首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Key insight into the complexities of apoptosis may be gained from the study of its evolution in lower metazoans. In this study we describe two genes from a cnidarian, Aiptasia pallida, that are homologous to key genes in the apoptotic pathway from vertebrates. The first is a novel ancient caspase, acasp, that displays attributes of both initiator and executioner caspases and includes a caspase recruitment domain (CARD). The second, a Bcl-2 family member, abhp, contains a BH1 and BH2 domain and shares structural characteristics and phylogenetic affinity with a group of antiapoptotic Bcl-2s including A1 and Bcl-2L10. The breadth of occurrence of other invertebrate homologues across the phylogenetic trees of both genes suggests that the complexity of apoptotic pathways is an ancient trait that predates the evolution of vertebrates and higher invertebrates such as nematodes and flies. This paves the way for establishing new lower metazoan model systems for the study of apoptosis. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Stuart Newfeld]  相似文献   

2.
3.
4.
5.
Hahn Y  Lee B 《Human genetics》2006,119(1-2):169-178
The comparative study of the human and chimpanzee genomes may shed light on the genetic ingredients for the evolution of the unique traits of humans. Here, we present a simple procedure to identify human-specific nonsense mutations that might have arisen since the human–chimpanzee divergence. The procedure involves collecting orthologous sequences in which a stop codon of the human sequence is aligned to a non-stop codon in the chimpanzee sequence and verifying that the latter is ancestral by finding homologs in other species without a stop codon. Using this procedure, we identify nine genes (CML2, FLJ14640, MT1L, NPPA, PDE3B, SERPINA13, TAP2, UIP1, and ZNF277) that would produce human-specific truncated proteins resulting in a loss or modification of the function. The premature terminations of CML2, MT1L, and SERPINA13 genes appear to abolish the original function of the encoded protein because the mutation removes a major part of the known active site in each case. The other six mutated genes are either known or presumed to produce functionally modified proteins. The mutations of five genes (CML2, FLJ14640, MT1L, NPPA, TAP2) are known or predicted to be polymorphic in humans. In these cases, the stop codon alleles are more prevalent than the ancestral allele, suggesting that the mutant alleles are approaching fixation since their emergence during the human evolution. The findings support the notion that functional modification or inactivation of genes by nonsense mutation is a part of the process of adaptive evolution and acquisition of species-specific features. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
7.
8.
9.
Toll-like receptors (TLRs) recognize various microbial components and induce immune responses. Polymorphisms in TLRs may influence their recognition of pathogen-derived molecules; swine TLRs are predicted to be associated with responses to infectious diseases such as pneumonia. In this study, we searched for single nucleotide polymorphisms (SNPs) in the coding sequences of porcine TLR1, TLR2, TLR4, TLR5, and TLR6 genes in 96 pigs from 11 breeds and elucidated 21, 11, 7, 13, and 11 SNPs, respectively, which caused amino acid substitutions in the respective TLRs. Distribution of these nonsynonymous SNPs was biased; many were located in the leucine-rich repeats, particularly in TLR1. These data demonstrated that the heterogeneity of TLR genes was preserved in various porcine breeds despite intensive breeding that was carried out for livestock improvement. It suggests that the heterogeneity in TLR genes is advantageous in increasing the possibility of survival in porcine populations.Electronic SupplementaryMaterial Supplementary material is available for this article at  相似文献   

10.
Müller KJ  He X  Fischer R  Prüfer D 《Planta》2006,224(5):1023-1027
Seed plants with compound leaves constitute a polyphyletic group, but studies of diverse taxa show that genes of the class 1 KNOTTED-LIKE HOMEOBOX (KNOX1) family are often involved in compound leaf development. This suggests that knox1 genes have been recruited on multiple occasions during angiosperm evolution (Bharathan et al. in Science 296:1858–1860, 2002). In agreement with this, we demonstrate that the simple leaf of dandelion (Taraxacum officinale Web.) can be converted into a compound leaf by the constitutive expression of heterologous knox1 genes. Dandelion is a rosette plant of the family Asteraceae, characterised by simple leaves with deeply lobed margins and endogenous knox1 gene expression. Transgenic dandelion plants constitutively expressing the barley (Hordeum vulgare L.) hooded gene (bkn3, barley knox3) or the related bkn1 gene, developed compound leaves featuring epiphyllous rosettes. We discuss these results in the context of two current models of compound leaf formation.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
Plant root secretion can be regarded as signal molecules, which exerts impact on microorganisms in the rhizosphere ecological niche. We obtained gene expression profile of Ralstonia solanacearumPO41 under the root secretions environment of Solanum tuberosum at the time points of 8 hrs, 16 hrs and 24 hrs, respectively, after infection with RNA microarray technology. Bioinformatics tools of differential genes expression analysis, GO functional analysis, cluster analysis and pathway analysis were conducted to find out the pathogenic genes and other related genes. We found that the virulence factors of R. solanacearum mainly focused on the output pathways of toxic protein (Sec pathway, Tat pathway and type III secretion system (T3SS)), the aggregation and transfer of exopolysaccharides and the chemotactic movement and adhesion of flagellum in the potato root secretion ecological niche, while the virulence factors in the atypical output pathway mainly distributed in Sec (secB, secDF, yidc) and Tat (tatA, tatC) pathways to promote the output of folded and unfolded toxic proteins. The fliIATPase was obviously upregulated 8 hrs postinoculation, suggesting that type III secretion system was only active at the early stage of PO41 infection. The upregulated expression of phosphoglucomutase and epimerase showed that the virulence factor of exopolysaccharides (EPS) was synthesized at the early stage of R. solanacearum infection. Chemotactic receptor and motor protein were obviously upregulated within 24 hrs postinoculation. Our study revealed that R. solanacearumPO41 had already colonized to the roots within 24 hrs with the stimulating of root secretion. Some pathogenic genes were upregulated during this period.  相似文献   

12.
Bao WB  Ye L  Pan ZY  Zhu J  Du ZD  Zhu GQ  Huang XG  Wu SL 《Animal genetics》2012,43(5):525-534
In this study, Agilent two‐colour microarray‐based gene expression profiling was used to detect differential gene expression in duodenal tissues collected from eight full‐sib pairs of Sutai pigs differing in adhesion phenotype (sensitivity and resistance to Escherichia coli F18). Using a two‐fold change minimum threshold, we found 18 genes that were differentially expressed (10 up‐regulated and eight down‐regulated) between the sensitive and resistant animal groups. Our gene ontology analysis revealed that these differentially expressed genes are involved in a variety of biological processes, including immune responses, extracellular modification (e.g. glycosylation), cell adhesion and signal transduction, all of which are related to the anabolic metabolism of glycolipids, as well as to inflammation‐ and immune‐related pathways. Based on the genes identified in the screen and the pathway analysis results, real‐time PCR was used to test the involvement of ST3GAL1 and A genes (of glycolipid‐related pathways), SLA‐1 and SLA‐3 genes (of inflammation‐ and immune‐related pathways), as well as the differential genes FUT1, TAP1 and SLA‐DQA. Subsequently, real‐time PCR was performed to validate seven differentially expressed genes screened out by the microarray approach, and sufficient consistency was observed between the two methods. The results support the conclusion that these genes are related to the E. coli F18 receptor and susceptibility to E. coli F18.  相似文献   

13.
14.
When grown on solid agar medium, the mycelium of a filamentous fungus, Aspergillus oryzae, forms three morphologically distinct regions: the tip (T), white (W), and basal (B) regions. In this study, we developed the square-plate culture method, a novel culture method that enabled the extraction of mRNA samples from the three regions and analyzed the differential gene expression of the A. oryzae mycelium in concert with the microarray technique. Expression of genes involved in protein synthesis was predominant in the T region; relative expression was, at most, six times higher in the T region compared to the other regions. Genes encoding hypothetical proteins were expressed at high levels in the W and B regions. In addition, genes coding transporters/permeases were predominantly transcribed in the B region. By analyzing the expression patterns of genes in the three regions, we demonstrated the dynamic changes in the regulation of gene expression that occur along the mycelium of filamentous fungi. Consequently, our study established a method to analyze and screen for region-specific genes whose function may be essential for morphogenesis and differentiation in filamentous fungi and whose traits may be beneficial to the biotechnology industry.Electronic Supplementary Materials Supplementary material is available for this article at  相似文献   

15.
16.
17.
Eom H  Lee CG  Jin E 《Planta》2006,223(6):1231-1242
The unicellular green alga Haematococcus pluvialis (Volvocales) is known for the ketocarotenoid astaxanthin (3, 3′-dihydroxy-β, β-carotene-4, 4′-dione) accumulation, which is induced under unfavorable culture conditions. In this work, we used cDNA microarray analysis to screen differentially expressed genes in H. pluvialis under astaxanthin-inductive culture conditions, such as combination of cell exposure to high irradiance and nutrient deprivation. Among the 965 genes in the cDNA array, there are 144 genes exhibiting differential expression (twofold changes) under these conditions. A significant decrease in the expression of photosynthesis-related genes was shown in astaxanthin-accumulating cells (red cells). Defense- or stress-related genes and signal transduction genes were also induced in the red cells. A comparison of microarray and real-time PCR analysis showed good correlation between the differentially expressed genes by the two methods. Our results indicate that the cDNA microarray approach, as employed in this work, can be relied upon and used to monitor gene expression profiles in H. pluvialis. In addition, the genes that were differentially expressed during astaxanthin induction are suitable candidates for further study and can be used as tools for dissecting the molecular mechanism of this unique pigment accumulation process in the green alga H. pluvialis. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

18.
19.
20.
The hypersensitive response (HR) is one of the most-efficient forms of plant defense against biotrophic pathogens, and results in localized cell death and the formation of necrotic lesions; however, the molecular components of pathways leading to HR remain largely unknown. Barley (Hordeum vulgare ssp. vulgare L.) cDNAs for putative hypersensitive-induced reaction (HIR) genes were isolated based on DNA and amino-acid homologies to maize HIR genes. Analyses of the cDNA and genomic sequences and genetic mapping found four distinct barley HIR genes, Hv-hir1, Hv-hir2, Hv-hir3 and Hv-hir4, on chromosomes 4(4H) bin10, 7(5H) bin04, 7(5H) bin07 and 1(7H) bin03, respectively. Hv-hir1, Hv-hir2 and Hv-hir3 genes were highly homologous at both DNA and the deduced amino-acid level, but the Hv-hir4 gene was similar to the other genes only at the amino-acid sequence level. Amino-acid sequence analyses of the barley HIR proteins indicated the presence of the SPFH protein-domain characteristic for the prohibitins and stomatins which are involved in control of the cell cycle and ion channels, as well as in other membrane-associated proteins from bacteria, plants and animals. HIR genes were expressed in all organs and developement stages analyzed, indicating a vital and non-redundant function. Barley fast-neutron mutants exhibiting spontaneous HR (disease lesion mimic mutants) showed up to a 35-fold increase in Hv-hir3 expression, implicating HIR genes in the induction of HR.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by G. Wenzel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号