首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The covalent cross-linking of unmodified Escherichia coli N-acetylvalyl-tRNA to the 16S RNA of Escherichia coli ribosomes upon near-UV irradiation previously reported by us [Schwartz, I., & Ofengand, J. (1978) Biochemistry 17, 2524--2530] has been studied further. Up to 70% of the unmodified tRNA, nonenzymatically bound to tight-couple ribosomes at 7 mM Mg2+, could be cross-linked by 310--335-nm light. Covalent attachment was solely to the 16S RNA. It was dependent upon both irradiation and the presence of mRNA but was unaffected by the presence or absence of 4-thiouridine in the tRNA. The kinetics of cross-linking showed single-hit behavior. Twofold more cross-linking was obtained w-th tight-couple ribosomes than with salt-washed particles. Puromycin treatment after irradiation released the bound N-acetyl[3H]valine, demonstrating that the tRNA was covalently bound at the P site and that irradiation and covalent linking did not affect the peptidyl transferase reaction. Cross-linking was unaffected by the presence of O2, argon, ascorbate (1 mM), or mercaptoethanol (10 mM). Prephotolysis of a mixture of tRNA and ribosomes in the absence of puly(U2,G) did not block subsequent cross-linking in its presence nor did it generate any long-lived chemically reactive species. There was a strong tRNA specificity. E. coli tRNA1Val and tRNA1Ser and Bacillus subtilis tRNAVal and tRNAThr could be cross-linked, but E. coli tRNA2Val, 5-fluorouracil-substituted tRNA1Val, tRNAPhe, or tRNAFMet could not. By sequence comparison of the reactive and nonreactive tRNAs, the site of attachment in the tRNA was deduced to be the 5'-anticodon base, cmo5U, or ,o5U in all of the reactive tRNAs. The attachment site in 16S RNA is described in the accompanying paper [Zimmerman, R. A., Gates, S. M., Schwartz, I., & Ofengand, J. (1979) Biochemistry (following paper in this issue)]. The link between tRNA and 16S RNA is either direct or involves mRNA bases at most two nucleotides apart since use of the trinucleotide GpUpU in place of poly(U2,G) to direct the binding and cross-linking of N-acetylvalyl-tRNA to the P site did not affect either the rate or yield of cross-linking. Both B. subtilis tRNAVal (mo5U) and E. coli tRNA1Val (cmo5U) gave the same rate and yield of cross-linking when directed by the trinucleotide GpUpU. Therefore, the presence of the charged carboxyl group in the cmo5U-containing tRNA apparently does not markedly perturb the orientation of this base with respect to its reaction partner in the 16S RNA. The cross-linking of AcVal-tRNA only takes place from the P site. At 75 mM KCl and 75 mM NH4Cl, less than 0.4% cross-linking was found at the A site, while 55.5% was obtained at the P site. However, when the salt concentration was lowered to 50 mM NH4Cl, 5% cross-linking to the A site was detected, compared to 49% at the P site. Thus, a simple change in the ionic strength of the incubation mixture was able to alter the affinity labeling pattern of the ribosome.  相似文献   

3.
I Schwartz  J Ofengand 《Biochemistry》1978,17(13):2524-2530
Acetylvalyl-, acetylphenylalanyl-, and formylmethionyl-tRNA which were derivatized at their 4-thiouridine residues with the photoaffinity label, p-azidophenacyl bromide, were nonenzymatically bound to salt-washed ribosomes. More than 90% of the binding was to the P site as judged by reactivity with puromycin. Subsequent irradiation (greater than 310 nm) of the tRNA-ribosome complexes resulted in the covalent linking of only the acetylvalyl-tRNA to the 30S subunit. Attachment was solely to the 16S RNA with an efficiency of cross-linking of 13--15%. Covalent linking was 90% inhibited by prior treatment with puromycin, showing that the covalent linking reaction had taken place at the P site. Cross-linking required irradiation and mRNA but was not dependent on the presence of the photoaffinity probe in the tRNA. tRNAs whose 4-thiouridine had been modified with unreactive analogues of p-azidophenacyl bromide or unmodified acetylvalyl-tRNA exhibited the same cross-linking behavior as photoaffinity probe-modified acetylvalyl-tRNA. Furthermore, even acetylvalyl-tRNA whose 4-thiouridine had been removed by treatment with H2O2 was quantitatively as active as unmodified tRNA. These results provide the first demonstration of direct photochemical cross-linking of tRNA to ribosomes.  相似文献   

4.
5.
Electron microscopy revealed reproducible secondary structure patterns within partially denatured 16S and 23S ribosomal ribonucleic acid (rRNA) from Escherichia coli. When prepared with 50% formamide-100 mM ammonium acetate, 16S rRNA included two small hairpins that appeared in over 50% of all molecules. Three open loops were observed with frequencies of less than 25%. In contrast, 23S rRNA included a terminal open loop and two additional large structures in over 75% of all molecules. These secondary structure patterns were conserved in the 16S and 23S rRNA from Pseudomonas aeruginosa. The secondary structure of the 30S precursor rRNA from the ribonclease III-deficient E. coli mutant AB105 was mapped after partial denaturation in 70% formamide-100 mM ammonium acetate. Two large open loops were superimposed on the 16S and 23S rRNA secondary structure patterns. These loops were the most frequent structures found on the precursor, and their stems coincided with ribonuclease III cleavage sites. A tentative 5'-3 orientation was determined for the secondary structure patterns of 16S and 23S rRNA from their relative locations within 30S precursor rRNA. The relation of secondary structure to ribosomal protein binding and ribonuclease III cleavage is discussed.  相似文献   

6.
7.
M A Peters  T A Walker  N R Pace 《Biochemistry》1982,21(10):2329-2335
Limited digestion of mouse 5.8S ribosomal RNA (rRNA) with RNase T2 generates 5'- and 3'-terminal "half-molecules". These fragments are capable of independently and specifically binding to 28S rRNA, so there exist at least two contacts in the 5.8S rRNA for the 28S rRNA. The dissociation constants for the 5.8S/28S, 5' 5.8S fragment/28S, and 3' 5.8S fragment/28S complexes are 9 x 10(-8) M, 6 x 10(-8) M, and 13 x 10(-8) M, respectively. Thus, each of the fragment binding sites contributes about equally to the overall binding energy of the 5.8S/28S rRNA complex, and the binding sites act independently, rather than cooperatively. The dissociation constants suggest that the 5.8S rRNA termini from short, irregular helices with 28S rRNA. Thermal denaturation data on complexes containing 28S rRNA and each of the half-molecules of 5.8S rRNA indicate that the 5'-terminal binding site(s) exist(s) in a single conformation while the 3'-terminal site exhibits two conformational alternatives. The functional significance of the different conformational states is presently indeterminate, but the possibility they may represent alternative forms of a conformational switch operative during ribosome function is discussed.  相似文献   

8.
9.
The sequence of the 521 nucleotides at the 3' end of a rat 28 S rRNA gene was determined. The region encompasses the site of cleavage of 28 S rRNA by the cytotoxin alpha-sarcin. The toxin hydrolyzes a phosphodiester bond on the 3' side of a guanine residue 393 nucleotides from the 3' end. The alpha-sarcin domain is composed of a purine-rich sequence of 14 highly conserved nucleotides.  相似文献   

10.
Evidence that 32 S nRNA contains 5.8 S rRNA was provided by studies on specific oligonucleotide sequences of these RNA species. Purified 32P-labeled 5.8 and 28 S rRNA and 32 S RNA were digested with T-1 ribonuclease, and the products were fractionated according to chain length by chromatography on DEAE-Sephadex A-25 at neutral pH. The oligonucleotides in Peak 8 were treated with alkaline phosphatase and the products were separated by two-dimensional electrophoresis on cellulose acetate at pH 3.5 and DEAE-paper in 7% formic acid. Seven unique oligonucleotide markers for 5.8 S rRNA including the methylated octanucleotide A-A-U-U-Gm-G-A-Gp were present in 32 S RNA but were not found in 28 S rRNA, indicating that 5.8 S rRNA is directly derived from the 32 S nucleolar precursor. These studies confirm a maturation pathway for rRNA species in which 32 S nucleolar RNA is a precursor of 5.8 S rRNA as well as 28 S rRNA.  相似文献   

11.
1. Crude extracts of Escherichia coli programmed in protein synthesis by endogenous mRNA have incorporated amino acids into protein. Analysis of such extracts by sucrose-gradient centrifugation in low Mg(2+) concentration has revealed that 30S ribosomal subunits carry associated radioactive material of which a considerable proportion can be removed from ribosomes by treatment of pre-labelled extracts with puromycin. 2. Gradient analyses of incorporations carried out in the additional presence of added (32)P-labelled tRNA have indicated that tRNA sediments in the regions of the newly synthesized nascent protein and that both labels are associated with all ribosomal components detected on the gradients under the experimental conditions employed. 3. 30S ribosomal subunits carrying both (32)P and (14)C labels have been isolated, disrupted with sodium dodecyl sulphate, and analysed by chromatography on Sephadex G-200 columns. Both labels elute closely together and well away from a tRNA marker analysed under identical conditions. 4. It is proposed that 30S ribosomal subunits, isolated from extracts which have synthesized nascent peptides under the direction of endogenous mRNA, carry associated peptidyl-tRNA.  相似文献   

12.
D Robbins  B Hardesty 《Biochemistry》1983,22(24):5675-5679
Distances were measured by nonradiative energy transfer from fluorescent probes specifically located on one of three points of yeast or Escherichia coli Phe-tRNAPhe enzymatically bound to the entry site or to the acceptor site of E. coli 70S ribosomes to energy-accepting probes on the 3' end of the 16S ribonucleic acid (RNA) of the 30S subunit. The Y base in the anticodon loop of yeast tRNAPhe was replaced by proflavin. Fluorescein isothiocyanate was attached to the X base (position 47) of E. coli tRNAPhe. E. coli tRNAPhe which had been photochemically cross-linked between positions 8 and 13 followed by chemical reduction to form a fluorescent probe was also used. Labeled tRNAs were aminoacylated and enzymatically bound to the ribosome in the presence of elongation factor Tu and guanosine 5'-triphosphate (acceptor-site binding) or a nonhydrolyzable analogue (entry-site binding). Nonradiative energy transfer measurements were made of the distances between fluorophores located on the Phe-tRNA and the fluorophore at the 3' end of 16S RNA. Calculations were based on comparison of the fluorescence lifetime of the energy donor, located on the Phe-tRNA, in the absence and presence of an energy acceptor on the 3' end of the 16S RNA. Under both sets of binding conditions, the distances to the 3' end of 16S RNA were found to be the following: cross-linked tRNA, greater than 69 A; Y base of tRNA, greater than 61 A. The distance between the 3' end of 16S RNA and the X base of tRNA was found to be 81 A under acceptor-site binding conditions but greater than 86 A under entry-site binding conditions.  相似文献   

13.
T O Sitz  N Banerjee  R N Nazar 《Biochemistry》1981,20(14):4029-4033
Naturally occurring differences in the nucleotide sequences of 5.8S ribosomal ribonucleic acids (rRNAs) from a variety of organisms have been used to study the role of specific nucleotides in the secondary structure and intermolecular interactions of this RNA. Significant differences in the electrophoretic mobilities of free 5.8S RNAs and the thermal stabilities of 5.8S--28S rRNA complexes were observed even in such closely related sequences as those of man, rat, turtle, and chicken. A single base transition from a guanylic acid residue in position 2 in mammalian 5.8S rRNA to an adenylic acid residue in turtle and chicken 5.8S rRNA results both in a more open molecular conformation and in a 5.8S--28S rRNA junction which is 3.5 degrees C more stable to thermal denaturation. Other changes such as the deletion of single nucleotides from either the 5' or the 3' terminals have no detectable effect on these features. The results support secondary structure models for free 5.8S rRNA in which the termini interact to various degrees and 5.8S--28S rRNA junctions in which both termini of the 5.8S molecule interact with the cognate high molecular weight RNA component.  相似文献   

14.
15.
16.
Incubation of 3-day-old rat brain with L-[methyl-3H]methionine resulted in the rapid labeling of low-molecular-weight cytoplasmic RNA. Electrophoresis in 15% polyacrylamide gels provided evidence for the methylation of precursor tRNA molecules, and high-performance liquid chromatography demonstrated N2-methylguanine to be the predominant methylated base formed during the first 2 min of labelling.  相似文献   

17.
Dissection of the 16S rRNA binding site for ribosomal protein S4   总被引:4,自引:0,他引:4  
The ribosomal protein S4 from Escherichia coli is essential for initiation of assembly of 30S ribosomal subunits. We have undertaken the identification of specific features required in the 16S rRNA for S4 recognition by synthesizing mutants bearing deletions within a 460 nucleotide region which contains the minimum S4 binding site. We made a set of large nested deletions in a subdomain of the molecule, as well as individual deletions of nine hairpins, and used a nitrocellulose filter binding assay to calculate association constants. Some small hairpins can be eliminated with only minor effects on S4 recognition, while three hairpins scattered throughout the domain (76-90, 376-389 and 456-476) are essential for specific interaction. The loop sequence of hairpin 456-476 is important for S4 binding, and may be directly recognized by the protein. Some of the essential features are in phylogenetically variable regions; consistent with this, Mycoplasma capricolum rRNA is only weakly recognized by S4, and no specific binding to Xenopus laevis rRNA can be detected.  相似文献   

18.
19.
The genes for tranfer ribonucleic acid (tDNA) and 5S ribonucleic acid (5SDNA) were isolated from the total deoxyribonucleic acid (DNA) of Escherichia coli. The relatedness of tDNA and 5S from E. coli and other species of Enterobacteriaceae was determined by reassociation of the isolated genes labeled with 32PO4 to unlabeled, unfractionated DNA. Double-stranded DNA was separated from unreacted DNA by hydroxyapatite chromatography. Thermal elution profiles were done to determine the amount of unpaired bases present in related DNA sequences. Relative to total DNA, both 5S DNA and tDNA were highly conserved throughout the Enterobacteriaceae, including the genera Yersinia and Proteus.  相似文献   

20.
The suggested involvement of ribonuclease II in the maturation of rRNA has been examined directly by determining the activity of the enzyme and the amount of p16S rRNA in cell-free extracts from Escherichia coli A19 and its temperature-sensitive derivative N464 grown under experimental conditions designed to vary the amounts of enzyme and precursor independently. In strain A19 the enzyme showed maximum activity in circumstances where the amount of p16S rRNA was normal (e.g. exponential-phase cells) or raised eight times (e.g. during inhibition of growth by methionine starvation of the relaxed auxotroph or by chloramphenicol or puromycin treatment). In strain N464 at the non-permissive temperature the ribonuclease II activity may be decreased by 50% without effect upon the amount of p16S rRNA, whereas in methionine starvation of this strain the enzyme activity is at a maximum and the p16S rRNA is eight times that in exponential-phase cells. These observations are discussed in relation to the previously implied role of ribonuclease II in the maturation of rRNA within ribosome precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号