首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spontaneous bladder EMG was recorded in the living rabbit from an isovolumetric bladder without chemical or electrical stimulation. Mechanical intervention, either by lifting the bladder out of the abdomen or by rapid filling, resulted in stretch induced bladder EMG. A self made epoxy resin electrode device that embedded 32 EMG recording electrodes in a matrix like pattern, each electrode Ag/AgCl, d = 0.6 mm with an interdistance of 2.3 mm, was used for registration. The recorder used a common average reference technique and a sample frequency of 400 Hz. A signal bandwidth of 0.05 to 108 Hz was available for analysis. Spontaneous EMG consisted of single spikes and bursts (2-20 spikes), but not of continuous activity. The shape of spikes was triphasic. Single spikes appeared with and without burst activity. Small (2-5 spikes) and large bursts (6-20 spikes) were discerned; small bursts not necessarily propagated across electrodes, large bursts did and were able to organize, suggesting that they were under short neuron system control. Spontaneous EMG was probably related to both contraction and relaxation. Stretch induced EMG was characterised by continuous activity on all electrodes, spikes that followed each other immediately, slowly fading away. The spikes had an elongated third phase when compared to the shape of spontaneous activity. Highest activity and amplitudes were found after lifting the bladder out of the abdomen and placing it on the electrode device. A concept is put forward in which the continuous activity is not unequivocally related to muscle shortening, but where the current stress and strain situation of the bladder tissue can cause a muscle fibre elongation upon the appearance of electrical activity. The EMG activity found was in many aspects similar to results of a previous study using mortalized rabbits. Artifact sources like the heart, respiration, or local movement between electrode and bladder could easily be identified due to the new experimental methodology used.  相似文献   

2.
Responses of isolated rat iris dilator to some agents and to electrical stimulation were examined. Norepinephrine and epinephrine produced contraction, which was antagonized by 0.03 μM phentolamine. Acetylcholine produced relaxation at low concentrations (1 nM ? 1 μM) as great as 80 % of the resting tone while contraction at high concentrations (≥1 μM). Both responses were suppressed by 0.02 μM atropine and enhanced by 0.03 μM physostigmine. Electrical stimulation at low voltage or low frequency (up to 10 Hz) elicited relaxation while stimulation at high voltage or high frequency (30 Hz) produced contraction. Stimulation with intermediate strength elicited biphasic response. The contraction and relaxation induced by electrical stimulation were abolished by 3 μM phentolamine or by 0.05 μM atropine, respectively. Both phases were abolished by tetrodotoxin (0.3 μM). It is suggested that in the rat the cholinergic relaxation of the dilator may assist the cholinergic contraction of the sphincter (1). The pronounced cholinergic relaxation of nonvascular tissue is to be noted.  相似文献   

3.
A functional analysis of the striated swim-bladder muscles engaged in the sound production of the toadfish has been performed by simultaneous recording of muscle action potentials, mechanical effects, and sound. Experiments with electrical nerve stimulation were made on excised bladder, while decerebrate preparations were used for studies of reflex activation of bladders in situ. The muscle twitch in response to a single maximal nerve volley was found to be very fast. The average contraction time was 5 msec. with a range from 3 to 8 msec., the relaxation being somewhat slower. The analysis of muscle action potentials with surface electrodes showed that the activity of the muscle fibers running transversely to the long axis of the muscle was well synchronized both during artificial and reflex activation. With inserted metal microelectrodes monophasic potentials of 0.4 msec. rise time and 1.2 to 1.5 msec. total duration were recorded. The interval between peak of action potential and onset of contraction was only 0.5 msec. Microphonic recordings of the characteristic sound effect accompanying each contraction showed a high amplitude diphasic deflection during the early part of the contraction. During relaxation a similar but smaller deflection of opposite phase could sometimes be distinguished above the noise level. The output from the microphone was interpreted as a higher order derivative function of the muscle displacement. This interpretation was supported by complementary experiments on muscle sound in mammalian muscle. The dependence of the sound effects on the rate of muscle contraction was demonstrated by changing the temperature of the preparation and, in addition, by a special series of experiments with repeated stimulation at short intervals. Results obtained by varying the pressure within the bladder provided further evidence for the view that the sound initiated in the muscle is reinforced by bladder resonance. Analysis of spontaneous grunts confirmed the finding of a predominant sound frequency of about 100 per second, which was also found in reflexly evoked grunts. During these, muscle action potentials of the same rate as the dominant sound frequency were recorded, the activity being synchronous in the muscles on both sides. Some factors possibly contributing to rapid contraction are discussed.  相似文献   

4.
Na(+)-K+ ATPase activity of the canine tracheal smooth muscle membrane is responsible for the electrogenic pumping of Na+ and K+ ions. It has been shown that this activity results in muscle relaxation. Based on the results of the current study, we suggest that prolonged electrical stimulation induces increased Na(+)-K+ ATPase activity in isolated tracheal smooth muscle. Tracheal smooth muscle pretreated with prolonged electrical stimulation developed graded mechanical activity when subsequently treated with histamine, serotonin, acetylcholine, or 80 mM K+. This increased isometric tension was interrupted by rhythmic activity, which was elicited by histamine or serotonin but not by acetylcholine or 80 mM K+ stimulation. The spontaneous phasic activity was not inhibited by atropine or propranolol but was totally inhibited by 10(-6) M ouabain. These results suggested that the relaxation phase of rhythmic contraction in response to histamine and serotonin stimulation could be the result of stimulated Na(+)-K+ ATPase activity.  相似文献   

5.
Airway smooth muscle (ASM) from infant guinea pigs has less spontaneous relaxation during stimulation than ASM from adults. Inhibition of cyclooxygenase (COX), which catalyzes the production of prostanoids, increases this relaxation in infant ASM and abolishes age differences, thus suggesting that prostanoids reduce relaxation in infant ASM. In this study, we investigated whether leukotrienes are also involved in reducing spontaneous relaxation; whether the two COX isoforms, COX-1 and COX-2, differentially regulate spontaneous relaxation; and whether prostanoid release is developmentally regulated in guinea pig ASM. In different age groups, we measured relaxation during and after electrical stimulation in tracheal strips as well as prostanoid release from tracheal segments. Relaxation was studied in the absence and in the presence of a lipoxygenase inhibitor, a cysteinyl leukotriene receptor-1 antagonist, a COX-1 inhibitor, or a COX-2 inhibitor. We found that inhibition of lipoxygenase or cysteinyl leukotriene receptor-1 antagonism did not increase spontaneous relaxation at any age, thus excluding a role for leukotrienes in this phenomenon. Inhibition of COX-2, but not COX-1, promoted spontaneous relaxation. The basal release of prostanoids was more abundant in tissue from infant animals and decreased significantly with age. Thromboxane B2 was the most abundant metabolite released at all ages. Electrical stimulation and epithelium removal did not affect the age difference in prostanoid release. We conclude that increased basal prostanoid release contributes to the reduced spontaneous relaxation in immature guinea pig ASM compared with older animals. By regulating ASM relaxation, prostanoids may play a role in the airway hyperresponsiveness at a young age.  相似文献   

6.
7.
Activation of pudendal afferents can evoke bladder contraction or relaxation dependent on the frequency of stimulation, but the mechanisms of reflex bladder excitation evoked by pudendal afferent stimulation are unknown. The objective of this study was to determine the contributions of sympathetic and parasympathetic mechanisms to bladder contractions evoked by stimulation of the dorsal nerve of the penis (DNP) in α-chloralose anesthetized adult male cats. Bladder contractions were evoked by DNP stimulation only above a bladder volume threshold equal to 73 ± 12% of the distension-evoked reflex contraction volume threshold. Bilateral hypogastric nerve transection (to eliminate sympathetic innervation of the bladder) or administration of propranolol (a β-adrenergic antagonist) decreased the stimulation-evoked and distension-evoked volume thresholds by -25% to -39%. Neither hypogastric nerve transection nor propranolol affected contraction magnitude, and robust bladder contractions were still evoked by stimulation at volume thresholds below the distension-evoked volume threshold. As well, inhibition of distention-evoked reflex bladder contractions by 10 Hz stimulation of the DNP was preserved following bilateral hypogastric nerve transection. Administration of phentolamine (an α-adrenergic antagonist) increased stimulation-evoked and distension-evoked volume thresholds by 18%, but again, robust contractions were still evoked by stimulation at volumes below the distension-evoked threshold. These results indicate that sympathetic mechanisms contribute to establishing the volume dependence of reflex contractions but are not critical to the excitatory pudendal to bladder reflex. A strong correlation between the magnitude of stimulation-evoked bladder contractions and bladder volume supports that convergence of pelvic afferents and pudendal afferents is responsible for bladder excitation evoked by pudendal afferents. Further, abolition of stimulation-evoked bladder contractions following administration of hexamethonium bromide confirmed that contractions were generated by pelvic efferent activation via the pelvic ganglion. These findings indicate that pudendal afferent stimulation evokes bladder contractions through convergence with pelvic afferents to increase pelvic efferent activity.  相似文献   

8.
In isolated rat iris sphincter muscle, there has been no attempt to measure mechanical tension changes, because of the small size of the preparation. In this study, responses of the isolated rat iris sphincter to some agents and electrical stimulation were examined. Acetylcholine and electrical stimulation produced powerful contractions of the iris sphincter. These contractile responses were suppressed by atropine and enhanced by physostigmine. 10 μM norepinephrine induced a weak contraction of the sphincter muscle and 1 mM isoproterenol induced a very weak relaxation. These responses were antagonized by phentolamine and propranolol, respectively. In the presence of 0.1 μM atropine, electrical stimulation produced a weak alpha-adrenergic contraction and a very weak beta-adrenergic relaxation. Electrically induced responses were abolished by tetrodotoxin. In conclusion, in the rat iris sphincter, powerful contraction is due to the activation of muscarinic receptors, and that there are weak alpha-adrenergic contraction and weak beta-adrenergic relaxation. Thus in rats, muscarinic contraction of the sphincter muscle plays major role in the regulation of pupil diameter.  相似文献   

9.
Ca(2+)-antagonists change the contractility of isolated detrusor smooth muscle of rabbit influencing the translocation of intra- and extra-cellular Ca2+. This observation might be of clinical importance in the treatment of disorders of urinary bladder function. During field stimulation of different segments of isolated rabbit bladder it was found that the specific Ca(2+)-antagonist nifedipine and verapamil and the non-selective Ca(2+)-antagonist fendiline, prenylamine and cinnarizine blocked the contractions induced by field stimulus to different extent, which decreased from the bladder towards the bladder base (fundus). The highest rate of blocking effect was produced by nifedipine followed by verapamil, prenylamine and fendiline, respectively. Cinnarizine exerted the lowest effect. The change in amplitude and frequency of spontaneous peristalsis was similar in its tendency to the blockade of the field stimulus induced contraction.  相似文献   

10.
In order to simulate dielectric relaxation spectra (DRS) of budding yeast cells (Saccharomyces cerevisiae) in suspension, the complex polarization factor (Clausius-Mossotti factor) beta for a single cell and the complex permittivity of a cell suspension epsilon(sus)* were calculated with a doublet-shaped model (model RD), in which two spheres were connected with a part of a ring torus, using the boundary element method. The beta values were represented by a diagonal tensor consisting of components beta(z) parallel to the rotation axis (z axis) and beta(h) in a plane (h plane) perpendicular to the axis. The epsilon(sus)* values were calculated from the complex permittivity of the suspending medium epsilon(a)* and the components of beta. The calculation was compared with that of a conventional prolate spheroid model (model CP). It was found that model CP could be used as a first approximation to model RD. However, differences existed in beta(z) between models RD and CP; beta(z) showed three relaxation terms in the case of model RD in contrast with two terms in model CP. Narrowing the junction between the two spheres in model RD markedly decreased the characteristic frequency of one of the relaxation terms in beta(z). This suggests that the structure of the junction can be estimated from DRS. Effects of the shape change from model RD to a two-sphere model (model RD without the junction) were also examined. The behavior of beta(z) in the two-sphere model, the relaxation intensity of which was much lower than model RD, was quite similar to that in a single-sphere model. These simulations were consistent with the experimental observations of the dielectric behavior of the yeast cells during cell cycle progression.  相似文献   

11.
The cardiomyocyte cytoskeleton, composed of rigid and elastic elements, maintains the isolated cell in an elongated cylindrical shape with an elliptical cross-section, even during contraction-relaxation cycles. Cardiomyocyte mitochondria are micron-sized, fluid-filled passive spheres distributed throughout the cell in a crystal-like lattice, arranged in pairs sandwiched between the sarcomere contractile machinery, both longitudinally and radially. Their shape represents the extant 3-dimensional (3D) force-balance. We developed a novel method to examine mitochondrial 3D-deformation in response to contraction and relaxation to understand how dynamic forces are balanced inside cardiomyocytes. The variation in transmitted light intensity induced by the periodic lattice of myofilaments alternating with mitochondrial rows can be analyzed by Fourier transformation along a given cardiomyocyte axis to measure mitochondrial deformation along that axis. This technique enables precise detection of changes in dimension of ~1% in ~1 μm (long-axis) structures with 8 ms time-resolution. During active contraction (1 Hz stimulation), mitochondria deform along the length- and width-axes of the cell with similar deformation kinetics in both sarcomere and mitochondrial structures. However, significant deformation anisotropy (without hysteresis) was observed between the orthogonal short-axes (i.e., width and depth) of mitochondria during electrical stimulation. The same degree of deformation anisotropy was also found between the myocyte orthogonal short-axes during electrical stimulation. Therefore, the deformation of the mitochondria reflects the overall deformation of the cell, and the apparent stiffness and stress/strain characteristics of the cytoskeleton differ appreciably between the two cardiomyocyte orthogonal short-axes. This method may be applied to obtaining a better understanding of the dynamic force-balance inside cardiomyocytes and of changes in the spatial stiffness characteristics of the cytoskeleton that may accompany aging or pathological conditions.  相似文献   

12.
Electrical activity of the tracheal smooth muscle was studied using extracellular bipolar electrodes in 37 decerebrate, paralyzed, and mechanically ventilated dogs. A spontaneous oscillatory potential that consisted of a slow sinusoidal wave of 0.57 +/- 0.13 (SD) Hz mean frequency but lacked a fast spike component was recorded from 15 dogs. Lung collapse accomplished by bilateral pneumothoraxes evoked or augmented the slow potentials that were associated with an increase in tracheal muscle contraction in 26 dogs. This suggests that the inputs from the airway mechanoreceptors reflexly activate the tracheal smooth muscle cells. Bilateral vagal transection abolished both the spontaneous and the reflexly evoked slow waves and provided relaxation of the tracheal smooth muscle. Electrical stimulation of the distal nerve with a train pulse (0.5 ms, 1-30 Hz) evoked slow-wave oscillatory potentials accompanied by a contraction of the tracheal smooth muscle in all the experimental animals. Our observations in this in vivo study confirm that the electrical activity of tracheal smooth muscle consists of slow oscillatory potentials and that tracheal contraction is at least partly coupled to the slow-wave activity of the smooth muscle.  相似文献   

13.
1. Mechanical or electrical stimulation of isolated sections of body wall produced contractions that were graded with the intensity of the stimulus. Injury of body wall with shallow incisions produced extremely persistent contractions. 2. Long-lasting contraction of isolated body wall was also produced by brief application of "stimulated body wall wash" (SBW), sea water which was first washed through another section of body wall subjected to intense mechanical or electrical stimulation. Contractions were produced by SBW diluted to concentrations as low as 1% of the initial concentration. Contractions produced by prolonged application of SBW showed little fatigue, tachyphylaxis, or desensitization. 3. SBW caused contraction of isolated sections of body wall from all regions of the body, including tail, parapodia, siphon, purple gland, rhinophores, and anterior tentacles. SBW also caused contraction of isolated lateral columellar muscle and of the gill. 4. 30 mM CoCl2 blocked the release of contractile factors into electrically stimulated body wall and reduced but did not abolish contractile responses of unstimulated body wall to perfused SBW. SBW contractions were unchanged by disconnection of the perfused tissue to the CNS. 5. Hemolymph collected from the neck of an intact donor following strong electrical stimulation of the tail or excision of a parapodium ('stimulated hemolymphh, SHL) caused long-lasting contractions which were larger than those produced by control hemolymph (CHL) collected prior to stimulation of the donor. 6. Similarities between body wall contractions produced by SHL and by SBW, including their occurrence in 30 mM CoCl2, suggest that some of the contractile activity in SHL may be directly released from traumatized body wall. 7. SHL caused significantly greater cardioacceleration of the isolated heart than did CHL. Similarities between the cardioacceleration produced by SHL and by SBW suggest that a source of cardiac activity in SHL may be traumatized body wall. 8. SBW suppressed the gill-withdrawal reflex when applied selectively to the sheathed or desheathed abdominal ganglion. SBW-induced suppression was associated with significant reduction of evoked spike activity in identified gill motor neurons. SHL collected 1-2 h after noxious stimulation caused weak but significant suppression of the gill-withdrawal reflex when applied to the fully sheathed abdominal ganglion.  相似文献   

14.
Summary Tetrodotoxin (10–8 to 10–6 g/ml) blocked the contractile responses of isolated guinea-pig urinary bladder preparation to electrical (25 and 100 Hz) neural but not to transmural stimulation and to X-irradiation (50 kV, 20 kR/min, 20 kR). The irradiation had no influence on the bladder responses to electrical and hormonal (acetylcholine and histamine) stimulation. It is concluded that the X-ray-induced contraction is of myogenic origin and that it is possibly not related to the electro-mechanical coupling system.  相似文献   

15.
Tokuno S  Chen F  Pernow J  Jiang J  Valen G 《Life sciences》2002,71(6):679-692
Short episodes of ischemia and reperfusion in various organs may protect the organ itself, and the heart both as an immediate and a delayed effect. The present study investigates whether a systemic protection of vascular function occurs during adaption to ischemia. Brain ischemia was induced by bilateral ligation of the internal carotid arteries in C57BL6 mice, and 24-36 hours later rings of the thoracic aorta were mounted to study in vitro relaxation and contraction, or proteins were extracted for immunoblotting for endothelial nitric oxide synthase (eNOS) or inducible NOS (iNOS). eNOS decreased, while iNOS increased in the aortic wall after carotid artery ligation. In vitro contraction to increasing concentrations of prostaglandin F(2alpha) (PGF(2alpha)) was attenuated, while relaxation to acetylcholine (ACh) was enhanced. The latter was abolished by the iNOS-inhibitor aminoguanidine. When brain ischemia was induced in iNOS deficient mice, an increase of aortic eNOS was found 24 hours later. The ischemia-induced attenuated relaxation to PGF(2alpha) and enhanced relaxation to ACh were abolished. Aortic rings from mice with severe atherosclerosis (apolipoprotein E and low density lipoprotein receptor double knockout (ApoE/LDLr KO) mice) and spontaneous ischemic events in the heart or brain in vivo were also studied. Spontaneous ischemic events in ApoE/LDLr KO animals did not influence iNOS and eNOS in the vessel wall. A reduced contraction to PGF(2alpha) was observed, but relaxation to ACh was unchanged. These findings suggest that induced brain ischemia as a model of delayed, remote preconditioning protects vessel reactivity, and this protection is mediated by iNOS.  相似文献   

16.
We studied the effect of caffeine on voluntary and electrically stimulated contractions of the adductor pollicis muscle in five adult volunteers. Caffeine (500 mg) was administered orally in a double-blind fashion. Electrical stimulation of the ulnar nerve was performed at 10, 20, 30, 50, and 100 Hz before and after a sustained voluntary contraction held at 50% of the maximal voluntary contraction (MVC). A brief tetanus at 30 Hz was also performed to calculate relaxation rate in the fresh muscle. Contractile properties, relaxation rate, and endurance were then assessed after caffeine and placebo, as well as the response of the fatigued muscle to different frequencies of stimulation. There was no difference in the maximal tension obtained with electrical stimulation (T100) or in the MVC between placebo and caffeine. The tensions developed with electrical stimulation at lower frequencies increased significantly with caffeine ingestion, shifting the frequency-force curve to the left, both before and after fatigue. Mean plasma caffeine concentration associated with these responses was 12.2 +/- 4.9 mg/l. We conclude that caffeine has a direct effect on skeletal muscle contractile properties both before and after fatigue as demonstrated by electrical stimulation.  相似文献   

17.
Both divisions of the autonomic nervous system are involved in regulation of urinary bladder function. Several substances, other than noradrenaline and acetylcholine, seem to play important roles in physiology and pathophysiology of lower urinary tract. In the current study, we aimed to examine if there exist interplays between nitric oxide (NO) and autonomic transmitters and if such interactions vary in different parts of the urinary bladder in healthy and cyclophosphamide (CYP)-induced cystitic rats; when administered to the animals (100 mg/kg; i.p.), the cytotoxic CYP metabolite acrolein induces bladder inflammation. In the current study a series of in vitro functional studies were performed on detrusor muscle strip preparations. Stimulation with electrical field stimulation (EFS), methacholine, adenosine 5′-triphosphate (ATP), and adrenaline evoked contractile responses in isolated bladder preparations that were significantly reduced in cyclophosphamide (CYP)-treated rats. While the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine (L-NNA; 10(-4) M) did not affect contractile responses in normal, healthy strip preparations, it significantly increased the contractile responses to EFS, methacholine and adrenaline, but not to ATP, in the bladders from the CYP-treated rats. In the CYP-treated rats, the ATP-evoked relaxatory part of its dual response (an initial contraction followed by a relaxation) was 6-fold increased in comparison with that of normal preparations, whereas the isoprenaline relaxation was halved in the CYP-treated. While L-NNA (10(-4) M) had no effect on the isoprenaline-evoked relaxations, it reduced the ATP-evoked relaxations in strip preparations from the bladder body of CYP-treated rats. Stimulation of beta(2)- and beta(3)-adrenoceptors evoked relaxations and both responses were reduced in cystitis, the latter to a larger extent. In the trigone, the reduced ATP-evoked contractile response in the inflamed strips was increased by L-NNA, while L-NNA had no effect on the ATP-evoked relaxations, neither on the relaxations in healthy nor on the larger relaxations in the inflamed trigone. The study shows that both contractile and relaxatory functions are altered in the state of inflammation. The parasympathetic nerve-mediated contractions of the body of the bladder, evoked by the release of ATP and acetylcholine, were substantially reduced in cystitis. The relaxations to beta-adrenoceptor and purinoceptor stimulation were also reduced but only the ATP-evoked relaxation involved NO.  相似文献   

18.
Zhang X  Seftel A  DiSanto ME 《PloS one》2011,6(10):e25958
Partial bladder outlet obstruction (PBOO), a common urologic pathology mostly caused by benign prostatic hyperplasia, can coexist in 40-45% of patients with overactive bladder (OAB) and is associated with detrusor overactivity (DO). PBOO that induces DO results in alteration in bladder myosin II type and isoform composition. Blebbistatin (BLEB) is a myosin II inhibitor we recently demonstrated potently relaxed normal detrusor smooth muscle (SM) and reports suggest varied BLEB efficacy for different SM myosin (SMM) isoforms and/or SMM vs nonmuscle myosin (NMM). We hypothesize BLEB inhibition of myosin II as a novel contraction protein targeted strategy to regulate DO. Using a surgically-induced male rat PBOO model, organ bath contractility, competitive and Real-Time-RT-PCR were performed. It was found that obstructed-bladder weight significantly increased 2.74-fold while in vitro contractility of detrusor to various stimuli was impaired ~50% along with decreased shortening velocity. Obstruction also altered detrusor spontaneous activities with significantly increased amplitude but depressed frequency. PBOO switched bladder from a phasic-type to a more tonic-type SM. Expression of 5' myosin heavy chain (MHC) alternatively spliced isoform SM-A (associated with tonic-type SM) increased 3-fold while 3' MHC SM1 and essential light chain isoform MLC(17b) also exhibited increased relative expression. Total SMMHC expression was decreased by 25% while the expression of NMM IIB (SMemb) was greatly increased by 4.5-fold. BLEB was found to completely relax detrusor strips from both sham-operated and PBOO rats pre-contracted with KCl, carbachol or electrical field stimulation although sensitivity was slightly decreased (20%) only at lower doses for PBOO. Thus we provide the first thorough characterization of the response of rat bladder myosin to PBOO and demonstrate complete BLEB-induced PBOO bladder SM relaxation. Furthermore, the present study provides valuable evidence that BLEB may be a novel type of potential therapeutic agent for regulation of myogenic and nerve-evoked DO in OAB.  相似文献   

19.
Experiments were conducted on uteri excised from 44 gilts to clarify the autonomic innervation of the longitudinal (LM) and circular muscle (CM) layers of the myometrium. Functionally and biochemically, the two layers differed markedly in their reaction to transmitters. On transmural nerve stimulation (TMS) of isolated LM strips, relaxation was elicited and spontaneous contraction was inhibited in proportion to the electrical frequency imparted. Although the relaxation was accompanied by preliminary contraction in half the LM preparations tested, the relaxation phase predominated in all the LM strips. Relaxation was sensitive to carteolol (beta-blocker) and to guanethidine (adrenergic neuron blocker), whereas the contractile response in LM was sensitive to phentolamine (alpha-adrenergic antagonist). In the CM strips, contraction resulted from TMS, and though not responsive to hexamethonium, the contractions were enhanced by neostigmine and abolished by atropine. The amount of norepinephrine (NE) and the intensity of dopamine beta-hydroxylase activity were about 2.5 times greater in LM than in CM. Conversely, choline acetyltransferase activity, associated exclusively with cholinergic nerves, was about 8 times more intense in the CM. In line with the TMS responses, alpha-receptor-mediated contractions initiated by NE were enabled exclusively in the LM. Furthermore, beta-receptor-mediated inhibition elicited by isoproterenol was also paramount in the LM. We conclude that there are layer-specific variations in the functional innervation of the myometrium of the nulliparous pig uterus such that CM layer is primarily endowed with cholinergic innervation and the LM layer with adrenergic innervation.  相似文献   

20.
In an experimental in vivo model to study gastropyloric motility in the cat a contraction of the stomach and the pyloric sphincter was regularly obtained in animals subjected to electrical vagal nerve stimulation or local intraarterial (i.a.) injection of substance P (SP). Much more infrequently contractile motor responses were recorded at splanchnic nerve stimulation. The contractile effects of SP were sensitive to atropine or local infusion of a SP analogue, (d-Pro2,d-Trp7,9)-SP, indicating that SP activated a final common cholinergic neuron in both stomach and pylorus. However, there seemed to be separate transmission mechanisms in these two regions based on the results of the physiological studies. The vagally induced pyloric contraction was noncholinergic, nonadrenergic, but sensitive to ganglionic blockade (hexamethonium) or the SP analogue, indicating involvement of SP in a peptidergic pathway to the sphincter. The infrequent splanchnically induced pyloric contraction was sensitive to atropine, the SP analogue or ganglionic blockade (hexamethonium) in favour of SP acting on a final cholinergic neuron in this system. On the other hand the gastric contraction, obtained at either extrinsic nerve stimulations or local i.a. injection of SP, was sensitive to atropine or the SP analogue but hexamethonium resistant. These findings suggest antidromic activation of SP-containing axon collaterals of the extrinsic nerves terminating on cholinergic neurons of the gastric wall. When afferent C-fibres of the vagal nerve were selectively activated by local heating, pyloric contraction and gastric relaxation were obtained via vago-vagal reflexes. After cervical vagotomy heating of the distal end of the vagal nerve elicited a gastric contraction, previously demonstrated to be atropine sensitive and hexamethonium resistant, but no pyloric motor response. This suggests that the antidromic activation mechanism was present only in the stomach, not in the pylorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号