首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organisation of the praesoma in the parasite Acanthocephalus anguillae was studied on the light and electron microscopic level, with emphasis on the morphology of the musculature. The study was compiled to add new data to the ground pattern of the Acanthocephala for analysis of the phylogenetic relationships within the Gnathifera. In A. anguillae the praesomal epidermis and lemnisci form a coherent syncytium, separated from the epidermis of the trunk. Hooks are seen to be derivatives of the subepidermal basal lamina and are covered by the praesomal epidermis. The praesomal circular body wall musculature forms a network of anastomosing muscle fibres that lines the proboscis; a praesomal longitudinal body wall musculature does not exist. The truncal circular and longitudinal body wall musculature rise up to the praesomal proboscis. The unpaired proboscis retractor, consisting of longitudinal circomyar fibres, forms an outer and an inner concentric tube; the latter extends through the entire praesoma and penetrates the receptacle wall. The sack-like receptacle is surrounded by a receptacle constrictor. The nervous system of the praesoma consists of a prominent cerebral ganglion, three nerves which extend anteriorly, ramify and end within the praesomal musculature, and two strong lateral posterior nerves. A. anguillae lacks an apical organ, lateral organs and a support cell. Many of the features present in the praesoma of A. anguillae can be assumed as ground-pattern characteristics of the Acanthocephala. Accepted: 22 January 2001  相似文献   

2.
As an adaptation to their endoparasitic lifestyle, Acanthocephala (Palaeacanthocephala, Eoacanthocephala, Polyacanthocephala, Archiacanthocephala) have evolved a highly specialized reproductive system. Most of our present knowledge of the efferent duct system of the female is based on palaeacanthocephalan and archiacanthocephalan representatives. In order to provide a basis for further elucidating the phylogenetic relationships within the Acanthocephala, we herein describe ultrastructure and overall organization of the ligament sac and efferent duct system in females of Paratenuisentis ambiguus (Eoacanthocephala, Neoechinorhynchida). Only one ligament sac was found. The uterine bell consists of two contractile binucleate syncytia (bell wall syncytium, lateral pocket syncytium), two pairs of contractile cells (lappet cells, uterine bell retractors) and three pairs of noncontractile cells (median cells). The contractile uterus bears four nuclei. The vagina is composed of a syncytial epithelium (four nuclei) and two binucleate sphincters. A comparison of the present findings with literature data leads to the following conclusions: except for the uterine bell retractors, the uterine bell components found in P. ambiguus can be assumed to be autapomorphies for the Acanthocephala. The sheathing syncytium and median dorsal cell belong to the basal pattern (sensu ground pattern) of a palaeacanthocephalan subclade termed the Echinorhynchus‐group in the present study. The median oviduct syncytium and paired uterine bell retractors can be assumed to be basal pattern characteristics of the Archiacanthocephala and Neoechinorhynchida, respectively. The study includes a tabular survey of terminological synonyms used in the literature.  相似文献   

3.
The anterior and posterior head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha) were investigated by transmission electron microscopy (TEM). In addition, whole individuals were labeled with phalloidin to mark F-actin and with anti-alpha-tubulin antibodies to mark microtubuli and studied with confocal laser scanning microscopy. Immunocytochemistry reveals that the large number of ciliary processes in the anterior head sensory organ contain F-actin; no signal could be detected for alpha-tubulin. Labeling with anti-alpha-tubulin antibodies revealed that the anterior and posterior head sensory organs are innervated by a common stem of nerves from the lateral nerve cords just anterior of the dorsal brain commissure. TEM studies showed that the anterior head sensory organ is composed of one sheath cell and one sensory cell with a single branching cilium that possesses a basal inflated part and regularly arranged ciliary processes. Each ciliary process contains one central microtubule. The posterior head sensory organ consists of at least one pigmented sheath cell and several probably monociliary sensory cells. Each cilium branches into irregularly arranged ciliary processes. These characters are assumed to belong to the ground pattern of the Gastrotricha.  相似文献   

4.
The metazoan taxon Syndermata (Monogononta, Bdelloidea, Seisonidea, Acanthocephala) comprises species with vastly different lifestyles. The focus of this study is on the phylogeny within the syndermatan subtaxon Acanthocephala (thorny-headed worms, obligate endoparasites). In order to investigate the controversially discussed phylogenetic relationships of acanthocephalan subtaxa we have sequenced the mitochondrial (mt) genomes of Echinorhynchus truttae (Palaeacanthocephala), Paratenuisentis ambiguus (Eoacanthocephala), Macracanthorhynchus hirudinaceus (Archiacanthocephala), and Philodina citrina (Bdelloidea). In doing so, we present the largest molecular phylogenetic dataset so far for this question comprising all major subgroups of Acanthocephala. Alongside with publicly available mt genome data of four additional syndermatans as well as 18 other lophotrochozoan (spiralian) taxa and one outgroup representative, the derived protein-coding sequences were used for Maximum Likelihood as well as Bayesian phylogenetic analyses. We achieved entirely congruent results, whereupon monophyletic Archiacanthocephala represent the sister taxon of a clade comprising Eoacanthocephala and monophyletic Palaeacanthocephala (Echinorhynchida). This topology suggests the secondary loss of lateral sensory organs (sensory pores) within Palaeacanthocephala and is further in line with the emergence of apical sensory organs in the stem lineage of Archiacanthocephala.  相似文献   

5.
The larva of Loxosoma pectinaricola Franzén has been studied using scanning and transmission electron microscopy. The embryo develops surrounded by an egg envelope attached to the brood chamber. The newly released larva measures about 100 μm in length and is characterized by a prominent apical organ, stalked vesicles, paired lateral sense organs and a prototroch. The apical organ consists of at least four cell types: (1, 2) two types of ciliated cells, (3) vacuolated cells and (4) myoepithelial cells. The apical organ and frontal ganglion are tightly juxtaposed in the upper tier of the episphere. The stalked vesicles each consisting of two cells are unique evaginations of the epidermis. There are about twenty stalked vesicles with a maximum diameter of about 20.0 μm. The ciliated, knob-shaped, paired lateral sense organs are situated fronto-laterally on the episphere. The prototroch is comprised of a row of contiguous prototroch cells each containing about eighteen long cilia. The apical organ, frontal ganglion and paired lateral sense organs are suggested to be sensory structures that play an important role in active locomotion, settlement site selection and metamorphosis.  相似文献   

6.
7.
A. Kemp 《Tissue & cell》2017,49(1):45-55
Three systems, two sensory and one protective, are present in the skin of the living Australian lungfish, Neoceratodus forsteri, and in fossil lungfish, and the arrangement and innervation of the sense organs is peculiar to lungfish. Peripheral branches of nerves that innervate the sense organs are slender and unprotected, and form before any skeletal structures appear. When the olfactory capsule develops, it traps some of the anterior branches of cranial nerve V, which emerged from the chondrocranium from the lateral sphenotic foramen. Cranial nerve I innervates the olfactory organ enclosed within the olfactory capsule and cranial nerve II innervates the eye. Cranial nerve V innervates the sense organs of the snout and upper lip, and, in conjunction with nerve IX and X, the sense organs of the posterior and lateral head. Cranial nerve VII is primarily a motor nerve, and a single branch innervates sense organs in the mandible. There are no connections between nerves V and VII, although both emerge from the brain close to each other. The third associated system consists of lymphatic vessels covered by an extracellular matrix of collagen, mineralised as tubules in fossils. Innervation of the sensory organs is separate from the lymphatic system and from the tubule system of fossil lungfish.  相似文献   

8.
9.
The apex of the proboscis of Macracanthorhynchus hirudinaceus is crowned by a cone-shaped projection with a small opening in its center. The bottom of this opening is the anterior terminus of the apical sensory organ. When viewed in transverse section, the anterior terminus of this organ appears as a series of distinct layers that encircle a central cone enclosing a complex arrangement of nerves and a sensory support cell duct. Four membrane-defined layers encircle the cone area. The outermost glycocalyx is morphologically identical with that described on the metasoma. The second layer, or tegument, is similar in appearance to that observed on the trunk except for the greater abundance of keratinlike bundles throughout. These bundles are also organized into a loose network along the inner tegumental membrane. The third layer, a latticework of fine filaments containing few organelles, has an erratic boundary that occasionally extends into layer 4. The area adjacent to the inner and outer boundary contains numerous vesicles. Layer 4 has 2 distinct zones. The outer contains filaments arranged as in circular muscle; whereas, the medial lacks such filaments but consists of a finely grained matrix. Radiating throughout both zones are numerous osmiophilic bundles of fibers. The cone at this level contains 8 branches of the apical sensory nerves that interdigitate with the duct from the sensory support cell. Numerous filaments and vesicles are associated with this complex.  相似文献   

10.
Summary The topography, external structure and ultrastructure of a cephalic sense organ, described for the first time, were studied by light and electron microscopy in the parasitic copepod Pachypygus gibber. This species is unusual in that it has three reproductive sexual forms (two males, one female).The cephalic organ, present only in the atypical male, is made up of numerous functional units, each composed of 4 cells: two sensory cells, one basal enveloping cell and one apical canal-forming cell opening outside via a pore. Many hundred pores are situated within the cuticle of the ventral pleural borders. Through each pore protrude two ciliary endings.An interesting feature is that the ciliary ends are without cuticular cover and thus, directly exposed to the surroundings, a situation unique in arthropods.The structural characteristics of this sense organ and the particular mode of life of the atypical male (with an additional free planktonic phase), lead to the hypothesis that its function is linked to chemical reception in the complex behavioural patterns such as host and sex recognition, during the free life.  相似文献   

11.
Developmental and free-living stages of the chordoid larva of the cycliophoran species, Symbion pandora Funch and Kristensen 1995, were studied using light and electron microscopy. In the free-living stage of the larva, about 200 μm long, four ciliated areas are found: two anterior bands, a ventral ciliated field, and a posterior unit on the ventral side of the foot. The nervous system consists of a dorsal brain and a pair of ventral longitudinal nerves. A gut is absent. A pair of protonephridia, each with a single multiciliated terminal cell and at least one duct cell, is present. Nephridiopores are not localized. A pair of corsal ciliated organs is posterior to the brain. The homology between these and the apical organ of a trochophore larva is discussed. A distinctive longitudinal rod, the chordoid organ, consists of vacuolized cells with circular myofilaments. The organ is comparable to a similar structure in gastrotrichs. In the discussion of the phylogenetic position of Cycliophora among protostomians, important morphological observations that are described in the present study indicate that, despite some dissimilarities, the chordoid larva is a modified trochophore. © 1996 Wiley-Liss, Inc.  相似文献   

12.
The apical sensory organ in veliger larvae of a patellogastropod, a basal clade of gastropod molluscs, was studied using ultrastructural and immunohistochemical techniques. Immediately before veligers of Tectura scutum undergo ontogenetic torsion, the apical sensory organ consists of three large cells that generate a very long apical ciliary tuft, two cells that generate a bilateral pair of shorter ciliary tufts, and a neural ganglion (apical ganglion). Putative sensory neurons forming the ganglion give rise to dendrites that extend to the apical surface of the larva and to basal neurites that contribute to a neuropil. The ganglion includes only one ampullary neuron, a distinctive neuronal type found in the apical ganglion of other gastropod veligers. Serotonin immunoreactivity is expressed by a medial and two lateral neurons, all having an apical dendrite, and also by neurites within the neuropil and by peripheral neurites that run beneath the ciliated prototrochal cells that power larval swimming. The three cells generating the long apical ciliary tuft are lost soon after ontogenetic torsion, and the medial serotonergic cell stops expressing serotonin antigenicity in late-stage veligers. The lateral ciliary tuft cells of T. scutum may be homologs of lateral ciliary tuft cells in planktotrophic opisthobranch veligers. A tripartite arrangement of sensory dendrites, as described previously for veligers of other gastropod clades, can be recognized in T. scutum after loss of the apical ciliary tuft cells.  相似文献   

13.
Holger Herlyn 《Zoomorphology》2002,121(3):173-182
The endoparasitic Archiacanthocephala (Acanthocephala) consist of the Aporhynchida, Moniliformida, Gigantorhynchida and Oligacanthocephala. In the present study the organisation of the praesoma in Macracanthorhynchus hirudinaceus (Archiacanthocephala, Oligacanthorhynchida) was investigated by light microscopy based on series of semithin sections (5 µm) with special emphasis on the musculature. The study was carried out to substantiate the ground pattern of the Acanthocephala and to elucidate the phylogenetic relationships within the Archiacanthocephala. A comparison of the presented morphology in M. hirudinaceus with literature data leads to the assumption that the muscle plate and the midventral longitudinal muscle evolutionarily originated from the circular musculature of the praesoma and the receptacle, respectively. Whereas the midventral longitudinal muscle probably represents an autapomorphy of the taxon Oligacanthorhynchida, a muscle plate can be regarded as an autapomorphy of a monophylum consisting of the Moniliformida, Gigantorhynchida and Oligacanthorhynchida. Moreover, the outer wall in species with a double-walled receptacle probably corresponds to the receptacle protrusor or receptacle constrictor in species with a single-walled receptacle, and thus not only a receptacle but also an additional surrounding muscle can be assumed for the ground pattern of the Acanthocephala. For a better comparability the discussion includes a tabular survey of the synonyms used in the literature.  相似文献   

14.
Shichun  Sun 《Hydrobiologia》2001,456(1-3):199-209
Nemertean specimens were collected from the mangrove zone in the estuary of Jiulong Jiang River. Histological studies revealed that they belong to genus Pantinonemertes but differed from the known taxa of the genus. In the present paper they are described as a new species, Pantinonemertes fujianensis sp. nov. The immature specimens, with the body rounded anteriorly and somewhat dorso-ventrally flattened in intestinal region, measured about 85–120 mm long and 1.5–2.0 mm wide. Dark pigment is concentrated along the mid-dorsal line to form a longitudinal stripe that extends for most of the body length. The head possesses a pair of horizontal longitudinal furrows, a pair of oblique lateral furrows and four eyes. A precerebral septum is absent. The proboscis is well developed and possesses 19 large proboscis nerves. The frontal organ is a well-developed tubular structure, with the epithelium regionally differentiated. Cephalic glands are extensive, consisting of faintly stained small glands that open into the frontal organ, large blocks of clear gland and orange-staining glands (stained with Mallory triple method) that open through the ducts penetrating the body wall. The excretory system consists of numerous binucleate flame cells especially in the anterior body region, each flame cell possesses 7–9 transverse cuticular support rings. Excretory tubules either open to exterior via the efferent ducts penetrating the body wall or open into the frontal organ. Lateral nerve cords are without accessory lateral nerves.  相似文献   

15.
Summary The multicellular epithelial organs in Proteus anguinus, which Bugnion (1873) assumed to be developing neuromasts, have been analyzed by lightand electron-microscopy. Their fundamental structure consists of single ampullae with sensory and accessory cells with apical parts that extend into the pit of the ampulla, and of a short jelly-filled canal connecting the ampulla pit with the surface of the skin. The organs are located intra-epithelially and are supported by a tiny dermal papilla. The cell elements of sensory epithelium are apically linked together by tight junctions. The free apical surface of the sensory cell bears several hundred densely packed stereocilia-like microvilli whereas the basal surface displays afferent neurosensory junctions with a pronounced round synaptic body. The compact uniform organization of the apical microvillous part shows a hexagonal pattern. A basal body was found in some sensory cells whereas a kinocilium was observed only in a single cell. The accessory cells have their free surface differentiated in a sparsely distributed and frequently-forked microvilli. The canal wall is built of two or three layers of tightly coalescent flat cells bordering on the lumen with branching microvilli. The ultrastructure of the content of the ampulla pit is presented.In the discussion stress is laid on the peculiarities of the natural history of Proteus anguinus that support the view that the morphologically-identified ampullary organs are electroreceptive. The structural characteristics of ampullary receptor cells are dealt with from the viewpoint of functional morphology and in the light of evolutionary hypotheses of ampullary organs.  相似文献   

16.
Summary The structure and functional morphology of lateral organs and sperm ducts, as well as the mechanisms of spermatophore formation and transfer, are investigated by means of light and electron microscopy in the genusProtodrilus. The sperm ducts are simple, ciliated, intercellular gonoducts with a funnel section surrounded by a thin muscle layer and a tube section opening externally in the anterior region of the lateral organs. No glands are present in the sperm ducts. The lateral organs are formed by long epidermal invaginations enclosing an elongate lumen into which numerous cilia project and a large number of glands open. Five to ten different gland types with strikingly distinctive secretory granules are found in the different species. In addition, special supporting cells, the so-called sponge cells, sensory cells and an underlying nervous tissue are developed in the lateral organs. It is stated that apart from some similarities to the ventral atrium ofNerilla antennata no corresponding organs are known within the Annelida. It is argued that inProtodrilus the spermatophores are formed by the lateral organs as there are a high number of glands opening into the lumen of the organ. The possible origin and genesis of the male gonoducts as well as the mode of spermatophore transfer inProtodrilus is discussed.Abbreviations used in the figures bl basal lamina - cc coelomic cell - ci ciliated cell - cir ciliary root - cr ciliary ring - cu cuticle - cv bs contractile ventral blood sinus - d dissepiment/septum - dbs dorsal blood sinus - es euspermatozoa - f funnel - fi filament - g gut - glo gland openings - lgl lateral organ gland - lm longitudinal muscle - lo lateral organ - lu lumen - mi mitochondrion - mt microtubules - mu muscle - mv microvilli - mvc microvillar crown - n nucleus - ne nervous tissue - o opening - ps paraspermatozoa - rer rough endoplasmatic reticulum - s spermatozoa - sc sponge cell - sg salivary gland - spd sperm duct - spdo sperm duct opening - t tube - tm transverse muscle - vc ventral ciliary band  相似文献   

17.
Acanthocephala (thorny-headed worms) is a phylum of endoparasites of vertebrates and arthropods, included among the most phylogenetically basal tripoblastic pseudocoelomates. The phylum is divided into three classes: Archiacanthocephala, Palaeacanthocephala, and Eoacanthocephala. These classes are distinguished by morphological characters such as location of lacunar canals, persistence of ligament sacs in females, number and type of cement glands in males, number and size of proboscis hooks, host taxonomy, and ecology. To understand better the phylogenetic relationships within Acanthocephala, and between Acanthocephala and Rotifera, we sequenced the nearly complete 18S rRNA genes of nine species from the three classes of Acanthocephala and four species of Rotifera from the classes Bdelloidea and Monogononta. Phylogenetic relationships were inferred by maximum-likelihood analyses of these new sequences and others previously determined. The analyses showed that Acanthocephala is the sister group to a clade including Eoacanthocephala and Palaeacanthocephala. Archiacanthocephala exhibited a slower rate of evolution at the nucleotide level, as evidenced by shorter branch lengths for the group. We found statistically significant support for the monophyly of Rotifera, represented in our analysis by species from the clade Eurotatoria, which includes the classes Bdelloidea and Monogononta. Eurotatoria also appears as the sister group to Acanthocephala. Received: 12 October 1999 / Accepted: 8 February 2000  相似文献   

18.
Abstract. The phylogenetic position of Polygordius is still pending; relationships with either Opheliidae or with Saccocirrus are the most favored hypotheses. The present study of Polygordius appendiculatus was designed to look for morphological characters supporting either of these two hypotheses. The homology of the anterior appendages, and the structure of the central nervous system and nuchal organ all required clarification; we also examined whether photoreceptor‐like sense organs exist in adults. From their innervation pattern, it is likely that the anterior appendages represent palps. They lack structures typical of palps in Canalipalpata, such as musculature and coelomic cavities, which would be expected in the case of a saccocirrid relationship. Thirteen photoreceptor‐like sense organs were found in front of the brain, the only structures resembling photoreceptors in adults of P. appendiculatus. These multicellular sense organs comprise a supportive cell and several sensory cells enclosing an extracellular cavity. There are three different types of sensory cells: one rhabdomeric and two ciliary. These sensory cells are combined differently into three forms of sense organ: the most frequent uses all three types of sensory cells, the second possesses one rhabdomeric and one ciliary cell type, and the third has two types of ciliary sensory cells. Whereas similar sensory cells are frequently found in various polychaetes, their combination in one sensory organ is unique to Polygordius and is considered to represent an autapomorphy. The nuchal organs exhibit features typical of polychaetes; there are no specific features in common with Saccocirrus. Instead, the covering structures show obvious similarities to Opheliidae, as can also be found in the central nervous system. Altogether, the current observations do not contradict a relationship with opheliids but provide no evidence of a relationship with Saccocirrus as has been found in certain molecular analyses, and thus currently leave the phylogenetic position of Polygordius unresolved.  相似文献   

19.
Members of phylum Acanthocephala are parasites of vertebrates and arthropods and are distributed worldwide. The phylum has traditionally been divided into three classes, Archiacanthocephala, Palaeacanthocephala, and Eoacanthocephala; a fourth class, Polyacanthocephala, has been recently proposed. However, erection of this new class, based on morphological characters, has been controversial. We sequenced the near complete 18S rRNA gene of Polyacanthorhynchus caballeroi (Polyacanthocephala) and Rhadinorhynchus sp. (Palaeacanthocephala); these sequences were aligned with another 21 sequences of acanthocephalans representing the three widely recognized classes of the phylum and with 16 sequences from outgroup taxa. Phylogenetic relationships inferred by maximum-likelihood and maximum-parsimony analyses showed Archiacanthocephala as the most basal group within the phylum, whereas classes Polyacanthocephala + Eoacanthocephala formed a monophyletic clade, with Palaeacanthocephala as its sister group. These results are consistent with the view of Polyacanthocephala representing an independent class within Acanthocephala.  相似文献   

20.
B. Neuhaus 《Zoomorphology》1997,117(1):33-40
 The ultrastructure of the paired cephalic sensory organs of adult Pycnophyes dentatus and of the first juvenile stage of P. kielensis (Kinorhyncha, Homalorhagida) was investigated by TEM. In both species, each sensory organ is composed of one receptor cell and one enveloping cell which border a common intercellular lumen. A single receptor cilium extends from the receptor cell into this lumen. The cilium expands behind the basal body and branches into numerous processes. A pair of cephalic sensory organs with these characteristics belongs to the ground pattern of, at least, the Pycnophyidae. The sensory organs of these Kinorhyncha correspond closely with the anterior cephalic organs of the Gastrotricha, but differ from the known cephalic receptors of other Nemathelminthes. Currently, it cannot be evaluated conclusively whether the last common ancestor of the Nemathelminthes possessed cephalic sensory organs and, if it did, what these organs looked like. Accepted: 3 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号