首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 1,067-bp cDNA, designated axeA, coding for an acetyl xylan esterase (AxeA) was cloned from the anaerobic rumen fungus Orpinomyces sp. strain PC-2. The gene had an open reading frame of 939 bp encoding a polypeptide of 313 amino acid residues with a calculated mass of 34,845 Da. An active esterase using the original start codon of the cDNA was synthesized in Escherichia coli. Two active forms of the esterase were purified from recombinant E. coli cultures. The size difference of 8 amino acids was a result of cleavages at two different sites within the signal peptide. The enzyme released acetate from several acetylated substrates, including acetylated xylan. The activity toward acetylated xylan was tripled in the presence of recombinant xylanase A from the same fungus. Using p-nitrophenyl acetate as a substrate, the enzyme had a Km of 0.9 mM and a Vmax of 785 μmol min−1 mg−1. It had temperature and pH optima of 30°C and 9.0, respectively. AxeA had 56% amino acid identity with BnaA, an acetyl xylan esterase of Neocallimastix patriciarum, but the Orpinomyces AxeA was devoid of a noncatalytic repeated peptide domain (NCRPD) found at the carboxy terminus of the Neocallimastix BnaA. The NCRPD found in many glycosyl hydrolases and esterases of anaerobic fungi has been postulated to function as a docking domain for cellulase-hemicellulase complexes, similar to the dockerin of the cellulosome of Clostridium thermocellum. The difference in domain structures indicated that the two highly similar esterases of Orpinomyces and Neocallimastix may be differently located, the former being a free enzyme and the latter being a component of a cellulase-hemicellulase complex. Sequence data indicate that AxeA and BnaA might represent a new family of hydrolases.  相似文献   

2.
The Clostridium cellulovorans xynA gene encodes the cellulosomal endo-1,4-beta-xylanase XynA, which consists of a family 11 glycoside hydrolase catalytic domain (CD), a dockerin domain, and a NodB domain. The recombinant acetyl xylan esterase (rNodB) encoded by the NodB domain exhibited broad substrate specificity and released acetate not only from acetylated xylan but also from other acetylated substrates. rNodB acted synergistically with the xylanase CD of XynA for hydrolysis of acetylated xylan. Immunological analyses revealed that XynA corresponds to a major xylanase in the cellulosomal fraction. These results indicate that XynA is a key enzymatic subunit for xylan degradation in C. cellulovorans.  相似文献   

3.
A 1,067-bp cDNA, designated axeA, coding for an acetyl xylan esterase (AxeA) was cloned from the anaerobic rumen fungus Orpinomyces sp. strain PC-2. The gene had an open reading frame of 939 bp encoding a polypeptide of 313 amino acid residues with a calculated mass of 34,845 Da. An active esterase using the original start codon of the cDNA was synthesized in Escherichia coli. Two active forms of the esterase were purified from recombinant E. coli cultures. The size difference of 8 amino acids was a result of cleavages at two different sites within the signal peptide. The enzyme released acetate from several acetylated substrates, including acetylated xylan. The activity toward acetylated xylan was tripled in the presence of recombinant xylanase A from the same fungus. Using p-nitrophenyl acetate as a substrate, the enzyme had a K(m) of 0.9 mM and a V(max) of 785 micromol min(-1) mg(-1). It had temperature and pH optima of 30 degrees C and 9.0, respectively. AxeA had 56% amino acid identity with BnaA, an acetyl xylan esterase of Neocallimastix patriciarum, but the Orpinomyces AxeA was devoid of a noncatalytic repeated peptide domain (NCRPD) found at the carboxy terminus of the Neocallimastix BnaA. The NCRPD found in many glycosyl hydrolases and esterases of anaerobic fungi has been postulated to function as a docking domain for cellulase-hemicellulase complexes, similar to the dockerin of the cellulosome of Clostridium thermocellum. The difference in domain structures indicated that the two highly similar esterases of Orpinomyces and Neocallimastix may be differently located, the former being a free enzyme and the latter being a component of a cellulase-hemicellulase complex. Sequence data indicate that AxeA and BnaA might represent a new family of hydrolases.  相似文献   

4.
A 5.7-kbp region of the Clostridium thermocellum F1 DNA was sequenced and found to contain two contiguous and highly homologous xylanase genes, xynA and xynB. The xynA gene encoding the xylanase XynA consists of 2049 bp and encodes a protein of 683 amino acids with a molecular mass of 74 511 Da, and the xynB gene encoding the xylanase XynB consists of 1371 bp and encodes a protein of 457 amino acids with a molecular mass of 49 883 Da. XynA is a modular enzyme composed of a typical N-terminal signal peptide and four domains in the following order: a family-11 xylanase domain, a family-VI cellulose-binding domain, a dockerin domain, and a NodB domain. XynB exhibited extremely high overall sequence homology with XynA (identity 96.9%), while lacking the NodB domain present in the latter. These facts suggested that the xynA and xynB genes originated from a common ancestral gene through gene duplication. XynA was purified from a recombinant Escherichia coli strain and characterized. The purified enzyme was highly active toward xylan; the specific activity on oat-spelt xylan was 689 units/mg protein. Immunological and zymogram analyses suggested that XynA and XynB are components of the C. thermocellum F1 cellulosome. Received: 21 September 1998 / Received revision: 30 October 1998 / Accepted: 29 November 1998  相似文献   

5.
cDNA encoding an extracellular carbohydrate esterase (CcEst1) was cloned from the basidiomycete Coprinopsis cinerea. The recombinant CcEst1 expressed in Pichia pastoris acted on p-nitrophenyl acetate, α-naphthyl acetate, and methyl hydroxycinnamic acids, except for methyl sinapic acid. The enzyme released ferulic and acetic acids from wheat arabinoxylan and acetylated xylan respectively. Activity increased on the addition of endo-β-1,4-xylanase.  相似文献   

6.
Qu W  Shao W 《Biotechnology letters》2011,33(7):1407-1416
An endoxylanase gene, xynA, was cloned from Bacillus pumilus ARA and expressed in Escherichia coli. The open reading frame of the xynA gene was 687 bp encoding a signal peptide and a mature xylanase with a molecular mass of 23 kDa. The enzyme was categorized as a glycosyl hydrolase family 11 member based on the sequence analysis of the putative catalytic domain. The recombinant XynA (Bpu XynA) was purified to homogeneity by Ni–NTA and ion exchange chromatography on DEAE–Sepharose FF. The enzyme exhibited highest activity at pH 6.6 and 50°C. The purified Bpu XynA was stable for at least 2 h at 45°C, and retained over 50% residual activity after being incubated at 60°C for 1 h. The activity of the xylanase was not significantly affected by metal ions and EDTA. The K m and K cat /K m of Bpu XynA for oat-spelt xylan were 5.53 mg/ml and 10.14 ml/mg s at 50°C and pH 6.6. The main product of hydrolysis by Bpu XynA was xylooligosaccharide. The results revealed that the consumption of grass xylan by B. pumilus ARA depended on the synergistic reactions of Bpu XynA and Bpu arabinosidase, and that a typical GH11 xylanase e.g. Tla XynA had capability to remove the side chain of xylan. The properties Bpu XynA make it promising for application in the production of Bifidobacterium growth-promoting factors and in feed industry.  相似文献   

7.
The modular Xylanase XynA from Thermotoga maritima consists of five domains (A1-A2-B-C1-C2). Two similar N-terminal domains (A1-A2-) are family 22 carbohydrate-binding modules (CBMs), followed by the catalytic domain (-B-) belonging to glycoside hydrolase family 10, and the C-terminal domains (-C1-C2), which are members of family 9 of CBMs. The gradual deletion of the non-catalytic domains resulted in deletion derivatives (XynAΔC; XynAΔA1C and XynAΔNC) with increased maximum activities (V max) at 75°C, pH 6.2. Furthermore, these deletions led to a shift of the optimal NaCl concentration for xylan hydrolysis from 0.25 (XynA) to 0.5 M (XynAΔNC). In the presence of the family 22 CBMs, the catalytic domain retained more activity in the acidic range of the pH spectrum than without these domains. In addition to the deletion derivatives of XynA, the N-terminal domains A1 and A2 were produced recombinantly, purified, and investigated in binding studies. For soluble xylan preparations, linear β-1,4-glucans and mixed-linkage β-1,3-1,4-glucans, only the A2 domain mediated binding, not the A1 domain, in accordance with previous observations. The XynA deletion enzymes lacking the C domains displayed low affinity also to hydroxyethylcellulose and carboxymethylcellulose. With insoluble oat spelt xylan and birchwood xylan as the binding substrates, the highest affinity was observed with XynAΔC and the lowest affinity with XynAΔNC. Although the domain A1 did not bind to soluble xylan preparations, the insoluble oat spelt xylan-binding data suggest that this domain does play a role in substrate binding in that it improves the binding to insoluble xylans.  相似文献   

8.
A metagenomic library containing ca. 3.06 × 108 bp insert DNA was constructed from a rice straw degrading enrichment culture. A xylanase gene, umxyn10A, was cloned by screening the library for xylanase activity. The encoded enzyme Umxyn10A showed 58% identity and 73% similarity with a xylanase from Thermobifida fusca YX. Sequence analyses showed that Umxyn10A contained a glycosyl hydrolase family 10 catalytic domain. The gene was expressed in Escherichia coli, and the recombinant enzyme was purified and characterized biochemically. Recombinant Umxyn10A was highly active toward xylan. However, the purified enzyme could slightly hydrolyze β-1,3/4-glucan and β-1,3/6-glucan. Umxyn10A displayed maximal activity toward oat spelt xylan at a high temperature (75°C) and weak acidity (pH 6.5). The K m and V max of Umxyn10A toward oat spelt xylan were 3.2 mg ml−1 and 0.22 mmol min−1 mg−1 and were 2.7 mg ml−1 and 1.0 mmol min−1 mg−1 against birchwood xylan, respectively. Metal ions did not appear to be required for the catalytic activity of this enzyme. The enzyme Umxyn10A could efficiently hydrolyze birchwood xylan to release xylobiose as the major product and a negligible amount of xylose. The xylanase identified in this work may have potential application in producing xylobiose from xylan.  相似文献   

9.
 The gene arfB encoding α-L-arabino-furanosidase B of the cellulolytic thermophile Clostridium stercorarium was expressed in Escherichia coli from a 2.2-kb EcoRI DNA fragment. The recombinant gene product ArfB was purified by fast-performance liquid chromatography. It has a tetrameric structure with a monomeric relative molecular mass of 52 00. The optima for temperature and pH are 70 °C and 5.0 respectively. The enzyme appears to have no metal cofactor requirement and is sensitive to sulfhydryl reagents. It hydrolyzes aryl and alkyl α-L-arabinofuranosides and cleaves arabinosyl side-chains from arabinoxylan (oat-spelt xylan) and from xylooligosaccharides produced by recombinant endoxylanase XynA from the same organism. The identity of the N-terminal amino acid sequences indicates that ArfB corresponds to the major α-arabinosidase activity present in the culture supernatant of C. stercorarium. Received: 30 September 1994/Received revision: 24 November 1994/Accepted: 16 December 1994  相似文献   

10.
To produce xylobiose from xylan, high-level expression of an endoxylanase gene from Bacillus sp. was carried out in Bacillus subtilis DB104. A 1.62-kb SmaI DNA fragment, coding for an endoxylanase of Bacillus sp., was ligated into the Escherichia coli/B. subtilis shuttle vector pJH27Δ88, producing pJHKJ4, which was subsequently transformed into B. subtilis DB104. A maximum endoxylanase activity of 105 U/ml was obtained from the supernatant of B. subtilis DB104 harboring pJHKJ4. The endoxylanase was purified to homogeneity by ion-exchange chromatography and the production profile of xylooligosaccharides from xylan by the endoxylanase was examined by HPLC with a carbohydrate analysis column. Xylobiose was the major product from xylan at 40 °C and its proportion in the xylan hydrolyzates increased with the reaction time; at 12 h, over 60% of the reaction products was xylobiose. These results suggest that xylobiose, which has a stimulatory effect on the selective growth of the intestinal bacterium Bifidobacterium, can be mass-produced effectively by the endoxylanase of Bacillus sp. cloned in B. subtilis. Received: 2 January 1998 / Received revision: 4 March 1998 / Accepted: 4 March 1998  相似文献   

11.
The cellulolytic myxobacterium Sorangium cellulosum is able to efficiently degrade many kinds of polysaccharides, but none of the enzymes involved have been characterized. In this paper, a xylanase gene (xynA) was cloned from S. cellulosum So9733-1 using thermal asymmetric interlaced PCR. The gene is composed of 1,209 bp and has only 52.27% G + C content, which is much lower than that of most myxobacterial DNA reported (67–72%). Gene xynA encodes a 402 amino acid protein that contains a single catalytic domain belonging to the glycoside hydrolase family 10. The novel xylanase gene, xynA, was expressed in Escherichia coli BL21 (DE3) and the recombinant protein (r-XynA) was purified by Ni-affinity chromatography. The r-XynA had the optimum temperature of 30–35°C and exhibited 33.3% activity at 5°C and 13.7% activity at 0°C. Approximately 80% activity was lost after 20-min pre-incubation at 50°C. These results indicate that r-XynA is a cold-active xylanase with low thermostability. At 30°C, the K m values of r-XynA on beechwood xylan, birchwood xylan, and oat spelt xylan were 25.77 ± 4.16, 26.52 ± 4.78, and 38.13 ± 5.35 mg/mL, respectively. The purified r-XynA displayed optimum activity at pH 7.0. The activity of r-XynA was enhanced by the presence of Ca2+. The r-XynA hydrolyzed beechwood xylan, birchwood xylan, and xylooligosaccharides (xylotriose, xylotetraose, and xylopentose) to produce primarily xylose and xylobiose. To our knowledge, this is the first report on the characterization of a xylanase from S. cellulosum.  相似文献   

12.
A new Volvariella volvacea gene encoding an acetyl xylan esterase (designated as Vvaxe1) was cloned and expressed in Pichia pastoris. The cDNA contained an ORF of 1047 bp encoding 349 amino acids with a calculated mass of 39 990 Da. VvAXE1 is a modular enzyme consisting of an N-terminal signal peptide, a catalytic domain, and a cellulose-binding domain. The amino acid sequence of the enzyme exhibited a high degree of similarity to cinnamoyl esterase B from Penicillium funiculosum, and acetyl xylan esterases from Aspergillus oryzae, Penicillium purpurogenum, and Aspergillus ficuum. Recombinant acetyl xylan esterase released acetate from several acetylated substrates including beta-d-xylose tetraacetate and acetylated xylan. No activity was detectable on p-nitrophenyl acetate. Enzyme-catalyzed hydrolysis of 4-methylumbelliferyl acetate was maximal at pH 8.0 and 60 degrees C, and reciprocal plots revealed an apparent K(m) value of 307.7 microM and a V(max) value of 24 733 IU micromol(-1) protein. ReAXE1 also exhibited a capacity to bind to Avicel and H(3)PO(4) acid-swollen cellulose.  相似文献   

13.
Acetylxylan esterase genes axe6A and axe6B located adjacent to one another on a Fibrobacter succinogenes chromosome have been separately cloned and their properties characterized. The corresponding esterases contained an N-terminal carbohydrate esterase family 6 catalytic domain (CD) and a C-terminal family 6 carbohydrate-binding module (CBM). The amino acid sequences of the CDs and CBMs were found to exhibit 52% and 40% amino acid similarity, respectively. The CDs of the two esterases exhibited the highest similarity to CDs of acetylxylan esterases: AxeA from the ruminal fungi Orpinomyces sp. and BnaA from Neocallimastix patriciarum. Axe6A and Axe6B were optimally active at neutral pH and had low K(m) values of 0.084 and 0.056 mmol x L(-1), respectively. Axe6A and Axe6B were shown to bind to insoluble cellulose and xylan and to soluble arabinoxylan. Axe6A deacetylated acetylated xylan at the same initial rate in the presence and absence of added Xyn10E xylanase from F. succinogenes, but the action of the xylanase on acetylated xylan was dependent upon the initial activity of Axe6A. The capacity of acetylxylan esterases to bind to plant cell wall polymers and to independently deacetylate xylan enabling xylanase to release xylooligo saccharides, documents the central role these enzymes have to improve access of F. succinogenes to cellulose.  相似文献   

14.
A chitinase gene (chiA) from Pseudomonas sp. YHS-A2 was cloned into Escherichia coli using pUC19. The nucleotide sequence determination revealed a single open reading frame of chiA comprised of 1902 nucleotide base pairs and 633 deduced amino acids with a molecular weight of 67,452 Da. Amino acid sequence alignment showed that ChiA contains two putative chitin-binding domains and a single catalytic domain. Two proline-threonine repeat regions, which are linkers between catalytic and substrate-binding domains in some cellulases and xylanases, were also found. From E. coli, ChiA was purified 12.8-fold relative to the periplasmic fraction. The Michaelis constant and maximum initial velocity for p-nitrophenyl-N,N′-diacetylchitobiose were 1.06 mM and 44.4 μmol/h per mg protein, respectively. The purified ChiA binds not only to colloidal chitin but also to other substrates (avicel, chitosan, and xylan), but the binding affinity of avicel, chitosan, and xylan is around 10 times lower than that of colloidal chitin. The reaction of ChiA with colloidal chitin and chitooligosaccharides (trimer-hexamer) produced an end product of N,N′-diacetylchitobiose, indicating that ChiA is a chitobiosidase. Received: 29 October 1999 / Received revision: 16 March 2000 / Accepted: 24 March 2000  相似文献   

15.
bstract The use of the insoluble polysaccharides Avicel and oat-spelt xylan for the binding and subsequent purification of active xylanases from Streptomyces chattanoogensis was investigated. Maximum recovery of xylanases was achieved with oat-spelt xylan, using NaCl (2 M) to remove active protein. The application of this technique to the purification of xylanases resulted in the purification of an endoxylanase (CM-2) with high specific activity (729.5 U mg−1). The properties of the purified enzyme, exhibiting activity and stability between 40 °C and 60 °C and between pH 5 and 8, suggest a potential role for both the enzyme and the rapid purification protocol in the removal of hemicelluloses from kraft pulp prior to bleaching. Received: 6 April 1998 / Accepted: 8 May 1998  相似文献   

16.
A xylanase gene, xynA4-2, was obtained from the genome sequence of thermoacidophilic Alicyclobacillus sp. A4 and expressed in Escherichia coli BL21 (DE3). xynA4-2 encodes a mature protein of 411 residues with a calculated molecular weight of 46.8 kDa. Based on the amino acid sequence similarities (highest identity of 61%), the enzyme was confined into glycoside hydrolase family 10. The purified recombinant XynA4-2 exhibited maximum activity at pH 6.2 and 55°C. The enzyme was stable over a broad pH range, retaining more than 90% of the original activity at pH 5.8–12.0, 37°C for 1 h. The substrate specificity of XynA4-2 was relatively narrow, exhibiting 100, 93, and 35% of the relative activity towards birchwood xylan, oat spelt xylan, and wheat arabinoxylan, respectively. Supplementation of XynA4-2 to mash caused the reduction of mash filtration rate (5.6%) and viscosity (4.0%). When combined with the commercial glucanase from Sunson, higher reduction was detected in the filtration rate (12.0%) and viscosity (17.2%). These favorable properties make XynA4-2 a good candidate in the brewing industry.  相似文献   

17.
A third xylanase (Xyn III) from Trichoderma reesei PC-3–7 was purified to electrophoretic homogeneity by gel filtration and ion-exchange chromatographies. The enzyme had a molecular mass of 32 kDa, and its isoelectric point was 9.1. The pH optimum of Xyn III was 6.0, similar to that of Xyn II, another basic xylanase of  T. reesei. The purified Xyn III showed high activity with birchwood xylan but no activity with cellulose and aryl glycoside. The hydrolysis of birchwood xylan by Xyn III produced mainly xylobiose, xylotriose and other xylooligosaccharides. The amino acid sequences of the N-terminus and internal peptides of Xyn III exhibited high homology with the family F xylanases, showing that they were distinct from those of Xyn I and Xyn II of  T. reesei, which belong to family G. These results reveal that Xyn III is a new specific endoxylanase, differing from Xyn I and Xyn II in  T. reesei. It is noteworthy that this novel xylanase was induced only by cellulosic substrates and l-sorbose but not by xylan and its derivarives. Furthermore,  T. reesei PC-3-7 produced Xyn III in quantity when grown on Avicel or lactose as a carbon source, while  T. reesei QM9414 produced little or no Xyn III. Received: 7 November 1997 / Received last revision: 2 February 1988 / Accepted: 23 February 1998  相似文献   

18.
Numerous endoxylanases from mesophilic fungi have been purified and characterized. However, endoxylanases from cold-adapted fungi, especially those from Antarctica, have been less studied. In this work, a cDNA from the Antarctic fungus Cladosporium sp. with similarity to endoxylanases from glycosyl hydrolase family 10, was cloned and expressed in Pichia pastoris. The pure recombinant enzyme (named XynA) showed optimal activity on xylan at 50 °C and pH 6–7. The enzyme releases xylooligosaccharides but not xylose, indicating that XynA is a classical endoxylanase. The enzyme was most active on xylans with high content of arabinose (rye arabinoylan and wheat arabinoxylan) than on xylans with low content of arabinose (oat spelts xylan, birchwood xylan and beechwood xylan). Finally, XynA showed a very low thermostability. After 20–30 min of incubation at 40 °C, the enzyme was completely inactivated, suggesting that XynA would be the most thermolabile endoxylanase described so far in filamentous fungi. This is one of the few reports describing the heterologous expression and characterization of a xylanase from a fungus isolated from Antarctica.  相似文献   

19.
A cDNA encoding a bifunctional acetylxylan esterase/xylanase, XynS20E, was cloned from the ruminal fungus Neocallimastix patriciarum. A putative conserved domain of carbohydrate esterase family 1 was observed at the N-terminus and a putative conserved domain of glycosyl hydrolase family 11 was detected at the C-terminus of XynS20E. To examine the enzyme activities, XynS20E was expressed in Escherichia coli as a recombinant His6 fusion protein and purified by immobilized metal ion-affinity chromatography. Response surface modeling combined with central composite design and regression analysis was then applied to determine the optimal temperature and pH conditions of the recombinant XynS20E. The optimal conditions for the highest xylanase activity of the recombinant XynS20E were observed at a temperature of 49°C and a pH of 5.8, while those for the highest carbohydrate esterase activity were observed at a temperature of 58°C and a pH of 8.2. Under the optimal conditions for the enzyme activity, the xylanase and acetylxylan esterase specific activities of the recombinant XynS20E toward birchwood xylan were 128.7 and 873.1 U mg−1, respectively. To our knowledge, this is the first report of a bifunctional xylanolytic enzyme with acetylxylan esterase and xylanase activities from rumen fungus.  相似文献   

20.
Anaerobic growth of a newly isolated Pseudomonas putida strain WB from an arsenic-contaminated soil in West Bengal, India on glucose, l-lactate, and acetate required the presence of arsenate, which was reduced to arsenite. During aerobic growth in the presence of arsenite arsenate was formed. Anaerobic growth of P. putida WB on glucose was made possible presumably by the non-energy-conserving arsenate reductase ArsC with energy derived only from substrate level phosphorylation. Two moles of acetate were generated intermediarily and the reducing equivalents of glycolysis and pyruvate decarboxylation served for arsenate reduction or were released as H2. Anaerobic growth on acetate and lactate was apparently made possible by arsenate reductase ArrA coupled to respiratory electron chain energy conservation. In the presence of arsenate, both substrates were totally oxidized to CO2 and H2 with part of the H2 serving for respiratory arsenate reduction to deliver energy for growth. The growth yield for anaerobic glucose degradation to acetate was Y Glucose = 20 g/mol, leading to an energy coefficient of Y ATP = 10 g/mol adenosine-5'-triphosphate (ATP), if the Emden–Meyerhof–Parnas pathway with generation of 2 mol ATP/mol glucose was used. During growth on lactate and acetate no substrate chain phosphorylation was possible. The energy gain by reduction of arsenate was Y Arsenate = 6.9 g/mol, which would be little less than one ATP/mol of arsenate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号