycan chains by 12-18 h. The PG that is most affected is a large CSPG (Mr approximately 1.2 x 10(6)) which can be immunoprecipitated by an antibody against versican, a large CSPG synthesized by human skin fibroblasts. The hydrodynamic size of this molecule increases after PDGF and TGF-beta 1 stimulation, but the size of the core glycoprotein (Mr approximately 450,000) remains the same. Treatment with either growth factor leads to an increase in the amount of core glycoprotein for this PG. This increase correlates with an increase in the steady state level of mRNA identified by hybridization to a cDNA encoding versican. The two growth factors also increase the glycosaminoglycan chain length of this PG accounting for the greater hydrodynamic size of the molecule after stimulation. In contrast, PDGF and not TGF-beta 1 changes the composition of the glycosaminoglycan chains attached to this PG by doubling the ratio of chondroitin 6-sulfate to chondroitin 4-sulfate. These results indicate that although both of these growth factors increase the net synthesis of a large versican like CSPG, they differ in their effects on the structure of the glycosaminoglycan chains. These post-translational modifications may relate to the growth state of the cells. 相似文献
11.
Enhanced sulfated-proteoglycan core protein synthesis by incubation of rabbit chondrocytes with recombinant transforming growth factor-beta 1 总被引:2,自引:0,他引:2
Rabbit articular chondrocytes were incubated with recombinant transforming-growth-factor-beta 1 (rhTGF-beta 1) and its effect on newly synthesized proteoglycan measured. rhTGF-beta 1 stimulated proteoglycan synthesis at a concentration as low as 5 ng/ml without further increases in radiosulfate incorporation up to 50 ng/ml. The quantitative increase in radiosulfate incorporation in rh-TGF-beta 1-treated chondrocytes was greater in the cell-associated culture compartment than in the medium compartment. rhTGF-beta 1 promoted an increased proteoglycan retention in the cell-associated compartment as evidenced by an increase in the t1/2 of retention from 8 h to 11 h. Specific enhanced synthesis of [35S]-methionine-labeled core proteins was seen in rh-TGF-beta 1-treated chondrocytes. rh-TGF-beta 1 increased the synthesis of the 2 core proteins derived from hydrodynamically large proteoglycans. They possessed apparent molecular weights of greater than 480 kD and 390 kD after 3-5% acrylamide gel electrophoresis. A compartmental analysis revealed that the cell-associated culture compartment contained only the larger of the 2 core proteins derived from large proteoglycans. Two other core proteins with apparent molecular weights 52 kD and 46 kD were also stimulated by rhTGF-beta 1. These results indicated that TGF-beta probably plays a significant role in stimulating proteoglycan core protein synthesis in articular chondrocytes and therefore may be an important growth factor in the restoration of cartilage extracellular matrix after injury. 相似文献
12.
13.
D M Butler T Leizer J A Hamilton 《Journal of immunology (Baltimore, Md. : 1950)》1989,142(9):3098-3103
The pronounced synovial hyperplasia often found in the joints of patients with rheumatoid arthritis could be explained partially by the action of monocyte-macrophage polypeptides (monokines). This report demonstrates that two cytokines which may be derived from monocyte-macrophage populations, namely platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF), stimulate the DNA synthesis and proliferation of human synovial fibroblast-like cells cultured in low (i.e., 1%) fetal bovine serum. Epidermal growth factor, insulin-like growth factor-I, insulin-like growth factor-II (multiplication stimulating activity) and substance P were inactive. Unlike IL-1, PDGF and FGF do not also stimulate PGE2, plasminogen activator, and hyaluronic acid levels. Thus PDGF and FGF, arising from stimulated monocyte-macrophages, may play a role in the stimulation of mesenchymal cell proliferation that often accompanies chronic inflammatory arthritic disease. The synovial cells respond to a variety of cytokines in different ways suggesting multiple-signaling pathways. 相似文献
14.
Skeletal muscle satellite cells were cultured from mature rats and were treated in vitro with various combinations of transforming growth factor (TGF)-beta, fibroblast growth factor (FGF), and insulin-like growth factor I (IGF-I). In serum-free defined medium the following observations were made: TGF-beta depressed proliferation and inhibited differentiation; FGF stimulated proliferation and depressed differentiation; IGF-I stimulated proliferation to a small degree but demonstrated a more pronounced stimulation of differentiation. In evaluating combinations of these three factors, the differentiation inhibiting effect of TGF-beta could not be counteracted by any combination of IGF-I or FGF. The proliferation-depressing activity of TGF-beta, however, could not inhibit the mitogenic activity of FGF. Maximum stimulation of proliferation was observed in the presence of both FGF and IGF-I. The highest percentage fusion was also observed under these conditions, but differentiation with minimal proliferation resulted from treatment with IGF-I, alone. By altering the concentrations of TGF-beta, FGF, and IGF-I, satellite cells can be induced to proliferate, differentiate, or to remain quiescent. 相似文献
15.
Differential effects of transforming growth factor-beta and epidermal growth factor on the cell cycle of cultured rabbit articular chondrocytes 总被引:2,自引:0,他引:2
We examined the effect of transforming growth factor (TGF-beta) on the proliferative rate and cell cycle of cultured rabbit articular chondrocytes using cell counting, cytofluorometry, and [3H]-thymidine incorporation. In the presence of 2% or 10% FCS (fetal calf serum), TGF-beta at 0.01, 0.1, 1, and 10 ng/ml had an inhibitory effect on cell proliferation after 24 h exposure with a dose dependence only for 2% FCS. Flow cytometric analysis of cell DNA content at that time showed that a high proportion of cells were arrested in late S-phase (SQ or G2Q) in either 2% or 10% FCS-containing medium. In both cases, a disappearance of the cell blockage occurred between 24 and 48 h after TGF-beta addition. However, whereas a stimulation of cell proliferation rate was observed at that time in cultures containing 10% FCS, a dose-dependence inhibition of cell growth was detected, in contrast, for 2% FCS-treated cells. Presence of TGF-beta during the last 24 h was not necessary to release the arrested cells. Furthermore, platelet-poor plasma at 10% produced the same effects as FCS, suggesting that platelet-derived factors, such as platelet-derived growth factor (PDGF), could not be responsible for the release of blocked cells in this case. We compared the effect of TGF-beta to that of epidermal growth factor (EGF), used at an optimal concentration (10 ng/ml). In both slowly growing (2% FCS) and proliferating chondrocytes (10% FCS), EGF caused a significant increase of cell proliferation as early as 24 h. No arrest in late S-phase but an augmentation of the percentage of cells in S- and G2M-phases were observed. When combined, TGF-beta and EGF did not induce synergistic effect on the chondrocyte proliferation, as estimated by cell counting. [3H]-thymidine labeling showed that the factors induced identical maxima of incorporation but the peak occurred earlier for TGF-beta than for EGF (approximately 6 h versus 12 h, respectively). Although both factors induce similar cell-number increases at 48 h in 10% FCS-containing medium, these proliferative effects were due to different actions on the cell cycle. The present study indicates that TGF-beta induces first a recruitment of chondrocytes in noncycling SQ- or G2Q-blocked cells. The, the release of these cells may produce either apparent stimulation of cell proliferation if sufficient levels of an unknown serum factor are present (10% FCS) or an inhibition of growth rate when only reduced amounts of this factor are available (2% FCS).(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
16.
Although fibroblast growth factor 2 (FGF2) and fibroblast growth factor receptor 3 (FGFR3) both inhibit longitudinal bone growth, little is known about the relationship between FGF2 and FGFR3. Accordingly, the current study examined the expression of FGFR3 mRNA after the administration of FGF2 using cultured chondrocytes from day 17 chick embryos to evaluate the relationship between FGF2 and FGFR3. The chondrocytes were isolated from the caudal one-third portion (LS) of sterna, peripheral regions (USP) and central core regions (USC) of the cephalic portion of the sterna, and lower portion of the proximal tibial growth plate (Ti) of day 17 chick embryo. The expression of FGFR1, FGFR3, and type II and X collagen mRNA in the chondrocytes from the LS, USP, USC, and Ti was determined. FGFR1 was not expressed in the LS and USP chondrocytes, yet strongly expressed in the USC and Ti chondrocytes. With a treatment of FGF2, the expression of FGFR1 slightly increased in the USC chondrocytes and was not related with the concentration of FGF2 in the Ti chondrocytes. FGFR3 was expressed in all the chondrocyte types, yet strongly increased in the LS, USC, USP, and Ti in that order according to the concentration of FGF2. For the LS and USP chondrocytes, the expression of FGFR3 with FGF2 increased in a 4-day culture, yet decreased in a 6-day culture, whereas for the USC chondrocytes, the expression of FGFR3 mRNA with FGF2 increased in a 2-day culture, yet decreased in a 4-day culture, suggesting that the hypertrophic chondrocytes were more numerous and sensitive compared to the proliferative chondrocytes. For all the chondrocyte types, FGF2 appeared to be up-regulated to FGFR3, as the expression of FGFR3 mRNA increased with a higher concentration of FGF2 until a peak level. In conclusion, FGF2 was found to up-regulate to FGFR3 until the peak level of FGFR3 mRNA expression, while in hypertrophic chondrocytes, FGFR3 appeared to cause the differentiaton of chondrocytes, resulting in the inhibition of longitudinal bone growth after the peak level of FGFR3 mRNA expression. 相似文献
17.
Cell density-dependent regulation of proteoglycan synthesis by transforming growth factor-beta(1) in cultured bovine aortic endothelial cells 总被引:1,自引:0,他引:1
Kaji T Yamada A Miyajima S Yamamoto C Fujiwara Y Wight TN Kinsella MG 《The Journal of biological chemistry》2000,275(2):1463-1470
The regulation of vascular endothelial cell behavior during angiogenesis and in disease by transforming growth factor-beta(1) (TGF-beta(1)) is complex, but it clearly involves growth factor-induced changes in extracellular matrix synthesis. Proteoglycans (PGs) synthesized by endothelial cells contribute to the formation of the vascular extracellular matrix and also influence cellular proliferation and migration. Since the effects of TGF-beta(1) on vascular smooth muscle cell growth are dependent on cell density, it is possible that TGF-beta(1) also directs different patterns of PG synthesis in endothelial cells at different cell densities. In the present study, dense and sparse cultures of bovine aortic endothelial cells were metabolically labeled with [(3)H]glucosamine, [(35)S]sulfate, or (35)S-labeled amino acids in the presence of TGF-beta(1). The labeled PGs were characterized by DEAE-Sephacel ion exchange chromatography and Sepharose CL-4B molecular sieve chromatography. The glycosaminoglycan M(r) and composition were analyzed by Sepharose CL-6B chromatography, and the core protein M(r) was analyzed by SDS-polyacrylamide gel electrophoresis, before and after digestion with papain, heparitinase, or chondroitin ABC lyase. These experiments indicate that the effect of TGF-beta(1) on vascular endothelial cell PG synthesis is dependent on cell density. Specifically, TGF-beta(1) induced an accumulation of small chondroitin/dermatan sulfate PGs (CS/DSPGs) with core proteins of approximately 50 kDa in the medium of both dense and sparse cultures, but a cell layer-associated heparan sulfate PG with a core protein size of approximately 400 kDa accumulated only in dense cultures. Moreover, only in the dense cell cultures did TGF-beta(1) cause CS/DSPG hydrodynamic size to increase, which was due to the synthesis of CS/DSPGs with longer glycosaminoglycan chains. The heparan sulfate PG and CS/DSPG core proteins were identified as perlecan and biglycan, respectively, by Western blot analysis. The present data suggest that TGF-beta(1) promotes the synthesis of both perlecan and biglycan when endothelial cell density is high, whereas only biglycan synthesis is stimulated when the cell density is low. Furthermore, glycosaminoglycan chains are elongated only in biglycan synthesized by the cells at a high cell density. 相似文献
18.
Regulation of colony formation of differentiated chondrocytes in soft agar by transforming growth factor-beta 总被引:4,自引:0,他引:4
M Iwamoto K Sato K Nakashima H Fuchihata F Suzuki Y Kato 《Biochemical and biophysical research communications》1989,159(3):1006-1011
Fibroblast growth factor (FGF) induces colony formation by chondrocytes in soft agar (Y. Kato et al., J. Cell. Physiol., 1987), and the present study revealed that transforming growth factor-beta(TGF-beta) does not induce the same effect. TGF-beta did, however, increase the efficiency of colony formation by chondrocytes 3- to 4-fold in the presence of a maximal dose of FGF. Furthermore, TGF-beta decreased the concentrations of FGF needed for the induction of cell growth in soft agar by 40- to 100-fold. These results suggest that TGF-beta is involved in the control of cartilage growth possibly by increasing the responsiveness of chondrocytes to FGF. 相似文献
19.
Collagen synthesis by human fibroblasts. Regulation by transforming growth factor-beta in the presence of other inflammatory mediators. 总被引:3,自引:0,他引:3
C1r2C1s2 is a subcomponent of first component C1 of the complement cascade. Previously two distinct models for its structure have been described, in which C1r2C1s2 is either a linear rod-like assembly of the globular domains found in each of C1s and C1r, or these domains are arranged to form an asymmetric X-shaped structure. These two models were evaluated by using hydrodynamic simulations and neutron scattering. The data on C1s, C1s2 and C1r are readily represented by straight hydrodynamic cylinders, but not C1r2 or C1r2C1s2. Tests of the X-structure for C1r2 and C1r2C1s2 successfully predicted the experimental sedimentation coefficients, thus supporting this model. Neutron scattering analyses on C1s and C1r2 are consistent with a linear structure for C1s, but not for C1r2. An X-shaped structure for C1r2 was found to give a good account of the neutron data at large scattering angles. The total length of the C1s and C1r monomers was determined as 17-20 nm, which is compatible with electron microscopy. On the basis of the known sequences of C1r and C1s, this length is accounted for by a linear arrangement of a serine-proteinase domain (length 4 nm), two short consensus repeat domains (2 x 4 nm), and a globular entity containing the I, II and III domains (4-7 nm). 相似文献
20.
V Nataf L Tsagris M F Dumontier J Bonaventure M Corvol 《Reproduction, nutrition, development》1990,30(3):331-342
Prepubertal rabbit epiphyseal chondrocytes were grown in high density primary culture for 3 d. They were then incubated for 3 additional d in serum-free culture medium to which bFGF (1-50 ng/ml) was added. During the last 24 h incubation period, either IGF1 (1-80 ng/ml) or Insulin (1-5 micrograms/ml) was added to the culture medium. Chondrocyte DNA was significantly augmented with the increasing concentration of bFGF used, thus confirming its mitogenic effect on chondrocytes. On the other hand, bFGF was also shown to modulate the phenotypic expression of the chondrocytes. The 35S-sulfate incorporation into newly synthesized proteoglycans by the cultured cells decreased in a dose-dependent manner with bFGF concentration used. In addition, chondrocyte collagen gene expression was also shown to be modulated by bFGF. Total RNA extracted from the cultured cells was analyzed by dot blot and Northern blot with cDNA probes encoding for alpha 1 II and alpha 1 I procollagen chains. A significant lower level of type II collagen mRNA, the marker of chondrocytic phenotype, was observed when cells were grown in the presence of bFGF while the level of type I mRNA remained unchanged. When IGF1 or a high concentration of insulin was added to the cells during the last 24 h of incubation with bFGF, sulfated proteoglycan synthesis, as well as collagen type II mRNA level, were significantly stimulated when compared with chondrocytes incubated with bFGF alone. In conclusion, in the present experimental conditions, bFGF appears to be a growth promoting agent for chondrocytes in vitro with dedifferentiating action on chondrocyte phenotype. IGF1 or insulin used at a high concentration can prevent the dedifferentiating effect of bFGF without inhibiting its stimulating effect on chondrocyte DNA synthesis. 相似文献