首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An injection of 20-hydroxyecdysone (10 mug per animal) 6-13 days after the moult of the last larval instar of Tenebrio molitor induces the development of prothetelic larvae and larval-pupal intermediates. The state of larval-pupal switchover, or commitment, is only disclosed at the time of injection of the moulting hormone. Prothetelic A and B larvae, with small and medium sized wing Anlagen, undergo another larval or pupal instar. Prothetelic C larvae with bigger Anlagen are unable to moult, but the adult programme is expressed. Ecdysed larval-pupal intermediates give more or less perfect adults, while unecdysed mealworms, imprisoned in their larval cuticle, also expressed the adult programme. The commitment of Tenebrio is not a global switchover because a significant asynchronisation is noted between the development of organs considered. Animal crowding induces a delay in the appearance of wing Anlagen.  相似文献   

2.
The endocrine regulation of larval-pupal metamorphosis was studied in the silkworm, Bombyx mori, by measuring the following changes: hemolymph ecdysteroid titer, the secretory activity of prothoracic glands and the responsiveness of larvae to ecdysteroids and prothoracicotropic hormone (PTTH), with regard to developmental events such as the occurrence of spinneret pigmentation, initiation of cocoon spinning and onset of wandering stage as indicated by gut purge. These measurements were concentrated especially on the time before and after the head critical period (HCP) which falls 3-4 days before the gut purge ([Sakurai, 1984]). A small increase in the hemolymph ecdysteroid titer was first found during the HCP, and then the titer increased with daily fluctuations. Small but significant titer peaks were found prior to the occurrence of both spinneret pigmentation and gut purge, indicating that an individual titer peak could possess a specific role in development. Responsiveness of larvae to exogenous 20-hydroxyecdysone (20E) after the HCP was markedly higher than that before the HCP. The sensitivity of the prothoracic gland to PTTH also changed during the HCP. The results thus showed that the HCP is not the period after which an additional PTTH release is not required for the developmental events occurring on schedule, but rather it is the period during which complex events occur not only in the endocrine glands but also in the peripheral tissues. In addition, various developmental phenomena before gut purge are brought about by the hemolymph ecdysteroid whose concentration gradually increased with daily fluctuations, and these precise changes in the titer appeared to be important for the sequential occurrence of developmental events in the larval-pupal metamorphosis.  相似文献   

3.
4.
5.
The juvenile hormone esterase (JHE) activity in Galleria mellonella larvae was measured after exposure to different experimental conditions that affect larval-pupal transformation. The data show that stimulation of production of JHE is closely coupled with the developmental signals that intiate larval-pupal metamorphosis. Injury, which delays pupation, delays the appearance of JHE activity if the larvae are injured within 48 hr after the last larval moult. Chilling of day-0 larvae induces a supernumerary larval moult and inhibits the appearance of JHE. However, JHE activity increases in chilled larvae when their commitment for an extra larval moult is reversed by starvation. Starvation is effective in reversing the commitment for an extra larval moult if commenced within 48 hr after chilling, thereby suggesting a critical period for that commitment. These data suggest that the stimulus for JHE synthesis and/or release occurs approximately within 48 hr after the last larval ecdysis. A series of studies involving implantation of brain, suboesophageal ganglion and fat body into chilled, as well as chilled and ligated larvae suggest that a factor from the brain is involved in stimulation or production of JHE in Galleria larvae.JH, which suppresses JHE activity in day-3, -5 and early day-6 Galleria larvae, stimulates the production of JHE in late day-6 larvae, suggesting that reprogramming in larval fat body may occur on day 6 of the last larval stadium.  相似文献   

6.
7.
During the larval feeding period, the growth of the wing imaginal disks of Lepidoptera is dependent on continuous feeding. Feeding and nutrition exert their effect via the secretion of bombyxin, the lepidopteran insulin-like hormone. When larvae stop feeding and enter the wandering stage in preparation for metamorphosis, the control of imaginal disk growth becomes feeding and nutrition-independent. Growth of the wing imaginal disks of non-feeding wandering stage Manduca sexta can be stopped by removal of the brain, indicating that a brain-derived factor is required for continued disk growth. Isolated wing disk growth in vitro requires both 20-hydroxyecdysone (20E) and either brain extract or bombyxin to achieve normal growth. In vitro, brain extracts and synthetic bombyxin have little or no effect in stimulating disk growth, but they greatly enhance the effect of 20E, indicating that 20E and bombyxin act synergistically to modulate growth of the imaginal disk. Brain extract and bombyxin induce a suite of insulin-response events in cultured wing disks, which indicate that bombyxin and 20E act through separate and synergistic pathways. The dose-response to 20E reaches a plateau at about 0.1 microg/ml. Tracheal differentiation of the wing disks can be induced to initiate in vitro by a low concentration of 20E, whereas higher concentrations of 20E only stimulate growth.  相似文献   

8.
1-Isobutyl-5-(4-phenoxyphenyl)imidazole (KK-98), an inhibitor of juvenile hormone (JH) biosynthesis in the cockroach, and related imidazole compounds were evaluated against silkworm, Bombyx mori, for their activity to induce precocious metamorphosis. KK-98 induced precocious metamorphosis in the 4th instar larvae at high doses. Replacement of the 4-phenoxy group by a 3-phenoxy or 3-benzyloxy group on the benzene ring increased the activity. Among this series of compounds, 5-(3-benzyloxyphenyl)-1-isopropylimidazole (8) showed the highest activity. The induction of precocious metamorphosis by compound 8 was rescued by the simultaneous application of methoprene, a JH minie. When newly molted 3rd instar larvae were treated with a high dose of compound 8, a few larvae formed larval-pupal intermediates in the 3rd instar stage, which has not been formed by treating of any other imidazoles so far.  相似文献   

9.
Parasitism by the braconid wasp Apanteles congregatus decreases the effectiveness of the anti-juvenile hormone agents ETB (ethyl 4-[2-{ittert-butyl carbonyloxy}bytoxy]benzoate) and fluoromevalonolactone (FMev) in inducing precocious metamorphosis of Manduca sexta larvae. Topical application of 1–200 μg ETB to parasitized third-instar larvae had no effect on either host or parasite development, whereas doses of 50μg or more ETB applied to unparasitized third-instar larvae caused formation of larval-pupal intermediates after the fourth instar. Parasitism also decreased the effectiveness of 100–200 μg FMev in causing metamorphosis at the moult following its application. In contrast to ETB, FMev disrupted development of the parasitoids. No wasps emerged when preterminal stage hosts were treated with FMev and the hosts formed larval-pupal intermediates. After treatment of terminal stage hosts with FMev, the number of emerging parasitoids was reduced by one-third. Precocene II (100 μg per larvae) had no effect on development of either M. sexta or A. congregatus.  相似文献   

10.
At the beginning of the final larval (fifth) instar of Manduca sexta, imaginal precursors including wing discs and eye primordia initiate metamorphic changes, such as pupal commitment, patterning and cell proliferation. Juvenile hormone (JH) prevents these changes in earlier instars and in starved final instar larvae, but nutrient intake overcomes this effect of JH in the latter. In this study, we show that a molecular marker of pupal commitment, broad, is up-regulated in the wing discs by feeding on sucrose or by bovine insulin or Manduca bombyxin in starved final instar larvae. This effect of insulin could not be prevented by JH. In vitro insulin had no effect on broad expression but relieved the suppression of broad expression by JH. This effect of insulin was directly on the disc as shown by its reduction in the presence of insulin receptor dsRNA. In starved penultimate fourth instar larvae, broad expression in the wing disc was not up-regulated by insulin. The discs became responsive to this action of insulin during the molt to the fifth instar together with the ability to become pupally committed in response to 20-hydroxyecdysone. Thus, the Manduca bombyxin acts as a metamorphosis-initiating factor in the imaginal precursors.  相似文献   

11.
The Bombyx mori (Lepidoptera: Bombycidae) midgut undergoes remodeling during the larval-pupal metamorphosis. All metamorphic events in insects are controlled by mainly two hormones: 20-hydroxyecdysone (20E) and juvenile hormone (JH). Fenoxycarb, O-ethyl N-(2-(4-phenoxyphenoxy)-ethyl) carbamate, has been shown to be one of the most potent juvenile hormone analogs against a variety of insect species. In this study, the effect of fenoxycarb on EcR-B1 protein expression in the midgut of Bombyx mori during the remodeling processwas investigated. Fenoxycarb was topically treated to the beginning of the fifth instar Bombyx larvae. Its application prolonged the last instar and prevented metamorphic events. Analyses were performed from day 6 of the fifth instar to 24 hr after pupation in controls and to day 14 of the fifth instar in the fenoxycarb treated group. According to our results, the presence of EcR-B1 in the midguts of the fenoxycarb treated group during the feeding period suggested that EcR-B1 was involved in the functioning of larval cells and during this period fenoxycarb did not affect EcR-B1 status. Immediately after termination of the feeding stage, the amount of EcR-B1 protein increased, which indicated that it may strengthen the ecdysone signal for commitment of remodeling process. In the fenoxycarb treated group, its upregulation was delayed, which may be related to the inhibition of ecdysone secretion from the prothoracic gland.  相似文献   

12.
When final (5th) instar larvae of Precis coenia were treated with the juvenile hormone analog (JHA) methoprene, they underwent a supernumerary larval molt, except for certain regions of their imaginal disks, which deposited a normal pupal cuticle. Evidently those regions had already become irreversibly committed to pupal development at the time JHA was applied. By applying JHA at successively later times in the instar, the progression of pupal commitment could be studied. Pupal commitment in the proboscis, antenna, eye, leg and wing imaginal disks occurred in disk-specific patterns. In each imaginal disk there were distinct initiation sites where pupal commitment began during the first few hours of the final larval instar, and from which commitment spread across the remainder of the disk over a 2- to 3-day period. The initiation sites were not always located in homologous regions of the various disks. As a rule, pupal commitment also spread from imaginal disk tissue to surrounding epidermal tissue. The regions of pupal commitment in all disks except those of the wings, coincided with the regions of growth of the disk. Only portions of the disk that had undergone cell division and growth underwent pupal commitment. Shortening the growth period did not prevent pupal commitment in the wing imaginal disk, indicating that, in this disk at least, a normal number of cell divisions was not crucial in reprogramming of disk cells for pupal cuticle synthesis. The apparent growth spurt of imaginal disks that occurs during the last part of the final larval instar is merely the final stage of normal and constant exponential growth. Juvenile hormone (JH) and ecdysteroids appeared to play little role in the regulation of normal imaginal disk growth. Instead, growth of the disks may be under intrinsic control. Interestingly, even though endogenous fluctuation in JH titers do not affect imaginal disk growth, exogenous JHA proved able to inhibit both pupal commitment, cell movement, and growth of the disks during the last larval instar. This function of JH could be important under certain adverse conditions, such as when metamorphosis is delayed in favor of a supernumerary larval molt.  相似文献   

13.
The process of wing disc development and degeneration in the bagworm moth Eumeta variegata was investigated histologically. Morphological differences between two sexes first appear in the penultimate (eighth) larval instar. In the male, wing discs proliferate rapidly in the penultimate larval instar and continue proliferating; a conspicuous peripodial epithelium forms in the last (ninth) larval instar. The hemopoietic organs break down in this stage and disappear completely by the prepupal stage. In the female, in contrast, the wing discs remain as in the previous (seventh) instar, without proliferation of cells inside. No peripodial epithelium forms in the penultimate instar or later. Hemopoietic organs are still attached to the wing discs in the last larval instar and the entire wing discs transform into a plain, thick epidermis in the prepupal period. It is suggested that the hemopoietic organs may prevent the wing discs from developing in E. variegata.  相似文献   

14.
The genus Pheidole has three distinct castes in females: queen, major, and minor workers. It has been believed that the larvae of major workers have prominent mesothoracic wing discs, although the minor worker larvae lack them. Here we conducted histological examinations of wing discs during larval development in P. megacephala. We show that all three castes have mesothoracic wing discs, at least in their early stage of the final larval instar, and that the wings degenerate differently in the dimorphic worker castes. The minute wing discs of minor workers neither grow nor metamorphose but disappear during the prepupal stage. On the contrary, the wing discs of major workers evaginate at the onset of the prepupal stage but subsequently degenerate by apoptotic cell death. This apoptotic wing degeneration in the prepupal stage was contradistinguished from wing degeneration in some lepidopteran insects, in which apoptosis occurs in the pupal wing buds. Our results suggest that each worker caste shows a different degeneration process to express the wingless character and that apoptotic degeneration has been adopted in association with the evolution of worker dimorphism.  相似文献   

15.
By microarray analyses, we identified two genes (BmADAMTS-1 and BmADAMTS-like) encoding a protein, which are induced during the pupal ecdysis in the wing discs of Bombyx mori; these genes are homologous to ADAMTS family members (a disintegrin and metalloproteinase domain, with thrombospondin type-1 repeats). A complete metal-binding motif of the ADAM-type metalloprotease domain (HEXXHXXGXXHD) was contained in both amino acid sequences. However, thrombospondin type 1 (TSP-1) repeats were observed only in BmADAMTS-1. The BmADAMTS-1 gene was expressed in the hemocyte and midgut of the larvae at day 2 of wandering stage (W2), and strongly induced during the pupal ecdysis in the hemolymph. The BmADAMTS-like gene was expressed in the epithelial tissues of the larvae at W2, and had expression peaks slightly later than the BmADAMTS-1 gene. Our results indicate that BmADAMTS-1 and BmADAMTS-like may cleave the extracellular matrix (ECM) in the degenerating and remodeling tissues during the molting periods.  相似文献   

16.
The cell cycle is strictly regulated during development and its regulation is essential for organ formation and developmental timing. Here we observed the pattern of DNA replication in swimming larvae of an ascidian, Ciona intestinalis. Usually, Ciona swimming larvae obtain competence for metamorphosis at about 4-5 h after hatching, and these competent larvae initiate metamorphosis soon after they adhere to substrate with their papillae. In these larvae, three major tissues (epidermis, endoderm and mesenchyme) showed extensive DNA replication with distinct pattern and timing, suggesting tissue-specific cell cycle regulation. However, DNA replication did not continue in aged larvae which kept swimming for several days, suggesting that the cell cycle is arrested in these larvae at a certain time to prevent further growth of adult organ rudiments until the initiation of metamorphosis. Inhibition of the cell cycle by aphidicolin during the larval stage affects only the speed of metamorphosis, and not the formation of adult organ rudiments or the timing of the initiation of metamorphosis. However, after the completion of tail resorption, DNA replication is necessary for further metamorphic events. Our data showed that DNA synthesis in the larval trunk is not directly associated with the organization of adult organs, but it contributes to the speed of metamorphosis after settlement.  相似文献   

17.
18.
The regulation of body size in animals involves mechanisms that terminate growth. In holometabolous insects growth ends at the onset of metamorphosis and is contingent on their reaching a critical size in the final larval instar. Despite the importance of critical size in regulating final body size, the developmental mechanisms regulating critical size are poorly understood. Here we demonstrate that the developing adult organs, called imaginal discs, are a regulator of critical size in larval Drosophila. We show that damage to, or slow growth of, the imaginal discs is sufficient to retard metamorphosis both by increasing critical size and extending the period between attainment of critical size and metamorphosis. Nevertheless, larvae with damaged and slow growing discs metamorphose at the same size as wild-type larvae. In contrast, complete removal of all imaginal tissue has no effect on critical size. These data indicate that both attainment of critical size and the timely onset of metamorphosis are regulated by the imaginal discs in Drosophila, and suggest that the termination of growth is coordinated among growing tissues to ensure that all organs attain a characteristic final size.  相似文献   

19.
The midgut of the tobacco hornworm (Manduca sexta) is a highly aerobic tissue that is destroyed by programmed cell death during larval-pupal metamorphosis. The death of the epithelium begins after commitment to pupation, and the oxygen consumption of isolated midgut mitochondria decreases soon after commitment. To assess the role of the electron transport chain in this decline in mitochondrial function, the maximal activities of complexes I-IV of the respiratory chain were measured in isolated midgut mitochondria. Whereas there were no developmental changes in the activity of complex I or III, activities of complexes II and IV [cytochrome c oxidase (COX)] were higher in mitochondria from precommitment than postcommitment larvae. This finding is consistent with a higher rate of succinate oxidation in mitochondria isolated from precommitment larvae and reveals that the metamorphic decline in mitochondrial respiration is due to the targeted destruction or inactivation of specific sites within the mitochondria, rather than the indiscriminate destruction of the organelles. The COX turnover number (e- x s(-1) x cytochrome aa3(-1)) was greater for the enzyme from precommitment than postcommitment larvae, indicating a change in the enzyme structure and/or its lipid environment during the early stages of metamorphosis. The turnover number of COX in the intact mitochondria (in organello COX) was also lower in postcommitment larvae. In addition to changes in the protein or membrane phospholipids, the metamorphic decline in this rate constant may be a result of the observed loss of endogenous cytochrome c.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号