首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《MABS-AUSTIN》2013,5(2):142-150
Aggregation compromises the safety and efficacy of therapeutic proteins. According to the manufacturer, the therapeutic immunoglobulin trastuzumab (Herceptin®) should be diluted in 0.9% sodium chloride before administration. Dilution in 5% dextrose solutions is prohibited. The reason for the interdiction is not mentioned in the Food and Drug Administration (FDA) documentation, but the European Medicines Agency (EMEA) Summary of Product Characteristics states that dilution of trastuzumab in dextrose solutions results in protein aggregation. In this paper, asymmetrical flow field-flow fractionation (FFF), fluorescence spectroscopy, fluorescence microscopy and transmission electron microscopy (TEM) have been used to characterize trastuzumab samples diluted in 0.9% sodium chloride, a stable infusion solution, as well as in 5% dextrose (a solution prone to aggregation). When trastuzumab samples were injected in the FFF channel using a standard separation method, no difference could be seen between trastuzumab diluted in sodium chloride and trastuzumab diluted in dextrose. However, during FFF measurements made with appropriate protocols, aggregates were detected in 5% dextrose. The parameters enabling the detection of reversible trastuzumab aggregates are described. Aggregates could also be documented by fluorescence microscopy and TEM. Fluorescence spectroscopy data were indicative of conformational changes consistent with increased aggregation and adsorption to surfaces. The analytical methods presented in this study were able to detect and characterize trastuzumab aggregates.  相似文献   

2.
Aggregation compromises the safety and efficacy of therapeutic proteins. According to the manufacturer, the therapeutic immunoglobulin trastuzumab (Herceptin®) should be diluted in 0.9% sodium chloride before administration. Dilution in 5% dextrose solutions is prohibited. The reason for the interdiction is not mentioned in the Food and Drug Administration (FDA) documentation, but the European Medicines Agency (EMEA) Summary of Product Characteristics states that dilution of trastuzumab in dextrose solutions results in protein aggregation. In this paper, asymmetrical flow field-flow fractionation (FFF), fluorescence spectroscopy, fluorescence microscopy and transmission electron microscopy (TEM) have been used to characterize trastuzumab samples diluted in 0.9% sodium chloride, a stable infusion solution, as well as in 5% dextrose (a solution prone to aggregation). When trastuzumab samples were injected in the FFF channel using a standard separation method, no difference could be seen between trastuzumab diluted in sodium chloride and trastuzumab diluted in dextrose. However, during FFF measurements made with appropriate protocols, aggregates were detected in 5% dextrose. The parameters enabling the detection of reversible trastuzumab aggregates are described. Aggregates could also be documented by fluorescence microscopy and TEM. Fluorescence spectroscopy data were indicative of conformational changes consistent with increased aggregation and adsorption to surfaces. The analytical methods presented in this study were able to detect and characterize trastuzumab aggregates.Key words: immunoglobulin, aggregation, stability, protein, trastuzumab, herceptin®, methodology  相似文献   

3.
A synthetic ligand (TG19318), deduced from the screening of a combinatorial peptide library, has been previously characterized by our group for its applicability in affinity chromatography for polyclonal and monoclonal IgG purification from crude sources. In this study we have extended the characterization of its recognition properties for other immunoglobulin classes, evaluating its ability to purify mouse monoclonal IgE from ascitic fluid. TG19318 affinity columns proved useful for a very convenient one-step purification of IgE directly from crude ascites, by loading the samples on the columns equilibrated with 50 mM sodium phosphate at pH 7 and eluting and adsorbed IgE by a buffer change to 0.1 M acetic acid. Antibody purity after affinity purification was very high and no albumin traces were detected, as determined by SDS-PAGE analysis. Antibody activity was fully recovered after purification, as determined by immunoassays on antigen-coated plates, and up to 5 mg of IgEs could be purified on a 1 ml column in a single run.  相似文献   

4.
The relatively novel combination of flow field-flow fractionation (FFF) and multiangle light scattering (MALS) was employed to study a nondegraded κ-carrageenan in different 0.1M salt solutions. The applicability of the technique was tested, and the effects of salt type and salt composition on the molar mass and radius of gyration were studied. A conformational ordering was induced at room temperature by switching the solvent from 0.1M NaCl (coil form) to 0.1M NaI (helix form). An approximate doubling of the average molar mass and an increase in radius of gyration was then observed, in agreement with results obtained previously using size exclusion chromatography–MALS. This increase in size was attributed to conformational ordering and to the formation of double helices. Severe aggregation was observed above 40% CsI in the 0.1M mixed salt solution of CsI and NaI. This was ascribed to the association of helices into large aggregates. For these large associates, having molar masses of several millions, a reversal of the elution order in flow FFF was detected. © 1998 John Wiley & Sons, Inc. Biopoly 45: 85–96 1998  相似文献   

5.
Thermal aggregation of bovine serum albumin (BSA) has been studied using dynamic light scattering, asymmetric flow field-flow fractionation and analytical ultracentrifugation. The studies were carried out at fixed temperatures (60°C, 65°C, 70°C and 80°C) in 0.1 M phosphate buffer, pH 7.0, at BSA concentration of 1 mg/ml. Thermal denaturation of the protein was studied by differential scanning calorimetry. Analysis of the experimental data shows that at 65°C the stage of protein unfolding and individual stages of protein aggregation are markedly separated in time. This circumstance allowed us to propose the following mechanism of thermal aggregation of BSA. Protein unfolding results in the formation of two forms of the non-native protein with different propensity to aggregation. One of the forms (highly reactive unfolded form, Uhr) is characterized by a high rate of aggregation. Aggregation of Uhr leads to the formation of primary aggregates with the hydrodynamic radius (Rh,1) of 10.3 nm. The second form (low reactive unfolded form, Ulr) participates in the aggregation process by its attachment to the primary aggregates produced by the Uhr form and possesses ability for self-aggregation with formation of stable small-sized aggregates (Ast). At complete exhaustion of Ulr, secondary aggregates with the hydrodynamic radius (Rh,2) of 12.8 nm are formed. At 60°C the rates of unfolding and aggregation are commensurate, at 70°C the rates of formation of the primary and secondary aggregates are commensurate, at 80°C the registration of the initial stages of aggregation is complicated by formation of large-sized aggregates.  相似文献   

6.
In this work, the feasibility of separating and characterizing cell populations by steric field-flow fractionation (steric FFF) is demonstrated by application to fixed human and avian red cells, fresh blood from several species, and viable HeLa cells. The basis for this work is established by means of a discussion of the role of steric FFF in the broad family of field-flow fractionation techniques. The behavior of steric FFF is then characterized by application to standard polystyrene latex beads and to fixed red blood cells. Studies of these standards and of the other cells noted under various conditions of field strength and flow velocity are used to improve the separation conditions and approach optimization. It is shown that the fixed human and avian red cells can be separated in a time of less than 15 min. In addition, it is shown that HeLa cells maintain their viability after passage through the separation channel.  相似文献   

7.
In this work, the feasibility of separating and characterizing cell populations by steric field-flow fractionation (steric FFF) is demonstrated by application to fixed human and avian red cells, fresh blood from several species, and viable HeLa cells. The basis for this work is established by means of a discussion of the role of steric FFF in the broad family of field-flow fractionation techniques. The behavior of steric FFF is then characterized by application to standard polystyrene latex beads and to fixed red blood cells. Studies of these standards and of the other cells noted under various conditions of field strength and flow velocity are used to improve the separation conditions and approach optimization. It is shown that the fixed human and avian red cells can be separated in a time of less than 15 min. In addition, it is shown that HeLa cells maintain their viability after passage through the separation channel.  相似文献   

8.
The nature of ribonuclease A (RNase) modifications induced by p-benzoquinone (pBQ) was investigated using several analysis methods. SDS-PAGE experiments revealed that pBQ was efficient in producing oligomers and polymeric aggregates when RNase was incubated with pBQ. The fluorescence behavior and anisotropy changes of the modified RNase were monitored for a series of incubation reactions where RNase (0.050 mM) was incubated with pBQ (0.050, 0.25, 0.50, 1.50 mM) at 37 °C in phosphate buffer (pH 7.0, 50 mM). The modified RNase exhibited less intense fluorescence and slightly higher anisotropy than the unmodified RNase. UV-Vis spectroscopy indicated that pBQ formed covalent bonds to the modified RNase. Confocal imaging analysis confirmed the formation of the polymeric RNase aggregates with different sizes upon exposure of RNase to high concentrations of pBQ. The interaction between the modified RNase and salts affecting biomineralization of salts was also investigated by scanning electron microscopy. Overall, our results show that pBQ can induce formation of both RNase adducts and aggregates thus providing a better understanding of its biological activity.  相似文献   

9.
Myeloma nephropathy is a disorder characterized by deposition of monoclonal immunoglobulin light chains in the kidneys. The chains deposited form either amyloid fibrils or granular (amorphous) aggregates. Distinct molecular mechanisms leading to the formation of different aggregate types in kidney of patients with multiple myeloma are poorly understood. Here we describe the self-association kinetics of human monoclonal immunoglobulin light chains lambda (GRY) isolated from urine of a patient with multiple myeloma. Under physiological conditions, the isolated light chain exists predominantly in a form of covalent dimer with apparent molecular mass of 50.1 kD. Spectral probe binding, analytical gel filtration, Western blot analysis, and electron microscopy indicate that GRY dimer aggregation occurs via two different pathways producing either amyloid fibrils or amorphous aggregates depending on microenvironment. Incubation of GRY (25 microM) for 4-14 days at 37 degrees C in phosphate buffered saline (PBS), pH 7.0, or in PBS containing urea (0.8 M), pH 6.5, leads to amyloid fibril formation. Under electron microscopy, the fibrils show unbranched thread-like structures, approximately 60-80 x 1000 A in size, which can bind thioflavin T and Congo Red. GRY maintained in acetate buffer, pH 3.5, forms granular aggregates. The structure of GRY oligomers formed during the early stage of amyloid fibril formation (1-4 days) has been examined by means of protein cross-linking with homobifunctional reagents. These oligomers are predominantly trimers and tetramers.  相似文献   

10.
The formation of amyloid-β peptide (Aβ) aggregates at an early stage during the self-assembly process is an important factor in the development of Alzheimer's disease. The toxic effect is believed to be exerted by prefibrillar species of Aβ. It is therefore important to identify which prefibrillar species are toxic and characterize their distinct properties. In the present study, we investigated the in vitro aggregation behavior of Aβ-derived peptides possessing different levels of neurotoxic activity, using fluorescence spectroscopy in combination with transmission electron microscopy. The toxicity of various Aβ aggregates was assessed by using cultures of human neuroblastoma cells. Through combined use of the fluorescence probe 8-anilino-1-napthalenesulfonate (ANS) and the novel luminescent probe pentamer formyl thiophene acetic acid (p-FTAA), we were able to identify those Aβ peptide-derived prefibrillar species which exhibited cellular toxicity. In particular, species, which formed early during the aggregation process and showed strong p-FTAA and ANS fluorescence, were the species that possessed toxic activities. Moreover, by manipulating the aggregation conditions, it was possible to change the capacity of the Aβ peptide to form nontoxic versus toxic species.  相似文献   

11.
This report presents a synchrotron radiation X-ray scattering characterization of calf brain tubulin purified by the modified Weisenberg procedure. The results show that under nonassembly conditions (i.e., in 10 mM sodium phosphate and 0.1 mM GTP, pH 7, buffer) these preparations consist of a uniform population of molecules with a radius of gyration of 3.1 +/- 0.1 nm, which can be interpreted as arising from the native alpha-beta heterodimer. The uniformity in the population persists even at unusually high concentrations of protein. Binding of colchicine or substitution of GTP by GDP does not induce, within the statistical accuracy and resolution range of our measurements, any significant structural modification in soluble tubulin. In assembly buffer [i.e., 10 mM sodium phosphate, 6 mM magnesium chloride, 1 mM [ethylenebis(oxyethylenenitrilo)]tetraacetic acid, 1 mM GTP, and 3.4 M glycerol, pH 6.5], these preparations readily assemble into microtubules upon increasing the temperature from 4 to 37 degrees C. Binding of nondenaturing amphiphiles to soluble tubulin provides a simplified model for tubulin-membrane interactions. The X-ray scattering data show that the radius of gyration of tubulin progressively increases upon binding of the mild detergent sodium deoxycholate, reaching a maximum value of 4.3 +/- 0.1 nm at detergent saturation. The relative increase in the radius of gyration coincides within experimental error with the previously determined relative increase in the frictional coefficient [Andreu, J.M., & Mu?oz, J.A. (1986) Biochemistry 25, 5220-5230]. Analysis of these observations suggests that the effect of detergent binding is to induce an isotropic swelling of the protein structure.  相似文献   

12.
A sensitive method for detection of alkaline phosphatase in immunohistochemistry, using lymphoid cells, has been optimized. The conditions for staining are 0.23 mM 5-bromo-4-chloro-indoxyl phosphate, 0.55 mM tetranitro blue tetrazolium, 2.0 mM levamisole, 5.0 mM sodium azide, 10.0 mM magnesium chloride, and 0.15 mM 1-methoxyphenazine methosulfate dissolved in 100 mM Tris-HCl buffer, pH 9.5.  相似文献   

13.
Glial fibrillary acidic protein (GFAP), which was purified from acetone powder of the bovine spinal cord, was reassembled in 0.1 M imidazole HCl buffer containing metallic cations, Ca2+, Mg2+, Na+ or K+ at physiological or more acidic pH. An electron microscopy revealed reassembled glial filaments at pH 6.8 without any cations but amorphous aggregates at pH 6.3 which were readily observed as a white precipitate by the naked eye. Under more alkaline pH (pH 7.4) only rod-shaped short filaments were formed. In the presence of mM concentrations of Ca2+ or Mg2+, thick bundles of glial filaments, detectable by light microscopy, were formed at acidic pH. At pH 7.4 long reassembled filaments could be formed in the buffer containing divalent cations. Na+ (0.1 M) made filament-like structures of GFAP but they are rather random compared to the filaments promoted by the divalent cations. K+ made only amorphous aggregation of the short filaments. These findings indicate that the reassembly of GFAP at physiological pH requires essentially divalent cations but not ionic strength.  相似文献   

14.
The relationships between the aggregation state and the enzymatic activities of chicken liver fatty acid synthase have been explored by monitoring the changes in light scattering, fluorescence, and the overall, beta-ketoacyl synthase, beta-ketoacyl reductase and enoyl reductase activities during dissociation and reassociation of the enzyme. The data obtained indicate that the enzyme dissociates at low temperature in both 0.1 M potassium phosphate (pH 7.0), 1 mM EDTA, and 5 mM Tris(hydroxymethyl)aminomethane, 35 mM glycine (pH 8.3) and 1 mM EDTA, but the extent of dissociation is less in the phosphate buffer. The assay conditions influence the assessment of the degree of dissociation and association: high temperatures, phosphate (high salt), NADPH and acetoacetyl-coenzyme A promote association of the monomeric enzyme, whereas dilution in the Tris-glycine buffer (low salt) and low temperature promote dissociation. Both the rate and extent of association and dissociation are altered by substrates. The monomeric enzyme does not possess beta-ketoacyl synthase and beta-ketoacyl reductase activities. Results obtained with the 1,3-dibromo-2-propanone cross-linked enzyme, which lacks beta-ketoacyl synthase activity, indicate that the NADPH-binding site of beta-ketoacyl reductase is disrupted at low ionic strength. In contrast, changes in ionic strength have little effect on the enoyl reductase activity. The dimer is stabilized by both electrostatic and hydrophobic interactions, with the former being of special importance for maintenance of the beta-ketoacyl reductase active site. site.  相似文献   

15.
Asymmetrical flow field-flow fractionation (AsFlFFF), a technique that provides direct measurement of particle size and diffusion coefficient, is converted into miniaturized scale. In comparison with conventional AsFlFFF, the separation of proteins in miniaturized AsFlFFF is achieved within shorter time periods, with smaller sample amounts, and with lower mobile phase consumption. Minimization of the overloading and optimization of the separation efficiency are prerequisites to good results. Miniaturized AsFlFFF is applied to the measurement of particle sizes of high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL). The average hydrodynamic diameters at pH 7.4 in 8.5mM phosphate buffer containing 1mM EDTA and 150 mM NaCl are 8.6+/-0.5, 11.2+/-0.2, 22.1+/-0.7, and 48.9+/-7.5 nm for subgroups HDL3, HDL2, LDL, and VLDL, respectively. In addition, the effect of different factors on the aggregation and fusion of LDL particles is studied. LDL particle sizes are unaffected by the addition of up to 300 mM NaCl and by an increase of the carrier solution pH from 3.2 to 7.4, but treatment of LDL with alpha-chymotrypsin, sphingomyelinase, or copper sulfate leads to the formation of aggregated and fused LDL particles.  相似文献   

16.
The understanding of the molecular mechanisms underlying protein self-assembly and of their dependence on solvent composition has implications in a large number of biological and biotechnological systems. In this work, we characterize the aggregation process of human insulin at acidic pH in the presence of sulfate ions using a combination of Thioflavin T fluorescence, dynamic light scattering, size exclusion chromatography, Fourier transform infrared spectroscopy, and transmission electron microscopy. It is found that the increase of sulfate concentration inhibits the conversion of insulin molecules into aggregates by modifying the aggregation pathway. At low sulfate concentrations (0–5 mM) insulin forms amyloid fibrils following the nucleated polymerization mechanism commonly observed under acidic conditions in the presence of monovalent anions. When the sulfate concentration is increased above 5 mM, the sulfate anion induces the salting-out of ∼18–20% of insulin molecules into reversible amorphous aggregates, which retain a large content of α-helix structures. During time these aggregates undergo structure rearrangements into β-sheet structures, which are able to recruit monomers and bind to the Thioflavin T dye. The alternative aggregation mechanism observed at large sulfate concentrations is characterized by a larger activation energy and leads to more polymorphic structures with respect to the self-assembly in the presence of chloride ions. The system shown in this work represents a case where amorphous aggregates on pathway to the formation of structures with amyloid features could be detected and analyzed.  相似文献   

17.
A method for visualizing acid phosphatase isoenzymes by activity staining on nitrocellulose filters after electroblotting of proteins fractionated on nondenaturing polyacrylamide gels is described. Reproducible results were obtained when 25 mM Tris-192 mM glycine was used as the transfer buffer instead of 0.7% acetic acid, 50 mM sodium acetate, pH 4, or 0.14 M acetic acid--0.35 M beta-alanine, pH 4.3. Dot-blot analysis of banana fruit extracts on nitrocellulose filters revealed that a minimum of 5 x 10(-3) units (nmol p-nitrophenyl phosphate hydrolyzed g-1.h-1) of acid phosphatase activity can be detected. This method can be suitable for screening a large number of biological samples for monitoring acid phosphatase activity.  相似文献   

18.
The separation method, flow field-flow fractionation (flow FFF), is coupled on-line with multiangle laser light scattering (MALLS) for simultaneous measurement of the size and concentration of vesicles eluting continuously from the fractionator. These size and concentration data, gathered as a function of elution time, may be used to construct both number- and mass-weighted vesicle size distributions. Unlike most competing, noninvasive methods, this flow FFF/MALLS technique enables measurement of vesicle size distributions without a separate refractive index detector, calibration using particle size standards, or prior assumptions about the shape of the size distribution. Experimentally measured size distributions of vesicles formed by extrusion and detergent removal are non-Gaussian and are fit well by the Weibull distribution. Flow FFF/MALLS reveals that both the extrusion and detergent dialysis vesicle formation methods can yield nearly size monodisperse populations with standard deviations of approximately 8% about the mean diameter. In contrast to the rather low resolution of dynamic light scattering in analyzing bimodal systems, flow FFF/MALLS is shown to resolve vesicle subpopulations that differ by much less than a factor of two in mean size.  相似文献   

19.
Dihydroxyacetone kinase (DHAK) from the cell-free extract of methanol-grown Candida methylica was partially purified about 100-fold by a procedure employing streptomycin sulfate fractionation, ammonium sulfate fractionation, negative absorption on Cibacron blue F3G-A sephadex G 200 and DEAE-cellulose column chromatography. The enzyme was stable in 50 mM Tris-HCl buffer pH 7.5 containing 60% glycerol at -18 degrees C. The pH optimum for the activity of DHAK from C. methylica was 7.5. The purified enzyme phosphorylated dihydroxyacetone four times faster than D,L-glyceraldehyde. The apparent MICHAELIS-MENTEN constants for dihydroxyacetone and D,L-glyceraldehyde were 0.011 mM and 0.024 mM. Other C3 compounds including glycerol were not phosphorylated. ITP and UTP were used as phosphate donors with a reaction rate of 11% and 3.1%, respectively, in relation to ATP, whereas the reaction rates of DHAK from C. methylica with CTP or GTP were much lower than 1%. The reaction of DHAK depends upon the presence of divalent cations in the assay. The highest activity was found with Mg2+ ions. The reaction rates with Co2+ or Ca2+ ions were only 57.3% and 30.3%, respectively, in relation to the assay with magnesium ions. Manganese chloride in the assay led to a complete loss of activity.  相似文献   

20.
A comparative study of amyloid properties of the aggregates of smooth muscle titin (SMT) from chicken gizzard was carried out. These aggregates were formed in two solutions: 0.15 M glycine-KOH, pH 7.2–7.4 (SMT(Gly)) and 0.2 M KCl, 10 mM imidazole, pH 7.0 (SMT(KCl)). Electron microscopy data showed that SMT aggregates has an amorphous structure in both cases. The results of atomic-force microscopy demonstrated slight differences in morphology in two types of aggregates. The SMT(Gly) aggregates were represented as branching chains, composed of spherical aggregates approximately 300–500 nm in diameter and up to 35 nm in height. The SMT(KCl) aggregates formed sponge-like structures with strands of 8–10 nm in height. Structural analysis of SMT aggregates by X-ray diffraction revealed the presence of cross-β-sheet structure in the samples under study. In the presence of SMT(Gly) aggregates, thioflavine T fluorescence intensity was higher (~3-fold times) compared with that in the presence of SMT(KCl) aggregates. Congo red-stained SMT(Gly) aggregates had yellow to apple-green birefringence under polarized light, which was not observed for SMT(KCl) aggregates. Dynamic light scattering data showed the similar rate of aggregation for both types of aggregates, though SMT(KCl) aggregates were able to partially disaggregate under increased ionic strength of the solution. The ability of SMT to aggregation followed by disaggregation may be functionally significant in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号