首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactic acid fermentation includes several reactions in association with the microorganism growth. A kinetic study was performed of the conversion of multiple substrates to lactic acid using Lactobacillus bulgaricus. Batch experiments were performed to study the effect of different substrates (lactose, glucose, and galactose) on the overall bioreaction rate. During the first hours of fermentation, glucose and galactose accumulated in the medium and the rate of hydrolysis of lactose to glucose and galactose was faster than the convesion of these substrates. Once the microorganism built the necessary enzymes for the substrate conversion to lactic acid, the conversion rate was higher for glucose than for galactose. The inoculum preparation was performed in such a way that healthy young cells were obtained. By using this inoculum, shorter fermentation times with very little lag phase were observed. The consumption patterns of the different substrates converted to lactic acid were studied to determine which substrate controls the overall reaction for lactic acid production. A mathematical model (unstructured Monod type) was developed to describe microorganism growth and lactic acid production. A good fit with a simple equation was obtained. It was found experimentally that the approximate ratio of cell to substrate was 1 to 10, the growth yield coefficient (Y(XS)) was 0.10 g cell/g substrate, the product yield (Y(PS)) was 0.90 g lactic acid/g substrate, and the alpha parameter in the Luedeking-Piret equation was 9. The Monod kinetic parameters were obtained. The saturation constant (K(S)) was 3.36 g/L, and the specific growth rate (microm ) was 1.14 l/h.  相似文献   

2.
Summary Chemical mutagenesis with ethyl methanesulfonate (EMS) was used to develop strains ofLactobacillus delbrueckii (ATCC 9649) that tolerated increased lactic acid concentrations while continuously producing the acid. Three mutants (DP2, DP3 and DP4) were compared with wild-typeL. delbrueckii by standing fermentations with different glucose concentrations. All three mutants produced higher levels of lactic acid than the wild-type. In pH-controlled (pH 6.0) stirred-tank-batch fermentations, mutant DP3 in 12% glucose, 1% yeast extract/mineral salt/oleic acid medium produced lactic acid at a rate that was more than 2-times faster than the wild-type. Mutant DP3 also produced 77 g/l lactic acid compared with 58 g/l for the wild-type. Overall, compated with wild-type, the mutants DP2 and DP3 exhibited faster specific growth rates, shorter lag phases, greater lactic acid yields, tolerated higher lactic acid concentrations, and produced as much as 12% lactic acid in 12% glucose, 3% yeast extract/mineral salt/oleic acid medium which required an additional 9% glucose when the residual glucose concentration decreased to 3%. Mutant DP3 was stable for over 1.5 years (stored freeze dried). The strain development procedure was very successful; mutants with enhanced lactic acid-producing capacity were obtained each time the procedure was employed.Journal Paper No. J-14087 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA. Projects No. 2889 and 0178.  相似文献   

3.
Process variables and concentration of carbon in media were optimised for lactic acid production by Lactobacillus casei NRRL B-441. Lactic acid yield was inversely proportional to initial glucose concentration within the experimental area (80-160 g l(-1)). The highest lactic acid concentration in batch fermentation, 118.6 g l(-1), was obtained with 160 g 1(-1) glucose. The maximum volumetric productivity, 4.4 g 1(-1) h(-1) at 15 h, was achieved at an initial glucose concentration of 100 g l(-1). Similar lactic acid concentrations were reached with a fedbatch approach using growing cells, in which case the fermentation time was much shorter. Statistical experimental design and response surface methodology were used for optimising the process variables. The temperature and pH optima for lactic acid production were 35 degrees C, pH 6.3. Malt sprout extract supplemented with yeast extract (4 g l(-1)) appeared to be an economical alternative to yeast extract alone (22 g l(-1)) although the fermentation time was a little longer. The results demonstrated both the separation of the growth and lactic acid production phases and lactic acid production by non-growing cells without any nutrient supplements. Resting L. casei cells converted 120 g l(-1) glucose to lactic acid with 100% yield and a maximum volumetric productivity of 3.5 g l(-1) h(-1).  相似文献   

4.
Wang Y  Li Y  Pei X  Yu L  Feng Y 《Journal of biotechnology》2007,129(3):510-515
Genome shuffling is an efficient approach for the rapid improvement of industrially important microbial phenotypes. Here we improved the acid tolerance and volumetric productivity of an industrial strain Lactobacillus rhamnosus ATCC 11443 by genome shuffling. Five strains with subtle improvements in pH tolerance and volumetric productivity were obtained from the populations generated by ultraviolet irradiation and nitrosoguanidine mutagenesis, and then they were subjected for recursive protoplast fusion. A library that was more likely to yield positive colonies was created by fusing the lethal protoplasts obtained from both ultraviolet irradiation and heat treatments. After three rounds of genome shuffling, four strains that could grow at pH 3.6 were obtained. We observed 3.1- and 2.6-fold increases in lactic acid production and cell growth of the best performing at pH 3.8, respectively. The maximum volumetric productivity was 5.77+/-0.05 g/lh when fermented with 10% glucose under neutralizing condition with CaCO(3), which was 26.5+/-1.5% higher than the wild type.  相似文献   

5.
Lactic acid production from salt whey using free and agar immobilized cells   总被引:2,自引:0,他引:2  
Salt whey was examined as a substrate for lactic acid production by Lactobacillus casei in conventional and immobilized cell batch systems. In cell suspension systems this strain was not able to metabolize lactose in the presence of salt concentrations much above 4%. However, the entrapment of cells in 2% agar substantially improved their activity and allowed slow metabolism even in the presence of 8% salt. The agar matrix retained its structure and dimensional stability during 168 h in salt medium.  相似文献   

6.
The effects of initial glucose concentration and calcium lactate concentration on the lactic acid production by the parent strain, Lactobacillus lactis BME5-18, were studied. The results of the experiments indicated that glucose and lactate repressed the cell growth and the lactic acid production by Lactobacillus lactis BME5-18. A L(+)-lactic acid overproducing strain, Lactobacillus lactis BME5-18M, was screened by mutagenizing the parent strain with ultraviolet (UV) light irradiation and selecting the high glucose and lactate calcium concentration repression resistant mutant. Starting with a concentration of 100g L(-1) glucose, the mutant produced 98.6 g L(-1) lactic acid after 60 h in flasks, 73.9% higher than that of the parent strain. The L(+)-lactic acid purity was 98.1% by weight based on the amount of total lactic acid. The culture of the parent strain could not be analyzed well by conventional metabolic flux analysis techniques, since some pyruvate were accumulated intracellularly. Therefore, a revised flux analysis method was proposed by introducing intracellular pyruvate pool. Further studies demonstrate that there is a high level of NADH oxidase activity (12.11 mmol mg(-1) min(-1)) in the parent strain. The molecular mechanisms of the strain improvement were proposed, i.e., the high level of NADH oxidase activity was eliminated and the uptake rate of glucose was increased from 82.1 C-mmol (g DW h)(-1) to 98.9 C-mmol (g DW h)(-1) by mutagenizing the parent strain with UV, and therefore the mutant strain converts mostly pyruvate to lactic acid with a higher productivity (1.76 g L(-1) h(-1)) than the parent strain (0.95 g L(-1) h(-1)).  相似文献   

7.
Lactobacillus amylophilus strain GV6, isolated from corn starch processing industrial wastes, was amylolytic and produced 0.96?g L(+) lactic acid per gram of soluble starch. The optimum temperature and pH for growth and L(+) lactic acid production were 37?°C and 6.5, respectively. At low substrate concentrations, the lactic acid production on corn starch was almost similar to soluble starch. The strain is fermenting various naturally available starches directly to lactic acid. The total amylase activity of the strain is 0.59?U/ml/min. The strain produced 49 and 76.2?g/l L(+) lactic acid from 60?g/l corn starch and 90?g/l soluble starch, respectively. This is the highest L(+) lactic acid among the wild strains of L. amylophilus reported so far.  相似文献   

8.
牙鲆肠道乳酸菌的分离和鉴定   总被引:4,自引:0,他引:4  
目的:根据微生态学原理,从健康牙鲆的肠道固有菌群中分离乳酸菌。方法:需氧与厌氧培养法。结果:两种方法获得了不同的结果,用LBS(pH6.5)直接分离,从19株分离菌中只获得6株乳酸菌,其中1株P15为乳杆菌;而用LBS(pH5.4)和SL(pH5.4)先富集后分离得到了许多单一的乳杆菌菌落。对所分离的乳杆菌进行生化鉴定,均符合该菌的生化特征。牛津杯抑菌试验显示,乳酸菌对弧菌均有抑制作用,其中乳杆菌P15在pH6.8和pH7.5生长良好,并对弧菌有强力的抑制作用;而在pH8.0和pH8.5时该菌生长不良且无抑菌活性。  相似文献   

9.
Sorbitol is a low-calorie sugar alcohol that is largely used as an ingredient in the food industry, based on its sweetness and its high solubility. Here, we investigated the capacity of Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products and in the gastrointestinal tract of mammals, to produce sorbitol from fructose-6-phosphate by reverting the sorbitol catabolic pathway in a mutant strain deficient for both l- and d-lactate dehydrogenase activities. The two sorbitol-6-phosphate dehydrogenase (Stl6PDH) genes (srlD1 and srlD2) identified in the genome sequence were constitutively expressed at a high level in this mutant strain. Both Stl6PDH enzymes were shown to be active, and high specific activity could be detected in the overexpressing strains. Using resting cells under pH control with glucose as a substrate, both Stl6PDHs were capable of rerouting the glycolytic flux from fructose-6-phosphate toward sorbitol production with a remarkably high efficiency (61 to 65% glucose conversion), which is close to the maximal theoretical value of 67%. Mannitol production was also detected, albeit at a lower level than the control strain (9 to 13% glucose conversion), indicating competition for fructose-6-phosphate rerouting by natively expressed mannitol-1-phosphate dehydrogenase. By analogy, low levels of this enzyme were detected in both the wild-type and the lactate dehydrogenase-deficient strain backgrounds. After optimization, 25% of sugar conversion into sorbitol was achieved with cells grown under pH control. The role of intracellular NADH pools in the determination of the maximal sorbitol production is discussed.  相似文献   

10.
Lactobacillus brevis is a promising lactic acid producing strain that simultaneously utilizes glucose and xylose from lignocellulosic hydrolysate without carbon catabolic repression and inhibition. The production of by-products acetic acid and ethanol has been the major drawback of this strain. Two genes, pfkA (fructose-6-phosphate kinase [PFK]) and fbaA (fructose-1,6-biphosphate aldolase [FBA]), that encode the key enzymes of the EMP/glycolytic pathway from Lactobacillus rhamnosus, were fused to the downstream of the strong promoter P32 and expressed in L. brevis s3f4 as a strategy to minimize the formation of by-products. By expressing the two enzymes, a homo-fermentative pathway for lactic acid production was constructed. The lactic acid yields achieved from glucose in the transformants were 1.12 and 1.16 mol/mol, which is higher than that of the native strain (0.74 mol/mol). However, the lactic acid yield from xylose in the transformants stayed the same as that of the native strain. Enzyme assay indicated that the activity of the foreign protein FBA in the transformants was much higher than that of the native strains, but was ten times lower than that in L. rhamnosus. This result was consistent with the metabolic flux analysis, which indicated that the conversion efficiency of the expressed PFK and FBA was somewhat low. Less than 20 % of the carbons accumulated in the form of fructose-6-phosphate were converted into glyceraldehyde-3-phosphate (GAP) by the expressed PFK and FBA. Metabolic flux analysis also indicated that the enzyme phosphoketolase (XPK) played an important role in splitting the carbon flow from the pentose phosphate pathway to the phosphoketolase pathway. This study suggested that the lactic acid yield of L. brevis could be improved by constructing a homo-fermentative pathway.  相似文献   

11.
青海湖裸鲤肠道乳酸菌多样性与抑菌活性   总被引:1,自引:0,他引:1  
【目的】通过生理生化特性,结合16S r RNA基因序列分析研究青海湖裸鲤肠道乳酸菌分离株的多样性,并对这些代表株的抑菌活性进行初步探讨,以期筛选具有高效抑菌活性的鱼源益生菌。【方法】对分离的47株乳酸菌代表株进行p H、温度生长范围、耐盐性等生理生化特征检测,结合16S r RNA基因序列对已分离到的乳酸菌进行基因分型和菌种鉴定,采用牛津杯双层平板法检测乳酸菌代表株的抑菌活性。【结果】鉴定结果显示:23株为Lactobacillus fuchuensis(48.94%),12株为Lactobacillus curvatus(25.53%),3株为Leuconostoc fallax(6.38%),2株为Lactobacillus sakei(4.26%),2株为Weissella ceti(4.26%);2株为Lactococcus cremoris(4.26%),1株为Leuconostoc lactis(2.13%),1株为Weissella minor(2.13%),1株为Enterococcus devriesei(2.13%)。qz1217、qz1196、qz1220所在的A、B、C三组乳酸菌在5-50°C的温度范围内生长良好,qz1196、qz1220所在的B、C组在pH 3.0-10.0的范围内生长良好,几乎所有乳酸菌都具有耐6.5%盐浓度特性。13株乳酸菌菌株对6种病原菌都具有抑制作用。通过排除酸、过氧化氢实验,发现上清液仍然具有抑菌活性。对qz1251发酵液进行蛋白酶处理,抑菌活性消失,确定其抑菌物质属于蛋白类物质,是一种细菌素。【结论】青海湖裸鲤肠道附着乳酸菌的多样性为益生性乳酸菌的筛选提供优质资源及数据参考。  相似文献   

12.
甘露寡糖对纯培养和共培养的乳酸杆菌体外生长的影响   总被引:2,自引:1,他引:1  
三株(S、L和M)猪源乳酸杆菌以甘露寡糖(mannan-oligosaccharide, MOS)为碳源体外纯培养或与猪源致病性大肠杆菌共培养, 研究MOS对乳酸杆菌的选择性生长作用。结果表明, 纯培养时, 三株菌MOS组的OD值和乳酸浓度均高于对照, pH均低于对照, 但菌株之间存在差异。共培养时, 乳酸杆菌和大肠杆菌都可利用MOS进行生长, 但乳酸杆菌的生长强于大肠杆菌, 产生较多的乳酸、显著降低pH(P<0.05) , 这种促生长作用在最初的12 h较明显。  相似文献   

13.
Fifteen strains of Lactobacillus species, isolated from different samples of curd were screened for their ability to produce more extracellular protease. The proteolytic activities of these strains based on casein hydrolysis showed a variation of 1.26-5.80 U ml(-l), with Lactobacillus IH8 showing the maximum activity and was identified as L. paracasei. Different cultural conditions for enhanced production of protease by L. paracasei were optimized. The optimal conditions for production of the enzyme were an incubation temperature of 35 degrees C and a medium pH of 6.0. The maximum proteolytic activity of L. paracasei (7.28 Uml(-1)) was achieved after 48 h of cultivation. The kinetic parameters such as product yield (Yp/x,), growth yield (Yx/s), specific product yield (qp) and specific growth yield (qs) coefficients also revealed that the values of experimental results were kinetically significant.  相似文献   

14.
A rotating fibrous-bed bioreactor (RFB) was developed for fermentation to produce L(+)-lactic acid from glucose and cornstarch by Rhizopus oryzae. Fungal mycelia were immobilized on cotton cloth in the RFB for a prolonged period to study the fermentation kinetics and process stability. The pH and dissolved oxygen concentration (DO) were found to have significant effects on lactic acid productivity and yield, with pH 6 and 90% DO being the optimal conditions. A high lactic acid yield of 90% (w/w) and productivity of 2.5 g/L.h (467 g/h.m(2)) was obtained from glucose in fed-batch fermentation. When cornstarch was used as the substrate, the lactic acid yield was close to 100% (w/w) and the productivity was 1.65 g/L.h (300 g/h.m(2)). The highest concentration of lactic acid achieved in these fed-batch fermentations was 127 g/L. The immobilized-cells fermentation in the RFB gave a virtually cell-free fermentation broth and provided many advantages over conventional fermentation processes, especially those with freely suspended fungal cells. Without immobilization with the cotton cloth, mycelia grew everywhere in the fermentor and caused serious problems in reactor control and operation and consequently the fermentation was poor in lactic acid production. Oxygen transfer in the RFB was also studied and the volumetric oxygen transfer coefficients under various aeration and agitation conditions were determined and then used to estimate the oxygen transfer rate and uptake rate during the fermentation. The results showed that the oxygen uptake rate increased with increasing DO, indicating that oxygen transfer was limited by the diffusion inside the mycelial layer.  相似文献   

15.
A continuous coculture of four ruminal bacteria, Megasphaera elsdenii, Selenomonas ruminantium, Streptococcus bovis, and Lactobacillus sp. strain LB17, was used to study the effects of the ionophores monensin and tetronasin on the changes in ruminal microbial ecology that occur during the onset of lactic acidosis. In control incubations, the system simulated the development of lactic acidosis in vivo, with an initial overgrowth of S. bovis when an excess of glucose was added to the fermentor. Lactobacillus sp. strain LB17 subsequently became dominant as pH fell and lactate concentration rose. Both ionophores were able to prevent the accumulation of lactic acid and maintain a healthy non-lactate-producing bacterial population when added at the same time as an excess of glucose. Tetronasin was more potent in this respect than monensin. When tetronasin was added to the culture 24 h after glucose, the proliferation of lactobacilli was reversed and a non-lactate-producing bacterial population developed, with an associated drop in lactate concentration in the fermentor. Rises in culture pH and volatile fatty acid concentrations accompanied these changes. Monensin was unable to suppress the growth of lactobacilli; therefore, in contrast to tetronasin, monensin added 24 h after the addition of glucose failed to reverse the acidosis. Numbers of lactobacilli and lactate concentrations remained high, whereas pH and volatile fatty acid concentrations were low.  相似文献   

16.
Lactic acid fermentation of starch by Lactobacillus manihotivorans LMG 18010T, a new amylolytic L(+) lactic acid producer, was investigated and compared with starch fermentation by Lact. plantarum A6. At non-controlled pH, growth and lactic acid production from starch by Lact. manihotivorans LMG 18010T lasted 25 h. Specific growth and lactic acid production rates continuously decreased from the onset of the fermentation, unlike Lact. plantarum A6 which was able to grow and convert starch product hydrolysis into lactic acid more rapidly and efficiently at a constant rate up to pH 4.5. In spite of complete and rapid starch hydrolysis by Lact. manihotivorans LMG 18010T during the first 6 h, only 45% of starch hydrolysis products were converted to lactic acid. When pH was maintained at 6.0, lactic acid, amylase and final biomass production by Lact. manihotivorans LMG 18010T increased markedly and the fermentation time was reduced by half. Under the same conditions, an increase only in amylase production was observed with Lact. plantarum A6. When grown on glucose or starch at pH 6.0, Lact. manihotivorans LMG 18010T had an identical maximum specific growth rate (0.35 h(-1)), whereas the maximum rate of specific lactic acid production was three times higher with glucose as substrate. Lactobacillus manihotivorans LMG 18010T did not produce amylase when grown on glucose. Based on the differences in the physiology between the two species and other amylolytic lactic acid bacteria, different applications may be expected.  相似文献   

17.
Effects of lactobacilli on yeast-catalyzed ethanol fermentations.   总被引:4,自引:1,他引:3       下载免费PDF全文
Normal-gravity (22 to 24 degrees Plato) wheat mashes were inoculated with five industrially important strains of lactobacilli at approximately 10(5), approximately 10(6), approximately 10(7), approximately 10(8), and approximately 10(9) CFU/ml in order to study the effects of the lactobacilli on yeast growth and ethanol productivity. Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus #3, Lactobacillus rhamnosus, and Lactobacillus fermentum were used. Controls with yeast cells but no bacterial inoculation and additional treatments with bacteria alone inoculated at approximately 10(7) CFU/ml of mash were included. Decreased ethanol yields were due to the diversion of carbohydrates for bacterial growth and the production of lactic acid. As higher numbers of the bacteria were produced (depending on the strain), 1 to 1.5% (wt/vol) lactic acid resulted in the case of homofermentative organisms. L. fermentum, a heterofermentative organism, produced only 0.5% (wt/vol) lactic acid. When L. plantarum, L. rhamnosus, and L. fermentum were inoculated at approximately 10(6) CFU/ml, an approximately 2% decrease in the final ethanol concentration was observed. Smaller initial numbers (only 10(5) CFU/ml) of L. paracasei or Lactobacillus #3 were sufficient to cause more than 2% decreases in the final ethanol concentrations measured compared to the control. Such effects after an inoculation of only 10(5) CFU/ml may have been due to the higher tolerance to ethanol of the latter two bacteria, to the more rapid adaptation (shorter lag phase) of these two industrial organisms to fermentation conditions, and/or to their more rapid growth and metabolism. When up to 10(9) CFU of bacteria/ml was present in mash, approximately 3.8 to 7.6% reductions in ethanol concentration occurred depending on the strain. Production of lactic acid and a suspected competition with yeast cells for essential growth factors in the fermenting medium were the major reasons for reductions in yeast growth and final ethanol yield when lactic acid bacteria were present.  相似文献   

18.
A continuous coculture of four ruminal bacteria, Megasphaera elsdenii, Selenomonas ruminantium, Streptococcus bovis, and Lactobacillus sp. strain LB17, was used to study the effects of the ionophores monensin and tetronasin on the changes in ruminal microbial ecology that occur during the onset of lactic acidosis. In control incubations, the system simulated the development of lactic acidosis in vivo, with an initial overgrowth of S. bovis when an excess of glucose was added to the fermentor. Lactobacillus sp. strain LB17 subsequently became dominant as pH fell and lactate concentration rose. Both ionophores were able to prevent the accumulation of lactic acid and maintain a healthy non-lactate-producing bacterial population when added at the same time as an excess of glucose. Tetronasin was more potent in this respect than monensin. When tetronasin was added to the culture 24 h after glucose, the proliferation of lactobacilli was reversed and a non-lactate-producing bacterial population developed, with an associated drop in lactate concentration in the fermentor. Rises in culture pH and volatile fatty acid concentrations accompanied these changes. Monensin was unable to suppress the growth of lactobacilli; therefore, in contrast to tetronasin, monensin added 24 h after the addition of glucose failed to reverse the acidosis. Numbers of lactobacilli and lactate concentrations remained high, whereas pH and volatile fatty acid concentrations were low.  相似文献   

19.
Lactobacillus amylophilus GV6 fermented a variety of pure and natural starches directly to L(+) lactic acid. Starch to lactic acid conversion efficiency was more than 90% by strain GV6 at low substrate concentrations with all starches. The strain GV6 produced high yields of lactic acid per g of substrate utilized with pure starches such as soluble starch, corn starch, and potato starch, yielding 92–96% at low substrate concentrations in 2 days and 78–89% at high substrate (10%) concentrations in 4–6 days. Strain GV6 also produced high yields of lactic acid per g of substrate utilized with crude starchy substrates such as wheat flour, sorghum flour, cassava flour, rice flour and barley flour yielding 90–93% at low substrate concentrations in 2 days and 80% or more at high substrate concentrations in 6–7 days. Lactic acid yields by L. amylophilus GV6 with pure starches were comparable when low cost crude starchy substrates were used. Lactic acid productivity by strain GV6 is higher than for any other previously reported strains of L. amylophilus.  相似文献   

20.
Fermentation conditions and microorganisms were determined, based on acid production, glucose concentration as carbohydrate source. Inoculation levels to obtain a stable shrimp waste silage were also determined. Shrimp waste ensilation was an efficient method of preservation, allowing the recovery of chitin and another added-value products such as pigments, proteins and enzymes. From the various lactic acid bacteria tested, Lactobacillus pentosus and Lactobacillus sp. (B2) were the best lactic acid producers, although small quantities of acetic acid were detected in samples inoculated with Lactobacillus pentosus. Therefore B2 was chosen for the analysis of glucose consumption as well as for the determination of optimum inoculation levels. The best results were obtained at 10% (w/w wet basis) and 5% (v/w wet basis) respectively. Presence of starters and initial glucose concentration were critical factors in the fermentation of shrimp waste. High initial glucose and starter concentrations reduced the time and increased the amount of lactic acid produced. The fermentation pattern changed during ensilation from hetero to homofermentative. Shrimp waste ensilation prevented the growth of spoilage microorganisms keeping their microbial counts steady and pH values within the acid region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号